
HAL Id: hal-00347213
https://hal.science/hal-00347213

Submitted on 18 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient FPGA Implementation of Gaussian Noise
Generator for Communication Channel Emulation

Jean-Luc Danger, Adel Ghazel, Emmanuel Boutillon, H. Laamari

To cite this version:
Jean-Luc Danger, Adel Ghazel, Emmanuel Boutillon, H. Laamari. Efficient FPGA Implementation of
Gaussian Noise Generator for Communication Channel Emulation. 7th IEEE International Conference
on Electronicsm Circuits & Systemes (ICECS’2K), Dec 2001, Kaslik, Lebanon. pp.1. �hal-00347213�

https://hal.science/hal-00347213
https://hal.archives-ouvertes.fr

EFFICIENT FPGA IMPLEMENTATION OF GAUSSIAN NOISE
GENERATOR FOR COMMUNICATION CHANNEL EMULATION

Jean-Luc Danger (1), Adel Ghazel (2), Emmanuel Boutillon(3) , Hédi Laamari (2)

(1)Ecole Nationale Supérieure des Télécommunications, ComElec, 46 rue Barrault, 75634 Paris Cedex 13, France
 (2)UTIC - Ecole Supérieure des Communications, Rte de Raoued km 3.5 � 2083 El Ghazala �Tunisia

 (3)LESTER, University of Bretagne Sud, 56321 Lorient Cedex, France
danger@enst.fr, adel.ghazel@supcom.rnu.tn, emmanuel.boutillon@univ-ubs.fr

Abstract: In this paper, a high accuracy gaussian
noise generator emulator is defined and optimized for
hardware implementation on FPGA. The proposed
emulator is based on the Box-Muller method
implemented by using ROMs tabulation and a random
memory access. By means of accumulations, the central
limit method is applied to the Box-Muller output
gaussian distribution. After presenting the algorithmic
method this paper analyzes its efficiency for different
noise signal formats. Then the architecture to fit into
FPGA is explained. Finally results from the FPGA
synthesis are given to show the value of this method for
FPGA implementation.

1 Introduction

Fast prototyping of digital communication systems needs
efficient tools for the evaluation of the performance of
the transmission algorithms. For example, to obtain an
estimation of the Bit Error Rate of 10-6 ± 3.3%, 109

iterations have to be done. Since the number of
parameters in a modern system can be very high
(sampling frequency, digital format, carrier resolution,
rounding and quantification,�), the search for an
optimal compromise between performance and
complexity is not trivial and, simulation is generally the
last tool used to perform this task [4]. To avoid software
delays inherent in a long simulation, hardware emulation
is investigated in the research project carried out
between ENST-Paris (France), SUP�COM (Tunisia),
LESTER (France) and University of Toronto (Canada).
The idea is to use an FPGA board to emulate the system.
A synthetized model of the channel and a synthetized
version of the algorithms is used to perform
measurement performance at very high speed. The main
difficulty in emulating the channel, is to have an accurate
Additive White Gaussian Noise (AWGN) generator, i.e.:
• B bits (2 to 10) of resolution after the decimal point
• a normal distribution up to more than 4 times the

standard deviation σ with a relative error less than
0.1% compared to the ideal distribution;

• a periodicity greater than 1018 (or 260);

• a flat spectrum;
• high sample rate (> 10 MHz.).

A theoretical method to fit this requirement was
proposed by the author in [5]. This paper focuses on the
FPGA implementation (namely the FLEX10K or
APEX20K of Altera [2]) of the AWGN generator in
order to reproduce the architecture. The paper is
organized as follows : Section 2 recalls briefly the
method proposed in [5], Section 3 described the overall
architecture of the AWGN generator, Section 4 shows
the LFSR (Linear Feedback Shift Register) optimization
and Section 5 gives the design results.

2. Design of accurate AWGN reference
model

The Gaussian noise sample is generated in two steps.
First, a quantized version of the Box-Muller method is
performed to obtain a good approximation of the
Gaussian distribution. Second, several samples thus
obtained are accumulated to generate the final sample.
The aims of this last step is to smooth the fluctuaction of
the distribution obtained with the quantized Box_Muller
method (central limit theorem).

2.1. Box-Muller method

The Box_Muller method is widely used in software
simulation. It generates a random sample n of gaussian
variable N(0,1) (zero mean and standard deviation σ=1)
from two uniformly distributed over [0,1] random
variable x1 and x2 using (see [3] for a proof) :

f(x1) =)ln(1x− (1)

g(x2) = 2 cos(2πx2) (2)

n = f(x1)g(x2) (3)

A quantized version of (1) and (2) using pre-computed
values is proposed in [5]. It is based on a non-uniform
quantization of segment [0,1] that allows very small
values of x1. to be reached. The non-uniform

mailto:adel.ghazel@supcom.rnu.tn

quantization is obtained by a recursive partition of
segment [0,1]. Segment [0,1] is first partitionned in 16
sub-segments of same length, than the first sub-segment
[0,1/16[is then subdivided again into 16 sub-segments
and so on1. This operation is performed K times. K 16-
words ROM are used to store the quantized values of
f(x) over each level of the partition using:

Fr(s) = R[2m f(
r

s
16

δ+
)] and Fr(0) = 0 (4)

where r varies between 1 and K (level of partition), s
varies between 1 and 15 (sub-segment number) and δ, a
real number between 0 and 1, gives the sample position
in the segment. Fr(s) is coded on 2+m bits, 2 for the
integer part to get to σ=4, m for the fractional part. R[x]
denotes the largest integer lower than x. The variable x1
is obtained using K 4-bit random generator rgr, r =1..K.

The g(x) quantization is simplified using the symetries of
the cosine function, the segment [0,1/4] is sub-divided
into 256 sub-segments. Let us define s', an 8 bit random
variable. g(x) is quantized as :

G(s') = R[2m' 2 cos(
512
δ's'π)+(

)] (5)

where δ' and m' have the same meaning as that of δ and
m of equation (5). G(s) is coded on 1+m' bits, 1 bit for
the integer part in order to get to 2 , m' bit for the
fractional part. From the product:

P(r,s,s') = R[Fr(s)× G(s')× 2B-m-m'] (6)

The sign of the output sample n is obtained by using a
random variable sign which complements P(r,s,s') when
equal to 1 :

n = (1-2× sign) × P(r,s,s') - sign (7)

2.2. Mixed method

The curve a of figure 1 compares the distribution BM1
obtained with the parameters of Table 1 and the normal
distribution N(0,1) using the relative error ξ X(x) :

ξ X(x) =
)(0,1)(

)(0,1)(−
ξ

ξ
N

NxX)(
(8)

B K m δ m' δ'
6 5 7 0.467 7 0.5

Table 1: Characteristics of the Box-Muller AWGN

To smooth the large variation of the distribution BM1, a
number A of independant Box-Muller variables are

1Division in 16 sub-segments is done in order to optimized the design: the number
of words in a Logical CELL (LCELL) is also 16 for a FLEX10K or APEX20K
FPGA circuit.

accumulated (central limit theorem) to generate a single
sample. The resulting distributions BM2 and BM4.
obtained for A = 2 and 4 are shown in figure 1.

Figure 1: ξ X(x) for X= BM1(a), BM2(b) and BM4(c)

Result of figure 1 shows that BM4 (curve c) fullfilled our
initial requirement.

3. Overall architecture

As shown in figure 1, good results are obtained with K=5
and m=7, which means that (2+m)*K=45 logic cells are
needed for the Fr ROMs. A 256-byte on-chip RAM can
be used for the G ROM (m'=8-1=7). All these
parameters correspond to Table 1 above. They are a
good trade-off between performance and FPGA
complexity.

Once the Box-Muller variable is generated a truncation
can be done according to the needed accuracy to keep
only B bits after the decimal point. In our example we
truncated to get 6 bits after the decimal point. When the
sign bit is one, the one's complement is used to get
negative values. Hence the mean value is now �2-B-1

instead of 0 before accumulation. After accumulation the
mean and standard deviation are given by :

mean(BMA,B) = – A 2-B-1 (9)

standard deviation(BMA,B) = A . (10)

To be as close as possible to N(0,1), a compensation has
to be done at the back end stage. The back end stage
consists in multiplying the noise according to the needed
SNR and in adding the result to the signal. For instance
if A=4, a mere left shift of the decimal point is enough
to compensate σ and the addition with �2-B+1

compensates the mean.

Figure 2 represents the FPGA architecture with the 3
different blocks : the set of LFSRs to generate rgr, the
Fr, G and sign functions for the Box_Muller variable
and the accumulator for the central limit theorem.

The rgr generates the Fr ROM addresses. The address
from rgr is forced to 0 if one of the address from rg1 to
rgr-1 is different from 0. As the Fr (0)=0 (see equation 4),
this permits the use of an OR gate at the ROM output.

G
Cos(x)

Central limitBox-Muller

X ACCU

sign

4 iter

AWGN

mult

TruncationL
F
S
R

F1
ROM1

F2
ROM2

F3
ROM3

F4
ROM4

F5
ROM5

rg1

8 bits

4 bits

rg2

rg3

rg4

rg5

9 bits (2.7)

8 bits (1.7)

9 bits (3.6)
12 bits (6.6)

n+/-

Figure 2: Architecture in FPGA

4. LFSRs optimisation

With this architecture, 29 uniformly distributed variables
are necessary to generate the address bits of the 5 ROMs
Fr (4 bits each), the ROM G (8 bits) and sign.

The use of LFSR is the classical technique to generate
pseudo-random variables by using an irreducible
polynomial [1]. Figure 3 illustrates the LFSR structure
called "one to many" with the polynomial x5 + x2 +1

+D Q D Q D Q D Q D Q
x x2 x3 x4 x5

clk

Figure 3: LFSR for x5 + x2 +1

The period and the number of combinations is 2n-1 if the
LFSR has n registers. After Reset the LFSR has to be
initialized with a value different from "00000" otherwise
it stays in this state. Instead of using 29 LFSRs for the 29
variables, the number of LFSRs can be reduced if the
address bits are grouped by packet of 4, necessiting only
7 LFSRs, 2 for the G ROM, one for each Fr ROM and
one for the sign. At every clock cycle, 4 bits are use as
outputs and "shifted". For instance for the LFSR of
figure 5, t being the clock period, the register x5 can be
expressed as x5(t)= x4(t-1) = x2(t-3)+x5(t-3) = x(t-
4)+x4(t-4). By considering operations every 4t, 4 virtual
shift operations are done in one clock cycle.

This technique can be easily coded in VHDL and
generates almost no extra FPGA logic cells. The code of
the LFSR function generator is given in the Annex for
any number of outputs (parameter nb_iter in the code).
Figure 4 illustrates the structure LFSR with polynomial
x5 + x2 +1 and 4 ouputs.

+

D Q

D Q

x4

x5

clk

D Qx

D Qx2

D Qx3

+

+

+

s0

s1

s2

s3

Figure 4: LFSR for x5 + x2 +1 and 4 outputs

LFSR 1 output LFSR 4 outputs
t X X

2
X
3
X
4
X
5

X X
2
X
3
X
4
X
5

0 1 0 0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0 1
2 0 0 1 0 0 1 0 1 1 0
3 0 0 0 1 0 0 1 1 1 0
4 0 0 0 0 1 1 1 0 1 1
5 1 0 1 0 0 0 0 1 1 0
6 0 1 0 1 0 0 1 1 1 1
7 0 0 1 0 1 0 1 1 0 1
8 1 0 1 1 0 0 1 0 0 0
9 0 1 0 1 1 1 0 1 0 0
10 1 0 0 0 1 0 1 0 1 1
11 1 1 1 0 0 0 0 1 1 1
12 0 1 1 1 0 1 1 0 0 1

Table 2: LFSR sequences

The sequence of the first 12 combinations of LFSRs of
figure 3 and 4 is indicated in Table 2. The initial value is
set to "00001". This table shows combinations of the 4-
outputs LFSR correspond to every fourth combination of
the 1-output LFSR.

In order to meet the periodicity constraint which is
greater than 1018 (or 260), at least a total of 60 registers
of LFSRs are needed. In order to keep the highest
period, the LFSRs need to have periods prime between
them. To meet this condition, we propose to select the
LFRS's length from the "Mersenne" numbers (number so
that 2d-1 is a prime number).

5. Results

5.1 Accuracy

By considering the parameters of Table 1 and x between
0 and 4σ, the maximum relative error ξ X(x) between the
ideal gaussian distribution N[0,1] and the synthesized
one is calculated by using the MATLAB model. The
accuracy depends on B, which is the number of bits after
the decimal point resulting from the truncation
operation, and the number of accumulations A. Table 3
represents the maximum relative error expressed in 10-3

for different values of A and B. For every value of B the
optimal value of δ is indicated.

AMax ξ X(x) ∗10 −3

between 0 and 4σ 2 3 4 5

1 δ=0.44 0.65 0.08 0.15 0.29

2 δ=0.453 11.5 1.96 0.93 0.43

3 δ=0.445 20.2 2.12 0.56 0.34

B 4 δ=0.467 64.6 5.4 0.71 0.31

5 δ=0.467 57.3 5.4 1.12 0.69

6 δ=0.467 71.9 5.8 1.38 0.93

7 δ=0.467 237 8.4 0.68 0.28

8 δ=0.467 503 26.5 1.76 0.26

Table 3 : maximum relative error for different A and B

5.2 Synthesis

Table 4 gives the results obtained with the parameters of
Table 1, A=4, B=6 and LFSRs of length
22,21,20,17,13,7,5,15 registers for respectively G, Fr
and sign :
FPGA device cells mem block clock rate Output rate

10K100ARC240-1 434 1 74MHz 18.5MHz

10K100EQC240-1 437 0.5 98MHz 24.5MHz
Table 4 : synthesis result

The synthesis has been done using FPGA ExpressTM and
MAX+PLUSIITM. The number of cells of the LFSR part
is 149. In order not to lose the performance level due to
the 4 accumulations, 4 Box Muller generators can be
placed in parallel and added in one shot. Consequently
the hardware size is multiplied by 4. Figure 5 illustrates
the relative error obtained with 109 samples.

Figure 5: relative error with 109 samples

The difference between the theoretical distribution and
the one obtained is due to the low number of samples
obtained for high value of σ. When the number of
samples increases the distribution converges towards the
result of the MATLAB simulation

6. Conclusion

In this paper, a new technique for generating in real time
gaussian noise and emulating a transmission channel was
developped by applying the central limit theorem to a
gaussian distribution generated by the Box-Muller
method. Hardware in FPGA has been optimized by
taking advantage of the logic cell structure and the on-
chip RAM blocks. The proposed implementation
delivers a quasi-perfect gaussian noise which has a
maximum relative error of 0.1% at 4 σ, compared to the
ideal distribution. The FPGA hardware uses only 8% of
a 100K gates FPGA and can deliver a gaussian noise at
20MHz with a period which can last a few days at this
frequency.

Reference

[1] J.G. Proakis, �Digital communications”, Mc
GRAW-HILL International Editions, Electrical
Engineering Series, 1998.

[2] ALTERA Data Book 1998
[3] Donald E. Knuth, "The Art of computer

programming", ADDISON-WESLEY, 1998
[4] J.R. Ball, "A real time fading simulator for mobile

radio", The radio and Electronic Engineer, Vol 52,
N°10,October 1982

[5] A. Ghazel, E. Boutillon, J-L Danger, G. Gulak, H.
Laamari, "Design and Performance Analysis of High
speed AWGN Communication Channel Emulator",
Paper submitted to ICC2001, Tampere Finland

Annex
FUNCTION gen_lfsr(

pol : std_logic_vector;
en : std_logic;
nb_iter : natural

RETURN std_logic_vector IS

VARIABLE pol_int : std_logic_vector(pol'length-1 DOWNTO 0);
VARIABLE pol_gen : std_logic_vector(pol'length-1 DOWNTO 0);

BEGIN

CASE pol'length is
when 22 => pol_gen := "0000000000000000000011";
when 21 => pol_gen := "000000000000000000101";
when 20 => pol_gen := "00000000000000001001";
when 17 => pol_gen := "00000000000001001";
when 13 => pol_gen := "0000000011011";
when 7 => pol_gen := "0000011";
when 5 => pol_gen := "00101"; -- x^5 + x^2 + 1
when 4 => pol_gen := "0011"; -- x^4 + x + 1
when 3 => pol_gen := "011"; -- x^3 + x + 1
when others => pol_gen := "11"; -- x^2 + x + 1

END CASE;

pol_int := pol;

iteration : FOR i in 1 to nb_iter LOOP
IF en = '1' THEN

IF pol_int(pol'length-1)='1' THEN
pol_int := (pol_int(pol'length-2 DOWNTO 0)&'0') xor

pol_gen;
ELSE

pol_int := (pol_int(pol'length-2 DOWNTO 0)&'0');
END IF;

ELSE pol_int := pol_int;
END IF;

END LOOP;

RETURN (pol_int);
END gen_lfsr;

	1 Introduction
	2. Design of accurate AWGN reference model
	2.1. Box-Muller method
	2.2. Mixed method

	3. Overall architecture
	4. LFSRs optimisation
	5. Results
	5.1 Accuracy
	5.2 Synthesis

	6. Conclusion
	Reference
	Annex

