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An experimental study of a product and supply chain design problem for mass customization

Keywords: modular design, product family design, supply chain design, mass customization, bill of materials

To design an efficient product family, designers have to anticipate the production process and, more generally, the supply chain costs. But this is a difficult problem, and designers often propose a solution which is subsequently evaluated in terms of logistical costs. This paper presents a design problem in which the product and the supply chain design are considered at the same time. It consists in selecting a set of modules that will be manufactured at distant facilities and then shipped to a plant close to the market for final, customized assembly under time constraints. The goal is to obtain the bill of materials for all the items in the product family, each of which is made up of a set of modules, and specifying the location where these modules will be built, in order to minimize the total production costs for the supply chain. The objective of the study is to analyze, for small instances, the impact of the costs (fixed and variable) on the optimal solutions, and to compare an integrated approach minimizing the total cost in one model with a two-phases approach in which the decisions relating to the design of the products and the allocation of modules to distant sites are made separately.

Introduction

In recent years, and for a number of reasons, industrial markets have changed. First, globalization is leading to an opening up of those markets. This provides customers with greater choice, which enables them not only able to compare prices, but to find products which correspond exactly to their requirements [START_REF] Xu | Mass customization and variety[END_REF].

Today, the growing demand for customized products involves an increasing number of product variants and options, which results in the need to manage complex product diversity. Such variety must be controlled, in terms of product, process, and supply chain costs, as well as customer lead-time. In order to provide an efficient solution to this problem without extensive product proliferation, companies may focus on "mass customization". Mass customization deals with large product portfolios, flexible manufacturing systems, and extended supply chains [START_REF] Pine | Mass Customization: The New Frontier in Business Competition[END_REF].

Under the pressure of competition, the whole process of supply, warehousing, production, and transportation has been studied. Logistics, which played a minor role in the past, plays a decisive one in today's strategies. In the attempt to satisfy demand, the reliability and punctuality of deliveries form an essential part of that logistics. Along with flexibility in production and deliveries, however, costs must be optimized [START_REF] Zhiuong | Study on supply chain management for product family in mass customization[END_REF].

In this context, a new design strategy is developing. Product family design must now take into account not only product diversity, but also definition of the process and the supply chain [START_REF] Yang | Research on product family design for mass customization[END_REF]. A consistent approach to product family design is needed in order to guarantee customer satisfaction, as well as to minimize the total investment on the part of producers in the product and in the operating cost of the global supply chain [START_REF] Lamothe | An optimization model for selecting a product family and designing its supply chain[END_REF].

Through increasing competition and the necessity to reduce costs, producers are forced to integrate the production chain of their suppliers. This is now possible because of well-developed computer technologies and new communication technologies. An example of these highly merged production chains of producers and suppliers can be found in the automotive industry.

A challenge for product family design is to control the number of subelements with a view to maintaining the storage cost of components at a reasonable level. Modularity is a good way to achieve such a compromise, as suppliers put together modules containing combinations of functionalities needed in the finished products. As a result, the producer uses a limited number of modules to assemble a product, and one module can be used in many products [START_REF] Huang | Modularity in design of products and systems[END_REF].

The strategy of working with modules has the advantage of reducing the final assembly time and the number of elements used in the final assembly phase. As a consequence, organization, storage, and transportation are all simplified [START_REF] Cunha | Design for cost : module-based mass customization[END_REF]. The product family provides the ideal support for this approach.

A product family is composed of similar products which differ in some characteristics such as options. For example, the basic car model may offer few options, in order to minimize the retail price. Then, based on individual customer requests, options can be added to this model, like air-conditioning, an automatic gear box, or a diesel engine, and so on.

There are two extreme production strategies which a company can use. The first consists of manufacturing the various products to stock. "Make-to-stock" may lead to high storage costs if too many alternative versions have to be considered. Such a situation would, in turn, lead to the selection of a minimum set of standardized products [START_REF] Briant | The optimal diversity management problem[END_REF], and could include supplementary options to meet diversified customer requirements. However, standardization costs may also be too high, if many unnecessary functions are offered to customers. The second strategy consists of producing only when an order is received. In this case, the lead time may be longer, leading to a failure to satisfy the customer. An intermediate strategy would be to manufacture preassembly components, called modules, for stock, and to assemble them when an order is received. The advantages of this strategy are that the lead time can be reduced, and high storage and standardization costs can be avoided.

Works have been carried out recently which deals with global design modeling. Agard et al. [START_REF] Agard | Selection of a module stock composition using genetic algorithm[END_REF] propose a genetic algorithm to minimize the mean assembly time of a finished product for a given demand, and Agard and Penz [START_REF] Agard | A simulated annealing method based on a clustering approach to determine bills of materials for a large product family[END_REF] propose a model for minimizing module production costs and a solution based on simulated annealing. However, these models do not consider variable costs arising from the number of modules to be manufactured. Lamothe et al. [START_REF] Lamothe | An optimization model for selecting a product family and designing its supply chain[END_REF] use a generic bill of materials representation to identify the best bill of materials for each product and the optimal structure of the associated supply chain simultaneously, although this approach requires that a predefined generic bill of materials be generated for the product family.

The problem of the assignment of modules to distant location facilities is very close to the classical facility location problem. The purpose of facility location models is to select a set of facilities among potential alternatives to serve the needs of customers while minimizing investment, production, and distribution costs to the supplier, whereas the module assignment problem consists in determining at which facility each module should be produced in order to minimize costs. In the literature, a wide variety of location models have been proposed. Hale [START_REF] Hale | Trevor hale's location science references-available at the address[END_REF] provides an extensive bibliography devoted to facility location, and good surveys of past research can be found in Daskin [START_REF] Daskin | Network and Discrete Location, Models, Algorithms and applications[END_REF]. The main difference between this problem and the module assignment problem is that the facility location problem treats a demand of one kind of product in general, while in the module assignment problem, various kinds of modules are produced at the distant facilities. There is, however, some recent work dealing with the k-product facility location problem. Huei-Chuen and Rongheng [START_REF] Huei-Chuen | A k-product uncapacitated facility location problem[END_REF] present an approximation algorithm for this problem, and show that it provides an optimal solution in a specific cost structure. This problem is close to the one described here, except that it does not consider quantified demand, and the production facilities do not have limited production capacity.

In this paper, we explore the production policy according to which modules are manufactured at distant facilities for cost minimization purposes. Those modules are shipped and assembled at a nearby facility in order to ensure a short lead-time for the customer. The electric beam family of products, largely used in the car industry, is an example of this [START_REF] Lamothe | An optimization model for selecting a product family and designing its supply chain[END_REF]. We compare two modeling strategies: (1) a two-phase approach, often followed in industrial contexts, in which the costs associated with production at the nearby and distant facilities are optimized separately; and (2) an integrated approach, in which the process and the supply chain costs are taken into account simultaneously. The aim of this paper is to give a detailed analysis of the optimal solutions to each approach by scanning many cost configurations. Small instances are used here to obtain optimal solutions. We then focus on the advantages and drawbacks of the two approaches, in particular comparing their solution quality and computational time.

A detailed description of the problem is provided in section 2. Notations are explained in subsection 2.1, and then Mixed Integer Linear Program models are given in subsections 2.2 and 2.3 for the two-phase and integrated approaches. Some computational experiments are given and analyzed in section 3. Finally concluding remarks and perspectives are proposed in section 4.

Mathematical Modeling

Consider the following industrial context (Figure 1). The producer receives customers' orders for finished products containing options and variants. Each individual product is then manufactured from modules provided by various suppliers. The producer has only a short time (T ) in which to respond to each customer's order. This time is less than the time required to assemble the products from elementary components. In addition, the producer has to provide the product precisely according to the customers' requirements (without extra options). This constraint comes either from technical considerations or simply to avoid the supplementary cost of offering non requested options.
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To satisfy customer orders, the producer brings in preassembled components, called modules, from many suppliers located at facilities around the world. The production costs incurred by these suppliers are low. Then, the modules are assembled at the producer's facility, which, we assume, is close to the customers, and thus characterized by a rapid reaction time and a short lead-time.

The strategic problem is, then, to design the product family, i.e. to determine the bill of materials for each product. A product will be made up of a set of modules. For modules which appear in at least one bill of materials, we have to determine where those modules must be produced in order to minimize production and transportation costs.

Notations

A product (or a module) is considered as the set of functions that it contains. It is currently modeled with a binary vector in which 1 means that the function is present in the product (or module) and 0 otherwise.

• a function F k is a requirement that could be included in a finished product.

• a module M j is an assembly of functions that could be added to other modules to make a finished product.

• a finished product P i is an assembly of modules that corresponds exactly to at least one customer demand.

Let us introduce the following notations:

• F = {F 1 , ..., F q } : the set of q functions that can appear in both finished products and modules;

• P = {P 1 , ..., P n } : the set of n possible finished products that may be demanded by at least one customer. Note that D i is the estimated demand of product Pi during the life cycle of the product family;

• M = {M 1 , ..., M m } : the set of m possible modules.

• S = {S 1 , ..., S s } : the set of s distant production facilities where a site S l has a production capacity W l .

• F A j : the fixed cost of module M j at the nearby facility (management costs);

• V A j : the variable cost of module M j at the nearby facility (cost of assembly, storage, transportation, etc.);

• F P jl : the fixed cost of module M j at the distant facility S l (management)

• V P jl : the variable cost of module M j at the distant facility S l (cost of assembly, storage, etc.); • t j : the time required to assemble module M j in a finished product;

• T : the maximum assembly time available;

• W jl : the work load generated by producing one module M j at facility S l .

• W l : the work load capacity available at facility S l .

Under these assumptions, a product (or module) is represented by a binary vector of size q. Each element shows whether the corresponding function is required in the product (value = 1) or not (value = 0). The set M contains m modules. M may be all the possible modules in the whole combinatory, or a subset of those modules.

The problem is now to determine the subset M ′ ∈ M, of minimum cost, such that all products in P can be built in a constrained time window T . Concerning the products, the goal is to determine which bill of materials is the most suitable (Figure 2). In terms of the manufacturing process: (1) the producer assembly line costs must be minimized; and (2) the final assembly time must be less than the available time, in order to respect the delivery time for the customers. In terms of supply chain design: (1) each distant facility cost is considered (with fixed and variable costs for each possible module); and (2) the total workload at each production facility must be under its own production capacity.

The problem is modeled using a Mixed Integer Linear Program formulation. The objective is to minimize all the costs linked to the activities of the producer and suppliers. These costs are fixed, as a result of management of the modules at the nearby facility, assembly at the nearby facility, management of the modules at the distant facilities, and the production costs at the distant facilities.

Below, two strategies for solving the problem are proposed:

• A two-phase approach (2P_App) in which the design of modules precedes their assignment to production facilities,

• An integrated approach (In_App) in which all the costs are included in the mathematical model in order to obtain an optimal solution for both the selection of modules and their assignment to production facilities.

The following two sections present these strategies in greater detail.

A two-phase modeling approach

The basic idea in the first approach is to optimize costs separately. First, at the nearby facility, the bills of materials are drawn up, and the set of modules to produce is optimized. Second, the assignment of modules to the production facilities is optimized.

The first phase consists in determining the modules that optimize the assembly costs at the nearby facility, such that all finished products can be built within the constrained time window T :

Z A = min   m j=1 F A j Y j + m j=1 V A j n i=1 D i X ij   (1) 
s.t. AX i = P i ∀i ∈ {1, • • • , n} (2) 
m j=1 t j X ij ≤ T ∀i ∈ {1, • • • , n} (3) 
X ij ≤ Y j ∀i ∈ {1, • • • , n} ∀j ∈ {1, • • • , m} (4) 
Y j , X ij ∈ {0, 1} ∀i ∈ {1, • • • , n} ∀j ∈ {1, • • • , m} (5) 
Where

X ij = 1, if module M j is used in the bill of materials of product P i , 0 otherwise; Y j = 1 if module M j is selected (then Y j belongs to M
′ , the set of selected modules), 0 otherwise; A is the binary matrix, column j of which is the vector M j ; and X i is the line vector composed by the variables X ij .

The objective function Z A minimizes the costs incurred at the nearby facility, where n i=1 D i X ij corresponds to the total demand of module M j . Constraint [START_REF] Agard | A simulated annealing method based on a clustering approach to determine bills of materials for a large product family[END_REF] shows that a finished product P i must be assembled exactly according to customer requirements. Constraint [START_REF] Briant | The optimal diversity management problem[END_REF] indicates that products must be assembled within the time window T , in order to respect the delivery time. Constraint (4) states that, if module M j is used in the bill of materials of product P i , then module M j must be produced somewhere.

The problem described here contains the set-partitioning problem [START_REF] Garey | Computers and Intractability, A Guide to the Theory of NP-Completeness[END_REF]. We then conclude that it is NP-hard in the strong sense.

The second phase deals with the assignment of modules from the first phase on the distant facilities under capacity constraints:

Z P = min   s l=1 j|Yj =1 F P jl Y jl + s l=1 j|Yj =1 V P jl n i=1 D i X ij Z jl   (6) s.t. s l=1 Z jl = 1 ∀j|Y j = 1 (7) j|Yj =1 W jl n i=1 D i X ij Z jl ≤ W l ∀l ∈ {1, • • • , s} (8) 
Z jl ≤ Y jl ∀j|Y j = 1 ∀l ∈ {1, • • • , s} (9) 
Z jl ≥ 0 ∀j|Y j = 1 ∀l ∈ {1, • • • , s} (10) 
Y jl ∈ {0, 1} ∀j|Y j = 1 ∀l ∈ {1, • • • , s} (11) 
Where Y jl = 1, if module M j is produced at facility S l , 0 otherwise; and Z jl is the percentage of demand of module M j produced at facility S l .

The objective function Z P minimizes the costs occurring at all distant location facilities. Constraint [START_REF] Hale | Trevor hale's location science references-available at the address[END_REF] indicates that the production of a module M j must satisfy the overall quantities required. Constraint [START_REF] Huang | Modularity in design of products and systems[END_REF] shows that total production at facility S l must not exceed that facility's capacity. Constraint [START_REF] Huei-Chuen | A k-product uncapacitated facility location problem[END_REF] expresses the relation between the variables Z jl and Y jl . A module M j can be produced at S l only if M j is assigned to S l (Y jl = 1).

An integrated modeling approach

The second strategy consists in optimizing all costs at the same time, where the objective function Z opt is the sum of the two-phase objective functions (Z A and Z P ). Constraints are those of the two phases. In order to avoid the quadratic term n i=1 D i X ij Z jl in Z P and in equation ( 8), we introduce the variable Q jl , which represents the quantity of module M j produced at site S l and we suppress the variable Z jl . Equation ( 8) is replaced by:

m j=1 Q jl ≤ W l (12) 
Equation ( 7) is replaced by:

s l=1 Q jl = s l=1 D i X ij (13) 
Equation ( 14), in which B is a large number, replaces equation ( 9):

Q jl ≤ BY jl (14) 
The idea of such an approach is to make a global decision when designing both the products and the supply chain.

Computational experiments

Datasets, experimental conditions, and indicators

The objective of the experiments is to analyze the optimal solution behavior for several cost configurations and for different time windows T . For this, small instances have been randomly generated on which the set of possible modules, the finished product set, the distant facility set, the demands D i , the assembly operating times t j , and the distant facility capacities are fixed, while the costs vary.

Assuming that the demand D i of a product P i is a decreasing function of the number of functions of the products, then, as soon as a finished product contains more options, the demand for it becomes lower than if it had fewer functions. The individual assembly operating times t j are fixed to 1, so that constraint (2) results in a limitation in the number of modules for each bill of materials.

Fixed and variable costs associated with the bills of materials (F A j and V A j ) are defined using a square root function of q j (the number of functions in module M j ). The assumption is that adding another function to a module containing many functions is less expensive than for a module with fewer functions. Then, the costs are defined as follows:

• F A j = α ( √ q j + λ 1 ). • V A j = β ( √ q j + λ 2 ).
• F P jl = γ F P 0 .

• V P jl = δ V P 0 .
The coefficients α, β, γ and δ are used to scan different cost configurations. λ 1 , λ 2 are jamming factors generated by a uniform probability law. F P 0 and V P 0 are also randomly generated. Table 1 describes the parameter settings used to configure the various cost files for performing the tests and analysis. The columns show the settings of the twenty-seven cost files used in the tests. Each cost file is characterized by a specific ratio between the various problem costs. The first line shows the ratio between the first-phase (Assembly) costs and the second-phase (Production) costs. "A" indicates that the assembly costs are highly predominant, "C" indicates that the production costs predominate, while "B" indicates that assembly and production costs are almost equivalent. The second line shows the ratio between the fixed and variable costs of the assembly phase: "+" indicates that the fixed costs are higher, "-" indicates that the variable costs are higher, and "1" indicates that the costs are balanced. In the same way, the third line shows the relationship between the fixed and variable costs of the production phase. The remaining lines show the numerical values of α, β, γ and δ that correspond to each cost file. For example column (C1) shows that a problem described as (A, +, +) is one in which assembly costs predominate, i.e. high fixed costs in terms of both assembly and distant production. From a numerical point of view, the following parameters have been used (α = 1000, β = 0.10, γ = 1.44 and δ = 0.01).

C1 C2 C3 C4 C5 C6 C7 C8 C9 A A A A A A A A A
Assembly costs CF % CV For each of the 27 configurations, 10 instances have been generated. The problem data were fixed as follows: the number of functions q = 8, the number of finished products n = 30, where each product has at least q min = 3 functions and at most q max = 6 functions, m = 255 (all possible combinations of modules) and the number of production facilities s = 2. Jamming factors are generated with a uniform law, such that 8% ≤ λ 1 , λ 2 ≤ 12%; 50 ≤ F P 0 ≤ 100; and 1 ≤ V P 0 ≤ 10. T varies from 3 to 6. For T > 6 (q max ) the solution is the same as for T = 6. For T ≤ 2, the final assembly will consider a maximum of 2 assembly operations for each final product, which does not seem reasonable from a practical point of view.

+ + + 1 1 1 - - -
The tests were conducted in C++ with Ilog Cplex 9.0 library. They were solved on a 1.6 Hz DELL workstation with 512 Go of RAM.

In order to facilitate the results analysis, the following notations are introduced: CF A (CV A ) represents the total fixed cost of assembly (the total variable cost of assembly); CF P (CV P ) represents the total fixed cost of production (the total variable cost of production); Z A = CF A + CV A (Z P = CF P + CV P ) is the total cost of assembly (the total cost of production); Z = Z A + Z P is the total cost for the two-phase approach; and Z opt is the optimal total cost given by the integrated approach; and Z A opt = CF A opt + CV A opt (Z P opt = CF P opt + CV P opt ) represents the total cost of assembly (the total production cost) in the integrated approach.

Using these notations, the following indicators are used to analyze the experimental results obtained.

• ∆Z A = Z A -Z A opt Z A opt
: the gap rate of Z A between the first and the second approach;

• ∆Z P = Z P -Z P opt Z P opt : the gap rate of Z P between the first and the second approach;

• ∆Z =

Z-Zopt Zopt

: the gap rate of Z between the first and the second approach;

• |M

′ |: the number of the modules selected in M ′ (the solution size);

• Module requirement: the quantity of modules M j required to assemble the finished products required:

Req j = n i=1 D i X ij
• Solution requirement: the sum of the requirements of the solution modules

m j=1 n i=1 D i X ij

Analysis of the total cost

We first analyze how the total costs evolve according to cost structures and assembly time. Figures 3 (a), (b), and (c) show the gap between the results of the two-phase approach and the integrated approach represented in rate form depending on cost configurations. Figures (a), (b), and (c) show the same diagrams with a reordering of the X-axis.

As we can see ∆Z A is always negative because the two-phase approach gives an optimal solution for the assembly stage. Conversely, ∆Z P and ∆Z are always positive because the solutions are better in terms of the whole supply chain, which is natural considering the optimization models. Figure 3 (a) allows us to see the tendency of the gaps when the second cost parameter moves from "-" to "1" to "+". We note that there is actually no clear tendency here, because the other cost parameters have a strong influence on the gap rate. However, from Figure 3 (b), which shows the tendency of the gaps when the first cost parameter moves from "A" to "B" to "C", it is clear that ∆Z increases significantly when moving form "A" to "C", since production costs take more importance in the global objective function.

We also see that ∆Z shows a clear trend in the case of the third cost parameter. When the first two parameters are fixed, the gap rate ∆Z increases when the production cost parameter moves from "-" to "1" to "+". The ampli-tude of the gap increases progressively when moving from A to C, because the production costs take increasingly much more weight in the objective function, which allows the integrated approach to improve Z significantly compared with the two-phase approach.

Number of modules and total needs

The following figure 4 shows the solution requirement, the number of modules in M ′ when T = 4 (the same shape applies for various values of T ).

Optimal so luti on s ize: T=4 For the same reasons, the solution size gaps and the solution requirement gaps follow the same trend according to the cost configurations, the only difference being that the solution sizes are bigger for the integrated approach than for the two-phase approach, while it is the opposite for the solution requirements.

Let us represent the cost configuration by IJK. Where I ∈ {A, B, C} is the first cost parameter, J ∈ {+, 1, -} is the assembly cost parameter, and K ∈ {+, 1, -} is the production cost parameter .

For example, the two-phase approach always yields a small solution for cost files 1 to 6, 10 to 15 and 19 to 24; that is, when J ="-" (i.e. when fixed assembly costs are greater than variable assembly costs). Obviously, this is to limit the number of modules used and so limit the fixed assembly costs, which represent the weight in the first-phase objective function.

Solutions containing a small number of modules induce more requirements for all the modules than solutions containing more, bigger modules (see Figure 5). We can see in this figure that the requirements corresponding to cost files 7, 8, 9, 16, 17, 18, 25, 26, 27 (for the two-phase approach) are lower than the requirements corresponding to the other cost files. This explains why the gap rate between the two-phase approach and the integrated approach is greater when K = "-" (i.e. when variable production costs are greater than fixed production costs). In this case, the two-phase approach solutions have a relatively small number of modules (in order to minimize fixed assembly costs), and, consequently, the resulting modules will have more requirements, leading ultimately to a high value of CV P after resolution of the second phase. In contrast, the integrated approach obtains a large solution directly, because it takes into account the variable production costs when determining the bills of materials.

Evolution of costs according to T

This section is aimed at analyzing the evolution of the different problem costs when T varies. Figure 6 shows this analysis for the problem using the C20 cost file ("C+1" structure, see Table 1). Figure 6 shows the results obtained with the two-phase approach in the first column, and the results with the integrated approach in the second column. The assembly, logistics, and total costs are detailed, as well as the solution size and solution requirements.

The following conclusions can be generalized for the other configurations. For both the assembly costs (phase 1) and the logistical costs (phase 2), the fixed costs decrease with T , while the variable costs increase, which leads, in most cases, to a reduction in Z A and Z P , and consequently in Z and Z opt . The reason for this is that, when T increases, the opportunity for using small modules is greater because there is sufficient assembly time, which leads to fewer size solutions (curves (d)) and consequently a decrease in total fixed costs (for both phases) (see curves (a) and (b)). In contrast, since the solution modules are used in the bill of materials of more products, their needs increase (curves (e)) and consequently the total variable costs increase. Generally, the total costs decrease with T for both approaches (curves (c)). However, sometimes it is not necessary to increase T to reduce the total costs, as we can see in curve 2 (c). This is because, for some cost configurations, the improvement in Z with an increase in T is negligible. This is valid for both approaches, since the configurations are such that the variable costs are much higher than the fixed costs, leading to a stagnation of Z at a certain point of T (Figure 7). Figure 8 shows a very important result, which is that, for some cost configurations, the two-phase approach total costs increase with T . The important feature of the configuration C21 is that logistical costs predominate over assembly costs, and the variable logistical costs are higher than the fixed logistical costs. Moreover, since the choice of modules to be used in the product family bills of materials has a great influence on the logistical costs, the two-phase approach could not succeed in reducing the total costs when increasing T . At first, modules will be determined in the first phase so as to minimize Z A , and, since the C21 configuration is such that fixed assembly costs are greater than variable assembly costs, then increasing T leads to a reduction in the solution size and consequently to an increase in the solution requirements. Then, this increase in requirements leads to an increase in the variable logistical costs following resolution of the second phase. For this reason, Z P will certainly increase when T increases, and, since it represents a great weight in the total costs, Z will increase with T . 

Evolution

Computational time

Examination of the computational time curves (Figures 9 and10) shows that the two-phase approach is extremely quick compared with the integrated approach. Generally, the two-phase approach is slower when the assembly cost parameter (J) is "-" (i.e. when variable assembly costs are greater than fixed assembly costs).

Comp utationa l time : T=4 0,00 The integrated approach is much more time-consuming, especially when K = "-" (i.e. when variable production costs are lower than fixed production costs). This phenomenon can be explained as follows: when K = "-", CV P is much higher than CF P , then the solution must contain large modules to minimize requirements, and there is no special concern about the solution size, since CF P is small. Hence, the MILP solver spots the interesting modules quickly (those having a low production costs) and builds the optimal solution. In contrast, when K = "-", the solution size must not be so big that it minimizes CF P , and this fact further complicates resolution of the problem, leading to a higher computational time. Uncharacteristically, when (T = 3), the computational time for costs is such that (I = "B") is very high, because in this case constraint (2) is very difficult to tackle.

Finally, Figure 10 shows the evolution of the computational time with T for the C20 configuration. Generally, the computational time decreases when T increases for both approaches, because the assembly time constraint becomes less difficult to respect. We also note in this figure the great reduction in computational time when T moves from 3 to 4.

Conclusion

This paper was dedicated to the difficult industrial problem that arises when companies attempt to offer a large variety of products to consumers. In this problem, a choice of components (modules) has to be efficient. These modules are produced for stock, and used in the last stage of production, which is on the We presented a new challenging model which simultaneously takes into account product family design, process design, and supply chain design. The product family design consideration is the determination of an efficient module set which allows products to be assembled while avoiding function redundancy. The process design consideration is constrained by delivery time requirements. Finally, the capacity constraints of distant facilities constitute the chief consideration for the supply chain.

The model's objective functions are designed to optimize the costs incurred by the producer and the suppliers as a result of their activities. The main result is that the module architecture depends in particular on cost configurations between process and supply chain and also on delivery time.

Our tests confirm that the integrated approach is very much better than the two-phase approach when production costs predominate over assembly costs (C cost region), and when variable production costs are greater than fixed production costs. In contrast, in the A cost region, there is practically no gap between the results of the two approaches.

For the two-phase approach, the solution size increases when variable assembly costs are significant relative to the fixed assembly costs, while solution requirements decrease. This indicates that cost optimization favors small modules with big requirements (modules having a small number of functions which can be used in many products) when variable costs are low, and big modules with small requirements when variable costs are high. In contrast, the same phenomenon occurs for the integrated approach solution when production costs are significant relative to fixed production costs. The difference here is that the indicator of evolution is much more dramatic when the production costs at distant facilities exceed the assembly costs at the production facility close to the market.

The analysis of the different problem indicators with the time constraint T for final assembly reveals that the two-phase approach tends to select small modules which can sometimes lead to a rise in the total costs when T increases. However, when variable costs are greater than fixed costs, increasing T has no effect on the total costs.

There are several future research areas to be explored with respect to this problem. It would be interesting, for example, to investigate the heuristics for larger cases where problem complexity becomes too great. It would also be interesting to study the influence of other parameters, like facility capacities and production strategies. Furthermore, we can consider the global model where there are many nearby facilities.

Many module assignment policies could also be analyzed:

• A module M j could be produced at many distant facilities, which is the case of the model described above.

• The production of a module M j is restricted in only one facility, in which case we have to add the following constraint:

s l=1
Y jl = 1 ∀j|Y j = 1. This problem seems more difficult to solve due to the 0-1 assignment it contains.

• Every module must be produced at at least two facilities with a minimum percentage at each one. This is in order to anticipate production problems like delivery delay or worker strikes. Hence, we have to add the following two constraints: Z jl ≥ δY jl ∀j|Y j = 1 ∀l ∈ {1, • • • , s} and s l=1 Y jl ≥ 2 ∀j|Y j = 1. Again, this problem seems to be harder to solve.
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Numerical Values Parameter's Numerical ValuesTable 1 :

 1 Cost configurations

				A Costs					
	Assembly costs %									
	Production costs									
	Production costs CF % CV	+	1	-	+	1	-	+	1	-
		Parameter's Numerical Values				
		1000 600 200 240 120 120 100 60	20
		0.10 0.10 0.10 0.40 0.15 0.20 0.50 0.30 0.10
		1.44 0.64 0.04 0.96 0.32 0.04 0.48 0.32 0.04
		0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
				B Costs					
		C10 C11 C12 C13 C14 C15 C16 C17 C18
	Assembly costs % Production costs	B	B	B	B	B	B	B	B	B
	Assembly costs CF % CV	+	+	+	1	1	1	-	-	-
	Production costs CF % CV	+	1	-	+	1	-	+	1	-
		Parameter's							
		600 600 200 360 180 120 120 100 60
		0.10 0.10 0.10 0.35 0.30 0.20 0.60 0.50 0.30
		9.60 4.80 0.40 7.20 3.20 0.40 4.80 3.20 0.40
		0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
				C Costs					
		C19 C20 C21 C22 C23 C24 C25 C26 C27
	Assembly costs % Production costs	C	C	C	C	C	C	C	C	C
	Assembly costs CF % CV	+	+	+	1	1	1	-	-	-
	Production costs CF % CV	+	1	-	+	1	-	+	1	-
		400 400 200 120 240 120 20	20	20
		0.20 0.40 0.10 0.20 0.40 0.30 0.10 0.10 0.10
		48	32	12	48	32	8	48	32	4
		0.25 0.5	3	1	1	2	1	1	1