Jean-Luc Danger
email: danger@enst.fr

Adel Ghazel
email: adel.ghazel@supcom.rnu.tn

Emmanuel Boutillon
email: emmanuel.boutillon@univ-ubs.fr

Hédi Laamari

EFFICIENT FPGA IMPLEMENTATION OF GAUSSIAN NOISE GENERATOR FOR COMMUNICATION CHANNEL EMULATION

In this paper, a high accuracy gaussian noise generator emulator is defined and optimized for hardware implementation on FPGA. The proposed emulator is based on the Box-Muller method implemented by using ROMs tabulation and a random memory access. By means of accumulations, the central limit method is applied to the Box-Muller output gaussian distribution. After presenting the algorithmic method this paper analyzes its efficiency for different noise signal formats. Then the architecture to fit into FPGA is explained. Finally results from the FPGA synthesis are given to show the value of this method for FPGA implementation.

Introduction

Fast prototyping of digital communication systems needs efficient tools for the evaluation of the performance of the transmission algorithms. For example, to obtain an estimation of the Bit Error Rate of 10 -6 ± 3.3%, 10 9 iterations have to be done. Since the number of parameters in a modern system can be very high (sampling frequency, digital format, carrier resolution, rounding and quantification,…), the search for an optimal compromise between performance and complexity is not trivial and, simulation is generally the last tool used to perform this task [START_REF] Ball | A real time fading simulator for mobile radio[END_REF]. To avoid software delays inherent in a long simulation, hardware emulation is investigated in the research project carried out between ENST-Paris (France), SUP'COM (Tunisia), LESTER (France) and University of Toronto (Canada). The idea is to use an FPGA board to emulate the system. A synthetized model of the channel and a synthetized version of the algorithms is used to perform measurement performance at very high speed. The main difficulty in emulating the channel, is to have an accurate Additive White Gaussian Noise (AWGN) generator, i.e.:

• B bits (2 to 10) of resolution after the decimal point • a normal distribution up to more than 4 times the standard deviation σ with a relative error less than 0.1% compared to the ideal distribution; • a periodicity greater than 10 18 (or 2 60);

• a flat spectrum;

• high sample rate (> 10 MHz.).

A theoretical method to fit this requirement was proposed by the author in [START_REF] Ghazel | Design and Performance Analysis of High speed AWGN Communication Channel Emulator[END_REF]. This paper focuses on the FPGA implementation (namely the FLEX10K or APEX20K of Altera [START_REF]ALTERA Data Book[END_REF]) of the AWGN generator in order to reproduce the architecture. The paper is organized as follows : Section 2 recalls briefly the method proposed in [START_REF] Ghazel | Design and Performance Analysis of High speed AWGN Communication Channel Emulator[END_REF], Section 3 described the overall architecture of the AWGN generator, Section 4 shows the LFSR (Linear Feedback Shift Register) optimization and Section 5 gives the design results.

Design of accurate AWGN reference model

The Gaussian noise sample is generated in two steps. First, a quantized version of the Box-Muller method is performed to obtain a good approximation of the Gaussian distribution. Second, several samples thus obtained are accumulated to generate the final sample. The aims of this last step is to smooth the fluctuaction of the distribution obtained with the quantized Box_Muller method (central limit theorem).

Box-Muller method

The Box_Muller method is widely used in software simulation. It generates a random sample n of gaussian variable N(0,1) (zero mean and standard deviation σ=1) from two uniformly distributed over [0,1] random variable x 1 and x 2 using (see [START_REF] Knuth | The Art of computer programming[END_REF] for a proof) :

f(x 1) =) ln(1 x - (1) g(x 2) = 2 cos(2πx 2) (2) n = f(x 1)g(x 2) (3)
A quantized version of (1) and (2) using pre-computed values is proposed in [START_REF] Ghazel | Design and Performance Analysis of High speed AWGN Communication Channel Emulator[END_REF]. It is based on a non-uniform quantization of segment [0,1] that allows very small values of x 1 . to be reached. The non-uniform quantization is obtained by a recursive partition of segment [0,1]. Segment [0,1] is first partitionned in 16 sub-segments of same length, than the first sub-segment [0,1/16[is then subdivided again into 16 sub-segments and so on 1 . This operation is performed K times. K 16words ROM are used to store the quantized values of f(x) over each level of the partition using:

F r (s) = R[2 m f(r s 16 δ +)] and F r (0) = 0 (4)
where r varies between 1 and K (level of partition), s varies between 1 and 15 (sub-segment number) and δ, a real number between 0 and 1, gives the sample position in the segment. F r (s) is coded on 2+m bits, 2 for the integer part to get to σ=4, m for the fractional part. R[x] denotes the largest integer lower than x. The variable x 1 is obtained using K 4-bit random generator rg r , r =1..K.

The g(x) quantization is simplified using the symetries of the cosine function, the segment [0,1/4] is sub-divided into 256 sub-segments. Let us define s', an 8 bit random variable. g(x) is quantized as :

G(s') = R[2 m' 2 cos(512 δ' s' π) + ()] (5)
where δ ' and m' have the same meaning as that of δ and m of equation (5). G(s) is coded on 1+m' bits, 1 bit for the integer part in order to get to 2 , m' bit for the fractional part. From the product:

P(r,s,s') = R[F r (s) × G(s') × 2 B-m-m'] (6)
The sign of the output sample n is obtained by using a random variable sign which complements P(r,s,s') when equal to 1 :

n = (1-2 × sign) × P(r,s,s') -sign (7)

Mixed method

The curve a of figure 1 compares the distribution BM 1 obtained with the parameters of Table 1 and the normal distribution N(0,1) using the relative error ξ X (x) : Result of figure 1 shows that BM 4 (curve c) fullfilled our initial requirement.

ξ X (x) =) (0,1)() (0,1)(- ξ ξ N N x X) ((8) B K m δ m' δ' 6 5 7 0.467 7 0.5

Overall architecture

As shown in figure 1, good results are obtained with K=5 and m=7, which means that (2+m)*K=45 logic cells are needed for the F r ROMs. A 256-byte on-chip RAM can be used for the G ROM (m'=8-1=7). All these parameters correspond to Table 1 above. They are a good trade-off between performance and FPGA complexity.

Once the Box-Muller variable is generated a truncation can be done according to the needed accuracy to keep only B bits after the decimal point. In our example we truncated to get 6 bits after the decimal point. When the sign bit is one, the one's complement is used to get negative values. Hence the mean value is now -2 -B-1 instead of 0 before accumulation. After accumulation the mean and standard deviation are given by :

mean(BM A,B) = -A 2 -B-1 (9) standard deviation(BM A,B) = A . (10
)
To be as close as possible to N(0,1), a compensation has to be done at the back end stage. The back end stage consists in multiplying the noise according to the needed SNR and in adding the result to the signal. For instance if A=4, a mere left shift of the decimal point is enough to compensate σ and the addition with -2 -B+1

compensates the mean.

Figure 2 represents the FPGA architecture with the 3 different blocks : the set of LFSRs to generate rgr, the Fr, G and sign functions for the Box_Muller variable and the accumulator for the central limit theorem.

The rg r generates the Fr ROM addresses. The address from rg r is forced to 0 if one of the address from rg 1 to rg r-1 is different from 0. As the F r (0)=0 (see equation 4), this permits the use of an OR gate at the ROM output.

LFSRs optimisation

With this architecture, 29 uniformly distributed variables are necessary to generate the address bits of the 5 ROMs F r (4 bits each), the ROM G (8 bits) and sign.

The use of LFSR is the classical technique to generate pseudo-random variables by using an irreducible polynomial [START_REF] Proakis | Digital communications[END_REF]. Figure 3 illustrates the LFSR structure called "one to many" with the polynomial

x 5 + x 2 +1 + D Q D Q D Q D Q D Q x x 2 x 3 x 4 x 5 clk Figure 3: LFSR for x 5 + x 2 +1
The period and the number of combinations is 2 n -1 if the LFSR has n registers. After Reset the LFSR has to be initialized with a value different from "00000" otherwise it stays in this state. Instead of using 29 LFSRs for the 29 variables, the number of LFSRs can be reduced if the address bits are grouped by packet of 4, necessiting only 7 LFSRs, 2 for the G ROM, one for each Fr ROM and one for the sign. At every clock cycle, 4 bits are use as outputs and "shifted". For instance for the LFSR of figure 5, t being the clock period, the register x 5 can be expressed as x 5 (t)= x 4 (t-1) = x 2 (t-3)+x 5 (t-3) = x(t-4)+x 4 (t-4). By considering operations every 4t, 4 virtual shift operations are done in one clock cycle.

This technique can be easily coded in VHDL and generates almost no extra FPGA logic cells. The code of the LFSR function generator is given in the Annex for any number of outputs (parameter nb_iter in the code). Figure 4 illustrates the structure LFSR with polynomial x 5 + x 2 +1 and 4 ouputs.

+ D Q D Q x 4 x 5 clk D Q x D Q x 2 D Q x 3 + + + s 0 s 1 s 2 s 3
Figure 4: LFSR for x 5 + x 2 +1 and 4 outputs

LFSR 1 output LFSR 4 outputs t X X 2 X 3 X 4 X 5 X X 2 X 3 X 4 X 5 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 2 0 0 1 0 0 1 0 1 1 0 3 0 0 0 1 0 0 1 1 1 0 4 0 0 0 0 1 1 1 0 1 1 5 1 0 1 0 0 0 0 1 1 0 6 0 1 0 1 0 0 1 1 1 1 7 0 0 1 0 1 0 1 1 0 1 8 1 0 1 1 0 0 1 0 0 0 9 0 1 0 1 1 1 0 1 0 0 10 1 0 0 0 1 0 1 0 1 1 11 1 1 1 0 0 0 0 1 1 1 12 0 1 1 1 0 1 1 0 0 1 Table 2: LFSR sequences
The sequence of the first 12 combinations of LFSRs of figure 3 and 4 is indicated in Table 2. The initial value is set to "00001". This table shows combinations of the 4outputs LFSR correspond to every fourth combination of the 1-output LFSR.

In order to meet the periodicity constraint which is greater than 10 18 (or 2 60), at least a total of 60 registers of LFSRs are needed. In order to keep the highest period, the LFSRs need to have periods prime between them. To meet this condition, we propose to select the LFRS's length from the "Mersenne" numbers (number so that 2 d-1 is a prime number).

Results

Accuracy

By considering the parameters of Table 1 and x between 0 and 4σ, the maximum relative error ξ X (x) between the ideal gaussian distribution N[0,1] and the synthesized one is calculated by using the MATLAB model. The accuracy depends on B, which is the number of bits after the decimal point resulting from the truncation operation, and the number of accumulations A. The difference between the theoretical distribution and the one obtained is due to the low number of samples obtained for high value of σ. When the number of samples increases the distribution converges towards the result of the MATLAB simulation

Conclusion

In this paper, a new technique for generating in real time gaussian noise and emulating a transmission channel was developped by applying the central limit theorem to a gaussian distribution generated by the Box-Muller method. Hardware in FPGA has been optimized by taking advantage of the logic cell structure and the onchip RAM blocks. The proposed implementation delivers a quasi-perfect gaussian noise which has a maximum relative error of 0.1% at 4 σ, compared to the ideal distribution. The FPGA hardware uses only 8% of a 100K gates FPGA and can deliver a gaussian noise at 20MHz with a period which can last a few days at this frequency.

 accumulated (central limit theorem) to generate a single sample. The resulting distributions BM 2 and BM 4 . obtained for A = 2 and 4 are shown in figure 1.

Figure 1 :

 1 Figure 1: ξ X (x) for X= BM 1 (a), BM 2 (b) and BM 4 (c)

Figure 2 :

 2 Figure 2: Architecture in FPGA

 Figure 5 illustrates the relative error obtained with 10 9 samples.

Figure 5 :

 5 Figure 5: relative error with 10 9 samples

Table 1 :

 1 Characteristics of the Box-Muller AWGNTo smooth the large variation of the distribution BM 1 , a number A of independant Box-Muller variables are

1

Division in 16 sub-segments is done in order to optimized the design: the number of words in a Logical CELL (LCELL) is also 16 for a FLEX10K or APEX20K FPGA circuit.

 Table 3 represents the maximum relative error expressed in 10 -3 for different values of A and B. For every value of B the optimal value of δ is indicated.

	-3 between 0 and 4σ Max ξ X (x) * 10	2	3	A	4	5
	1 δ=0.44	0.65	0.08		0.15	0.29
	2 δ=0.453	11.5	1.96	0.93	0.43
	3 δ=0.445	20.2	2.12	0.56	0.34
	B 4 δ=0.467	64.6	5.4		0.71	0.31
	5 δ=0.467	57.3	5.4		1.12	0.69
	6 δ=0.467	71.9	5.8		1.38	0.93
	7 δ=0.467	237	8.4		0.68	0.28
	8 δ=0.467	503	26.5	1.76	0.26

Table 3 :

 3 maximum relative error for different A and B

	5.2 Synthesis				
	Table 4 gives the results obtained with the parameters of
	Table 1, A=4, B=6 and LFSRs of length
	22,21,20,17,13,7,5,15 registers for respectively G, Fr
	and sign :				
	FPGA device	cells mem block clock rate Output rate
	10K100ARC240-1	434	1	74MHz	18.5MHz
	10K100EQC240-1	437	0.5	98MHz	24.5MHz

Table 4 :

 4

synthesis result The synthesis has been done using FPGA Express TM and MAX+PLUSII TM . The number of cells of the LFSR part is 149. In order not to lose the performance level due to the 4 accumulations, 4 Box Muller generators can be placed in parallel and added in one shot. Consequently the hardware size is multiplied by 4.

Annex