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Formulas for the Connes-Moscovici Hopf algebra

Frédéric Menous

Abstract

We give explicit formulas for the coproduct and the antipode in the
Connes-Moscovici Hopf algebra Hcewm. To do so, we first restrict ourselves
to a sub-Hopf algebra Hgy; containing the nontrivial elements, namely
those for which the coproduct and the antipode are nontrivial. There are
two ways to obtain explicit formulas. On one hand, the algebra Hgy is
isomorphic to the Faa di Bruno Hopf algebra of coordinates on the group
of identity-tangent diffeomorphism and computations become easy using
substitution automorphisms rather than diffeomorphisms. On the other
hand, the algebra Hgy is isomorphic to a sub-Hopf algebra of the classical
shuffle Hopf algebra which appears naturally in resummation theory, in
the framework of formal and analytic conjugacy of vector fields. Using
the very simple structure of the shuffie Hopf algebra, we derive once again
explicit formulas for the coproduct and the antipode in Hy;.

1 Introduction.

The Connes-Moscovici Hopf algebra Hcnm was introduced in [ﬂ] in the context
of noncommutative geometry. Because of its relation with the Lie algebra of
formal vector fields, it was also proved in [f] that its subalgebra Heyy is iso-
morphic to the Faa di Bruno Hopf algebra of coordinates of identity-tangent
diffeomorphisms (see [E],@]) In the past years, it appeared that this Hopf
algebra was strongly related to the Hopf algebras of trees (see [J]) or graphs
(see [,[H]) underlying perturbative renormalization in quantum field theory.

Our aim is to give explicit formulas for the coproduct and the antipode in
Hé, since only recursive formulas seem to be known.

We remind in section E the definition of the Connes-Moscovici Hopf alge-
bra, as well as its properties and links with the Faa di Bruno Hopf algebra and
identity-tangent diffeomorphisms (for details, see [f[,[Id]). The formulas are
given in section E We present a proof based on the isomorphism between
identity-tangent diffeomorphisms and substitution automorphisms which are
easier to handle in the computations. These manipulations on substitution
automorphisms are very common in J. Ecalle’s work on the formal classification
of differential equations, vector fields, diffeomorphism... (see [[{],[{l.[§,[]). In
fact, the first proof for these formulas was based on mould calculus and shuffle
Hopf algebras, which we shortly describe in section E SectionsE and E give the



outlines of the initial proof based on a Hopf morphism from H' C Hcy in a
shuffle Hopf algebra.
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2 Connes-Moscovici and Faa di Bruno Hopf al-
gebras.

2.1 The Connes-Moscovici Hopf algebra

The Connes-Moscovici Hopf algebra Hcy defined in @ is the enveloping algebra
of the Lie algebra which is the linear span of Y, X, §,,, n > 1 with the relations,

[X,Y] = X,[Y,0,] = ndn, [0n, 0m] =0, [X,dn] = Ont1 (1)
for all m,n > 1. The coproduct A in Hcy is defined by
AY)=YR14+1Y,A(X)=XR1+10X+6QY,A(6) = R1+1®6 (2)
where A(d,,) is defined recursively, using equation [I] and the identity
Vhi,he € Hom, A(hih) = A(h1)A(hg) (3)

The coproduct of X and Y is given, whereas the coproduct of ¢,, is nontriv-
ial. Nonetheless, the algebra generated by {6,, n > 1} is a graded sub-Hopf
algebra H{y C Hewm where the graduation is defined by

er(0p, ... 0n,)=n1+ ... +n, (4)

As mentioned in [ﬂ], the Hopf algebra H{y, is strongly linked to Faa di Bruno
Hopf algebra.

2.2 The Faa di Bruno Hopf algebra

Let us consider the group of formal identity tangent diffeomorphisms :
Go={f(x) =2+ foz""" €R[[]]}
n>1

with, by convention, the product p: G2 x G2 — Gs :

u(f.9)=gof
For n > 0, the functionals on G2 defined by
_ 1 n+1 _ .

are called de Faa di Bruno coordinates on the group G2 and ag = 1 being the
unit, they generates a graded unital commutative algebra

Hrag = Rla1,...,an,...] (gr(a,) =n)

Moreover, the action of these functionals on a product in G5 defines a coproduct
on Hpap that turns to be a graded connected Hopf algebra (see [[(] for details).
For n > 0, the coproduct is defined by

an o =mo A(ay) (5)



where m is the usual multiplication in IR, and the antipode reads
Soa, =a,orec

where rec(¢) = ¢~ is the composition inverse of ¢.
For example if f(z) =2+ >, <, fnz"™ and g(z) = x4+, 51 gnz™ "' then

if h=p(f,g)=gofand h(z) =z+ 3,51 hna",

ao(h) = 1=uao(flaolg) — Aay = ag ® ag
ai(h) = Ji+h — Aa; = a1 Q@ ap +ap @ ay
az(h) = fo+figi+g92 — Aax = ax®ap+a1®ar+a®a

As proved in [E] and [E], there exists a Hopf isomorphism between Hrqp and
MLy,

2.3 Connes-Moscovici coordinates

Following [fj], one can define new functionals on G2 by 7o = ap=1 (unit) and
forn > 1,

T (f) = (9; log())(0)

These functionals, which may be called the Connes-Moscovici coordinates on
Go, freely generates the Faa di Bruno Hopf algebra :

Hra = Rla1, ..., an, ... =Ry, -- ] gr(an) =gr(w) =n
and their coproduct is given by the formula [|. Now, see [{, [ :

Theorem 1 The map O defined by ©(0,) = 7y, is a graded Hopf isomorphism
between Hpag and HéM

This means that the coproduct and the antipode in H(le can be rather com-
puted in Hpgp. Unfortunately, if the coproduct and the antipode is well-known
for the functionals a,,, using the Faa di Bruno formulas for the composition and
the inverse of diffeomorphisms in Gs, it seems that formulas for the -, cannot
be easily derived. In order to do so, we will either work with substitution au-
tomorphism which are easier to handle than diffeomorphisms (see section E, or
identify Hrqp as a sub-Hopf algebra of a shuffle Hopf algebra and use mould
calculus (see sections I, f, ).

3 Formulas in Hy,.

3.1 Notations

In the sequel we note

N={n=(n1,...,ns) € (N*)°, s>1}



For n = (ny,...,ns) €N,

n]|=n1+4+...+ns, ln)=s

and if n > 1,
No={neN ; |n|=n}

For a tuple n = (nq,...,ns) € N, we note n! = n;!...nsl. More over, Split(n)
is the subset of [J,5; N such that (n',...,n') € Split(n) if and only if the
concatenation of (n!,... nt) is equal to n :

Split(n) = {(n',...,n") e N!, n'...n'=n} (6)

In summation formulas, we will use the fact that
U Split(n) = U Noy X oo X Ny, (1)
nenN, n=(ni,...,ns)EN,

so that if f is a function on NV and g is a function on | J,~,; N, for n > 1,

> > fln)gm!,... m*) =

n=(ni,...,ns)ENn m!' € Ny,

m° E-an
o> fmls.. o mPlhg(m?, .. m?)

neN, ml..ms=n
(8)

where Z is the sum over Split(n).
ml.ms=n

Finally, for (n!,...,n!) e Nt (t > 1),

1 |
Al o) = po 1;[1 CHER ©)
and, for k£ > 1,
t—1 ,
Bk(nl, ceey nt) = O,i(nt) H O\l\%?ln-i-...-i-\\nf\\—i-k (10)
i=1

3.2 Main formulas
We will now prove the following formulas :

Theorem 2 Forn > 1,

A(bn) = 6, ®14+1®6,
n! N
Y e e e © 0,
“ e e S+1'
(”17---7ﬂs+1)€/\/n
s>1



and, for n = (n1,...,ns) € N (I(n) =s) and m > 1,

I(n)
ay =Y Ch > A(n',...,nY) (12)
t=1 nl...nt=n

where, for n = (n1,...,ns) € N, l(n) =1, |n| =n1 + ...+ ns and with the
m!

convention C!, = Wm =) =0ift >m.

For the antipode S :
Theorem 3 Forn > 1,

n!
_ M1 yenny Ns
S(8,) = > T nS!B Oy o O, (13)
n:(nl,...,ns) EN
ni+...+ns=mn

with ™ = —1 and, if n = (n1,...,ns41) €N (s > 1),
NL,eeny Mg, Mg _ nt,..., nt
D D Y glm Il At nt) (14)

where, if m = (mq,...,my) € N/{0} and k > 1,

I(m)

U= (-1t > Bi(m',...,m?) (15)

i=1 m!...mi=m

We will now give the more recent proof of this formulas. These formulas were
first conjectured and then proved using a Hopf morphism between chM and a
shuffle Hopf algebra noted sh(IN*). We will come back later on this morphism
and the afferent proofs. Let us first look at the correspondence between FdB
coordinates and the CM coordinates on Gs.

3.3 Coordinates on G5

Let p(z) =2+ Z ozt We have forn > 1 :
n>1

an(®) = ¢n,  mlp) = (05 log(¢¥"))(0) = fn (16)

If f(z) = Z %x”, then

n>1



For any sequence (uy)n>1, we note

Vn=(ni,...,ns) €N, Up =1Up, ... U, (18)
Using equation , we get easily that
—1)in)
flz) = Z L(nl +1)... (ns + Dppzl™l
I(n)
n:(nl,...,ns)e.f\/ (19)
1 fn 1

In!
N I(n)n! |n|| +1

n:(n1;~~~7ns)€

and these formulas establish the correspondence between FdB and CM coordi-
nates on Go. In order to prove theorems | and [, we need to understand how
these coordinates read on ¢~ and u(p,¥) =Y o ¢ (¢,9 € G3). To do so, we
will rather work with substitution automorphisms than with diffeomorphism.

3.4 Taylor expansions and substitution automorphisms

Definition 1 Let Gy be the set of linear maps from R[[z]] to R[[z]] such that
1. For F € Gy, the image F(z) by F of the series x is in Ga.

2. For any two series A and B in R[[z]], we have
F(A.B)=F(A).F(B) (20)
The elements of G5 are called substitution automorphisms and

Theorem 4 G is a group for the composition and the map :

defines an isomorphism between the groups Go and Ga. Moreover, for A €
R[],
F(A)=Ao7(F) (21)

Proof If F € C~¥2, then, thanks to equation @, for k£ > 0,
F(a*) = (F(2)* = (r(F)(@)" = (o(2))* (22)
thus, for A(z) =35, Apx® € R[[z]],
F(A)@) = F(Siso Are)
> k0 AnF (2") (23)

>z An(p())*
= Ao (r(F))(x)



This proves that 7 is injective and for any ¢ € G5 the map

F oo Rlz]] — R[]
A — Aoy

is a substitution automorphism of G5 such that 7(F) = ¢. The map 7 is a
bijection. Now, for F' and G in G,

T(F o G)(x) = F(G(x)) = 7(G) o 7(F)(x) = p(r(F), 7(G)) ()  (24)

and if H =7"1((7(F))~!) then Fo H = H o F =Id. This ends the proof.

O
Using Taylor expansion, we also get formulas for 771(¢), ¢ € Ga,
Proposition 1 Let p(z) =z + Z onz" Tt € Gy and F = 771(p), then
n>1
1
F=1d —_pzlnlitin) gitn) 25
n=(ni,...,ns)EN
This also means that F' can be decomposed in homogeneous components :
1
_ _ - [|[m]|+1(n) 9l(n)
F=Id+» F, , F,= > ey RGN (26)
n>1 n=(ni,...,ns)EN,
such that
Vn>1, Vk>1, 3ceR, F,(z") =ca™t* (27)
Proof If o(z) =z + Z onx" =2+ ¢(z) € Ga, then, if F = 771(p), then
n>1
for A € R][z]],
F(A)(z) = Az + @( ))
- o+ o
s>11
IR VR
s>1ny>1,...ns>1
1
_ _ [nll+i(n) gl(r
= {la+ > i Mol | (A(x))
n=(ni,..., ns)eEN
O

The automorphism F' can be seen as a differential operator acting on R[[z]]
and from now on we note multiplicatively the action of such operators :

F.o=F(p) (28)



As this will be of some use later, let us give the following formula : If
n=(ni,...,ns) ENand k> 1,

F,zk = Fn, ... F, ak

I
—
Sy
S»—A
BE
=t
SH
=
~_
—
S

ms(EnS-’_l(mS) al(ms) xk
im0 )

where

s—1
1 s\ _ ~l(m?) l(ml)
Bi(m',....,m%) = Cy 1_[1 Clmit1 4.t e |+

With these results one can already derive formulas for the FdB coordinates on
Gs.

3.5 Formulas in Hpgp
We recover the usual formulas :

Proposition 2 We have forn > 1,

n—1
Aan)=an@1+1@a,+>. > O an®ani  (30)
k=1n=(ni,...,ns)EN}

and

S(an) = Z( > (—l)sBl(ml,...,mS)> an (31)

nenN, l.ms=n

Proof Let o(x) = x+ Z onz" T and P(z) = x + Z Yzt two elements
n>1 n>1
of Go and 1 = pu(p, ) = ¥ o ¢ with

n(@) =+ "t (32)
n>1

If F, G and H are the substitution automorphisms corresponding to ¢, 1 and
1, then H=F oG :

H = Id+Y H,

n>1

= |Wd+> F, | [1d+) G, (33)

n>1 n>1

= Id+) > FiGnk (Fo = Go =1d)

n>1k=0



But for [ > 1, G;(z) = ¢yz'*! and then, for k > 1,

1
_ L Il gin) (g 41
FkGl'x - Z l(n),spwf " " awn (wlx )
n=(ni,..., ns)EN, ( )'
1 [+1)!
_ [|[]|4+1+1
by M T T =i

l(n
— Z CzJ(rl)(PnW R+l
and then, for n > 1,
n—1
l
M = Pn + 1/171 + Z Z Cl.(:l')@nd}nfk
k=1 n=(n1,...,ns)EN;
If now p = ¢! and F = 7~ 1(), then, as FF = Id we get

F=1d+Y (~1)Fy, ... Fp, =1d+ > (-1)!VE,
s>1 neN

but for n = (ny,...,ns) €N,

Fal@) = Y Bilm!i.om g gl
m' GNni
1<i<s
Now
Pp = Z (—1)® Z Bi(m!,. .., m*)omi ... Oms
n=(ny..., ns) € Ny, mt e N""i
1<i<s

and this gives the attempted result.

Using the same ideas, we will finally prove theorems E and

3.6 Proof of Theorems B and [§

As before, let p(x) =z + Z onz™ T and () = x + Z Pz two elements

n>1 n>1

of G and n = u(p, ) =¥ o ¢ with

77(;1;) =r+ Z nnanrl

n>1

10

(39)



If

Q
—~
8
~
I
—_—
o
09
—~
<
—
8
~
~
|
Q@
3
3
—~
)
3
|
S
—~
=
N
~

then
h(z) = log((vo¢)(x))
= log(¢'(z).9'(¢(x))
= log(¢'(z)) + (log ¥') o p()
= f(2)+ F(9)(z)

(41)

where F' is the substitution automorphism associated to ¢. We remind that

F=1d+Y, -, Fn. Because of equation [Ld,

frmes

1
- > _t L plnln) glin)
n=(ni,..., S)ENG,
= E 1 Z A(ml,...,ms)fml_”
- ! 11 s
n:(nl VVVVV n )GNn l(n) m.eNn ml!...ms!
1<i<s

- Z% > A(ml,...,ms)lx"+53§

s!

nenN, ml.ms=n
But for £ > 1,
{ k _ fngk 1 s s n+k
Fo (%) = ) T > A, mf)Ciax
nenN,, ml.ms=n

and we obtain immediately the formula for the coproduct.
Let now @ = ¢! and

f(z) = log(9 Zf’f " (Fo = (@)

n>1

Since ¢ o p(x) = x,

thus

11

2lnll+i(n) 3i(n)



But, once again,

fan(z) = Z(_l)l(n)Fn(f_’Txk)
neN, f k!
= DN ST Buml . m g el P
nenN, mi €N,

1<i<s

- Z Z (—=1)*Bp(m',...,m*)pn i’“ Inll+k

neN, ml..ms=n

= - Y Uin glnl+k

neN,
(47)
Now, replacing ¢, as in equation @
n fk
fap(@) = Y (-1)'™F n(o a")
neN,
= — Z Uk(n Llnll+k
neN, It
nJk m® s n
= -2 ik Z A(m Ji(llm ..., l[m® )"+
neN, .mS=n
(48)

Now, for [ > 1,

-1

U fion
fi=—ir Y % 127 AmY, . m*) U (Jm ), ..., |m?])

n=1nenN,

and this gives immediately the attempted formula.

This ends the proofs for our formulas but, as we said before, the first proofs
were derived from mould calculus and we will give the main ideas in the next
sections.

4 Mould calculus and the shuffle Hopf algebra
sh(IN¥).

4.1 An example of mould calculus

4.1.1 Formal Conjugacy of equations

Mould calculus, as defined by J. Ecalle (see [[{],[H],[9]), appears in the study of

formal or analytic conjugacy of differential equations, vector fields, diffeomor-

phisms. In order to introduce it, we give here a very simple but useful example.
Let u € G2 and the associated equation

(Ey) Or = u(x) = + Z Uzt

n>1

12



For u and v in G5 the equations (F,) and (E,) are formally conjugated if there
exists an element ¢ of G5 such that, if z is a solution of (E,) then y = p(z) is a
solution of (E,). This defines an equivalence relation on the set of such equations
and one can easily check that there is only one class : For any equation (E,),
there exist a unique ¢ of Ga such that, if x is a solution of (E,) then y = p(x)
is a solution of

(Eo) Oy =y

The equation for ¢ reads

u(z)¢' () = p(z) (49)
and, if
o) =2+ @ua"t! (50)
n>1
then
u + 21 = ¢1
Uz + 29111 + 32 = 2
; (51)

Recursively, one can determine the values a,(¢) = ¢, and thus the diffeomor-
phism ¢. This does not give a direct formula for the coefficients of ¢. Among
other properties that may be useful for more sophisticated equations, we will
see that the mould calculus will give explicit formulas.

Mould calculus, for this example, is based on two remarks which are detailed
in the next two sections.

4.1.2 Diffeomorphisms an substitution automorphisms

As we have seen in section @, to any diffeomorphism ¢ € G5 one can associate
a substitution automorphism F € Gs

F=Id+)_F, (52)

n>1

Moreover, the action of such an operator on a product of formal power series
induces a coproduct

AF=F&F (F(fg)= (FI)(Fy) (53)
which also reads
n—1
¥n>1, AF,=F,@1d+Y F.®F, ,+1d®F, (54)
k=1

13



4.1.3 Symmetral moulds and shuffle Hopf algebra

Now, for u € G2, the equation (F,) reads

Oyx = | Bo + Z upBy | .2 =B.z with B, =z""9, (55)

n>1

Instead of computing the conjugating map ¢ we could look for its associated
substitution automorphism F in the following shape :

F=Id+Y > M ™B, .. .B,, (56)
s>1n;>1,...ns>1

As we will see later, in order to get a substitution automorphism, is is sufficient
to impose that for any sequences k = (k1,...,ks) and 1 = (I1,...,1l),

MEMY =) " sht (57)

where shf,’f is the number of shuffling of the sequences k, I that gives the sequence
m. The set of such coefficients is called a symmetral mould. Moreover the
conjugacy equation reads

BF.z = FBy.x (58)

Now we can solve the equation BF = FIBj by noticing that, for (n1,...,ns) €
(N7)7,

[Bo, By, ...B,.] = (1 +...+ns)Bun, ...Bn, (59)
and using this commutation relations, one can check that for s = 1 and a
sequence (n1) we get
Upny + 1 M™ =0 (60)
and for s > 2 and a sequence (ny,...,ns) € (N*)?,
Up, M2 0™ 4 (ng + ... ng)M™ ™ =0 (61)
This defines a symmetral mould, for s > 1 and (nq,...,n,) € (N*)*,

(=1)%Up, - up,
it ng) (ot ng) . (nso1 + ng)ng

thus we get explicit formulas for F' and ¢(z) = F.x : For n > 1,

(ann-i-l — Z Z M"l""’nanl . ']an.x (63)
s=1 ni+...4ns=n
ng 2 1
and
on =) ) (ns+ D (ns—1+ns+1) . (na+...Fng+1)M™0"
s=1 ni+...4+ns=n
(64)

14



We just gave the outlines of the method here. The important idea is that we
only used the commutation of By with the over derivations B,, (n > 1), which
means that we worked as these derivations were free of other relations. This
can be interpreted in the following algebraic way.

4.2 The free group and its Hopf algebra of coordinates
4.2.1 Lie algebra and substitution automorphisms

Let A! the Lie algebra of formal vector fields generated by the derivations

Vn>1, B, =2z2""d, (65)

Its enveloping algebra U(A') is a graded Hopf algebra and, see [ﬂ], the Hopf
algebra H,; is the dual of U(A'). Note that this dual is well-defined as the
graded components of U(A!) are vector spaces of finite dimension. If G(A') C
U(A') is the group of the group-like elements of U (A'), this is exactly the group
of substitution automorphism describe above and it is isomorphic to the group
Go

VF e GAY),YfeR[z]] Ff=fop, ¢€Gs (66)

In other terms, G(A') = G..

4.2.2 The free group and its Hopf algebra of coordinates

Our previous mould calculus suggests to introduce, by analogy with A', the
graded free Lie algebra A! generated by a set of primitive elements X,,, n > 1,

The enveloping algebra U(A') is a Hopf algebra which is also called the con-
catenation Hopf algebra in combinatorics (see [[L]]). If the unity is Xy = 1 () is
the empty sequence), then an element U of U(A') can be written

U = U'Xp+). > U™ ™X, ... X,
ST 5 S ST @

= ) U°X,

where the collection of coefficients U*® is called a mould. The structure of the
enveloping algebra U(A') can be described as follows : the product is given by

vm,neN, XpnX,=Xmn (concatenation), (69)

the coproduct is

AXp) =Y sh( ”17’1”2 )an ® Xp2 (70)

nl,n?

15



1

where shzl’"2 is the number of shuffling of the sequences n', n? that gives n.

Finally, the antipode S is defined by

S(Xm,---n\) = (_1)5an,---,n1 (71)

Once again one can define the group G(A') and if F € G(A') then

F= Y F"X, (72)
neNU{0}

where the mould F* is symmetral : F? =1 and

vnl,n?, FPEY =3 shnn pn (73)

n

Moreover, if G is the group inverse of F', then its associated mould is given by
the formulas

G’n«l ----- ns — (_1)5Fn3 ..... ni

Thanks to the graduation on U(A?!), its dual H' is a Hopf algebra, the Hopf
algebra of coordinates on G(A') and, if the dual basis of {X,, n € N} is
{Z™, n € N7} then the product in H' is defined by :

wnln?, 2% 7% =3 s zn (74)
The coproduct is :
Az =2"01+102"+ Y. 7" 7™ (75)
nln2=n

where n'n? is the concatenation of the two nonempty sequences n' and n? and
Z% =1 is the unity. Finally, the antipode is given by

S(an ..... ns) — (_1)Szns ..... ni (76)

The structure of H! (coproduct, antipode, ...) is fully explicit. This will be of
great use since our previous mould calculus suggests that there exists a surjective
morphism from A' on A' that induces an injective morphism from Hg,, into
H'. In other words, H¢,y; can be identified to a sub-Hopf algebra of H' and,
as everything is explicit in H', one can derive formulas for the coproduct and
the antipode in Hiy;.

5 Morphisms.

The application defined by p(X,) = B, = 2", obviously determines a
morphism from A! (resp. U(A!), resp. G(A')) on A! (resp. U(A'), resp.

16



G(A') ~ Gs) and it is surjective : If ¢ € Gy and F = 771() € G(A') = Go,
then, if
p(z)

b(a) =2+ Y bua"t = 702) (77)
n>1

then ¢ is the unique diffeomorphism of G2 that conjugates (Ep) to (Ep) thus
F=Id+ Y M"B,=p (X@ + > M"Xn> (78)
neN neN
By duality, it induces a morphism p* from H! to H' by
VyeH', p*(v)=vop (79)

and, since p is surjective, p* is injective : H¢y, is isomorphic to the sub-Hopf
algebra p* (H(le) C H'. Using this injective morphism, we define

vn>1, I'n=p"(1m) (80)
and p* (chM) is then the Hopf algebra generated by the I',. In order to get
formulas in H{y,, we will use the algebra p*(H{y) and express the Ty, in terms

of the Z™ :

Theorem 5 Forn > 1,

T - n! Z - (_1)t_1 Z an Z'n,tsn1 Snt
n=(ni,...,ns) EN, t=1 n'. ... nt=n
_ Y g
n=mi,..., ns) € Ny,
(81)

where S™ o™ =117 (ni+nip1+. ..+ ns+1) =T (R +1) and Q™" =
(ns + 1) [1]_5 1ty with Q™ = (ny +1).

Let F =Xp+ >, cn F"Xn € G(AY). If F = p(F) € G(A"), then
L (F) =y (F) = () = (0 log(¢')(x))e=0 (82)

where ¢ € G is defined by :

ox)=pF)z=Fx=x+ Z Fro-mB, ...By,,.x  (83)
(n1,...,ns) EN
Then
@) =1+ Y Fremgmenguboin (g
(n1,..., ns) €N

17



Using the logarithm and derivation, one easily gets the formula

- (_1)t71 n' nt an! n'
I, (F)=n! > ZT > F™ .. F™S™ ...8
n=ni,..., ng) €N, t=1 nt.. . nt=n
(85)
We prove the second part of the formula in section E, using the fact that F'*
is symmetral. As

L, (F) =n! > FmQn (86)

n:(n1,...,ns)€/\/n

and Z™.F = F™, theoremﬁ will be proved.
As p*(6,) =T, € H', and, since the coproduct and the antipode are explicit
in H', we can once again obtain the formulas given in theorems f and fJ.

6 Initial Proofs.

6.1 Proof of theorem [
We already proved that, for n > 1,

s (—l)til 1 t 1 t
T, =n! Z Z - Z A A L L
nl...nt

=n

(87)
Extending the notion of shuffling, for ¢t > 1, if m?!,..., m!, m are t+1 sequences,

then shml"'" ™" is the number of ways to obtain the sequence m by shuffling
the sequences m!, ..., m?. Then,

I(n) _
%rn = > Z(_lt)t 1 Sz iz s

neN, t=1 nl. . nt=n
U(n) t—1
—1 t t
DI e i
neN, t=1 nl..nt=n \ m
l(m) _
—1 t—1 t t
D DN P D= S L
meN, t=1 nl,... nteN
(88)
Note that in these equations, we had |m/| = ||n|| and I(m) = I(n). For a given

sequence m € N, let
Hm) (—1)t_1 it 1 t
Qm=> ~—— > shp sm..sm (89)

t
t=1 nl,.. . nteN

it remains to prove that, if m = (mq, ..., mg) then Q™" = (m,+1) [[_, 1,
with Q™' = (my + 1). We prove this formula by induction on I(m).
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If I(m) = 1, then m = (m) and

(_1)0 n' an'
QM = > shi, S = 8™ =my +1 (90)
1
nleN
If (m) = s > 2, then let m = (my,...,ms) and p = (ma,...,ms). For any
sequence n = (ny,...,nk), we note myn = (my,n,...,n;). If a shuffling of
t > 1 sequences n',...,n! gives m then

e Either there exists 1 < i <t such that n* = (m1) (but then ¢ > 2), and,
omitting n” = (my), the corresponding shuffling of the ¢ — 1 remaining
sequences gives p.

e Either there exists 1 < i < ¢ such that n' = miA’ (A’ # 0) (necessarily,
t < I(m)) and, replacing n’ by n’, the corresponding shuffling of the ¢
sequences gives p.

This means that :

(—1)t_1 1 t 1 t
Qr o= Y ——— Y shpmstgn
t=1 nl,..., nt
I(m) 1(_1))571 . t . .
= > shpoeem Y Cgn L gmnt . gn
t=1 t nt,... nt =1
Hm) (—1)t_1 1 t—1 =1 1 i it1 t—1
+ p S shpoem N gm L grementT s
t=2 nl,... nt-1 =0
i | i (91)
but as S™ =mj + 1 and S™"™ = (mq + ||n’| +1)S™,
m)-1 (—1)t_1 1 t ¢ X 1 i t
Qr o= Y > shp oo™ Ny (my 4 [Inf| +1)S™ L S™ LS
t=1 nl,.. nt i=1
m)1 (—l)t 1 t ¢ 1 i it t
+ T shp Y (ma+1)S™ L SMSTT ST
t=1 t + n17,,,)nf =0
I(m)—1 _1
(—1)t nl ot 1 t
= ¥ ——(t(m1 + 1) + [pl) > shpomsm L Sm
t=1 nl,..., nt
Rk (_1) nt,...nt on' nt
+ D oD+ YT kg ST S
t=1 nl,..., nt
(p) t—1
1 1
) D=
t=1 nl,... .nt
= |pll@Q®
(92)

And it obviously gives the right formula for Q™.
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6.2 Proof of theorem P

Using the above formula we have

n! > Qm™AzZ™)

menN,

AT,

= Y QM|zmel+lez™+ Y ZPeZf

meN, pg=m
= <n! > szm> ®1+1® (n! > szm> (93)
menN, menN,

+nl Y Y Qrzrezd

meN, pPg=m

I‘n®1+1®1"n+n!z Z Q™ZP @ 79

menN, pg=m

= I,®l+1®Tl, + AT,

Now if pg = m = (ma,...,ms) with p,q € N (s > 2), then

l(p)+1 I(p)+1

Q™ (ma A DILymi . N _ pp
o T T e ™ 121 i = 13 (i +llgll) = RE, (94)

with the convention that if ¢ = I(p) + 1, then p; = 0. As this coefficient only
depends on p and ||q||,

AT, nt > Y QrzPe Zf

o P 7p a7q
=y | D B2t e| > @z (95)
k=1 peank quk
n—1
n!
= o > Bl 2% | o T
k=1 pENk
n—1
= Pl Ty
k=1

" n! S
PP = Z m%l Ty, oo T, (96)
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with

Hm) 1 Lo
n_\ "¢t : 97
Yk Z k Z I(nM)!. .. I(n")! H [In?] +1 (O7)
t=1 nl...nt=n i=1
nt #£0

This formula was first conjectured on the first values of n. Now let

~ n!
Feo= o nzs;e/v“ PRIk SRR
- 3 I NN O LY L A A
! (M. n3) € Nk miEN,,
_ o 3 apt e NN s Qe QM 2P
k! (N1, ns) € Np—k P mieN,,

| 1 s .
n [m [l llm || m?,....m® Am! s
= o Py Y . sy om Qmt L gm

(98)
It remains to prove that for a given p € NV,,_j, we have
B e lmt ..ol ! : ! o
RE=3" S g belmiliggmtemt gmt L Qmt = RE = T (i +k)
s=1lm!, ... ms i=2
As in the previous proof, if [(p) = 1 then R} =k and
~ 1 1
RPt — oPrOP = (O] _ - 1) =k 99
K =0y @ kl(p)!p1+1(pl+ ) (99)
and if I(p) > 2, as p = p1gq,
R? = R
lp) 1 1 i s 1 s 1 ; .
= Z Z agm - llm [ +p1,. lm?) shi ot Qml Qe Q™
s=1 ml,. . ms
1<i<s
lp)1 1 i i+l s 1 s 1
+ Z Z alim - llm Lpa, [l T [l | st gt Qe Qr
=lmsr
v v (100)
Since QP* = (p; + 1) and Q'™ = ||m’||Q™', we get
R : 1 el |
> wom® Am mey/lIlm-|,....[[m?
RE= 3" 3 shpoemQm o QMY (101)
s=1 ml,..,ms
where
anllji...,ns — Znia;n ..... ni+Pp1..,Ns + (pl + 1) Z aZl ..... My P1, it 1--5Ms (102)
i=1 =0
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»
V)

kr?;;...,ns — ni C]i Z A(’I’Ll, ,’I’Lt)
i=1 t=1 nl.. . nt= (n1,..., n; + p1 ns)
s s+1
e+ Y G > A(n',...,n"
i=0 t=1 n'.onf=(n1,... 001,00, ns)
(103)
In the first term, we get a sequence n' ...n' = (ny,...,n; +p1...,n,) starting
with a decomposition m?! ... m! = (nq,...,n,) and adding p; to one element of
one of the sequences m'. In the second term, n'...n! = (ny,...,n4,p1,...,ns),
then either p; is one of the sequences n!...n?, and, once it is omitted, we get a
decomposition m!...m!~! = (ny,...,ny), either we start with a decomposition
mb...m! = (n1,...,n,) and p; is inserted in one of the sequences m’ : If
n = (ny,...,ns), then,
ni (il + 1)
an ..... Ns — Ot H LR ANl | By nl,”.,nt
k.p1 ; k X Zt Z ||’I’LZ|| +p1+ 1 ( )
(p+1) Zcm S Eluw
H P Yo
tZl nl ’nt =N
|n | +1 1 t
+(p1 +1 Ct —An-,...,n
(104)
Bt 41
+ 1O —— =Cl(k—t 105
(1 + DO = Ol - ) (10)
e o] (] + 1) ]
n'||(|[n*]| + 1 n'||+1
e i+ ) e +1 106
fllmat O Dt - (109
thus
¢
= e S et (@0 30+ 0)
t>1 nl.nt=n i=1
— (nl + + Ng + k) MN1yeeeyNs
(107)
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Now by induction we get, if p = p1q,

Ry

I(p)—1

s=1 ml,... ms

(Ilqll + k)R]
(lqll + k) R}

l(q)+1

(gl +%) ] @ +%

1=

l(q)+1

H (G + k)

i=1
U(p)

IT @ +#)

i;Q
Rk

2

Q™ (

(108)

We live the second proof of theorem E to the reader : the ideas are the same,

noticing that

STa) = Y Quems(zre)
(n1,..ey ns)EN,
_ Z (_1)5Qn1,... N M0
(n1,...,ns)ENy
7 Tables and conclusion.
Some computations give the following tables.
7.1 The coproduct
The table gives the value of .- !-~7~17!13+1! niyyone for a given sequence (n1, . . ., Tst1)
(L,L)=1
1,2)=3 2,1 =1 @1,1,1) =1
(1,3) =6 (2,2)=4 3,1)=1 (1,1,2) =
1,2,1)=3/2 | 2, 1,1)=3/2| (I,L,1,1)=1
(1,4) = 10 (2,3) = 10 (3,2) =5 11)=1
1,1,3)=25 | (1,3,1)=2 G, L,1)=2 | (1,2,2)=25/2
(27 Y ):25/2 (27271):3 (17171’2):15 ( Y 727 ):2
L,21,0)=2 | @LL)=2] (I,L,I,,1)=1
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This gives

A, = 0

AT, = el

Al'y = (T2+TI) @l +3T1 @0

ATy = (T34 30T +T3) @0 + (4l + T2 @ Ty + 6y @ T3
Al'y = (T4 +40T3 4303 + 60272 + ) @ 'y

+(503 + 250, Ty + 15I'%) ® T'y + (103 + 25I'F) @ I's 4+ 10T @ Iy

7.2 The antipode

The table gives the value of %6”1" for a given sequence (ny,...,ns)
(1)=-1
(2)=-1 (L) =1
3)=-1 (1,2) =3 (2,1) = (1,1,1) = -2
4)=-1 (1,3) =6 (2,2) = (3,1)=1
(1,1,2) = —11 (1,2,1)=-9/2 | (2,1,1)=-5/2 (1,1,1,1) =6
(5)=-1 (1,4) =10 (2,3) =10 (3,2) =5
(4,1)=1 (1,1,3) =-35 (1,3,1)=-8 (3,1,1) =-3
(1,2,2) = —55/2 | (2,1,2) = —35/2 (2,2,1)= -7
(1,1,1,2) = 50 (1,1,2,1)=22 | (1,2,1,1)=29/2 | (2,1,1,1) =19/2
(1,1,1,1,1) = —24
This gives :
STy = -T4
S(T2) = —To+TI7
S(T3) = —T3+44Ty —21%
S(F4) = —I'y+7 s+ 4F§ — 18F%F2 + 6I‘41l
S(Ts) = —TDs5+ 1114y + 150973 — 460313 — 521113 + 96137y — 2413

This is the attempted result but the formulas in proposition E, theoremﬁ
and P are not unique because H¢,, is commutative and, in the computations,
it is much more ”simple” to consider that the algebra generated by the d,, is
somehow noncommutative. This situation calls for furthers investigations, since
the coeflicients appearing in proposition Pl for the Faa di Bruno coordinates seem
to arise in the study of a noncommutative version of diffeomorphisms (see [m])

References

[1] Christian Brouder, Alessandra Frabetti, and Christian Krattenthaler.
Non-commutative Hopf algebra of formal diffeomorphisms. Adv. Maith.,
200(2):479-524, 2006.

24



2]

Alain Connes and Dirk Kreimer. Hopf algebras, renormalization and non-
commutative geometry. In Quantum field theory: perspective and prospec-
tive (Les Houches, 1998), volume 530 of NATO Sci. Ser. C' Math. Phys.
Sci., pages 59-108. Kluwer Acad. Publ., Dordrecht, 1999.

Alain Connes and Dirk Kreimer. Renormalization in quantum field theory
and the Riemann-Hilbert problem. I: The Hopf algebra structure of graphs
and the main theorem. Commun. Math. Phys., 210(1):249-273, 2000.

Alain Connes and Dirk Kreimer. Renormalization in quantum field theory
and the Riemann-Hilbert problem. IT: The 8-function, diffeomorphisms and
the renormalization group. Commun. Math. Phys., 216(1):215-241, 2001.

Alain Connes and Henri Moscovici. Hopf algebras, cyclic cohomology and
the transverse index theorem. Commun. Math. Phys., 198(1):199-246,
1998.

Jean Ecalle. Les fonctions résurgentes. Tome I, volume 5 of Publications
Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81]. Uni-
versité de Paris-Sud Département de Mathématique, Orsay, 1981. Les
algeébres de fonctions résurgentes. [The algebras of resurgent functions],
With an English foreword.

Jean Ecalle. Les fonctions résurgentes. Tome II, volume 6 of Publica-
tions Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81].
Université de Paris-Sud Département de Mathématique, Orsay, 1981. Les
fonctions résurgentes appliquées a I'itération. [Resurgent functions applied
to iteration].

Jean Ecalle. Les fonctions résurgentes. Tome III, volume 85 of Publications
Mathématiques d’Orsay [Mathematical Publications of Orsay/. Université
de Paris-Sud, Département de Mathématiques, Orsay, 1985. L’équation du
pont et la classification analytique des objects locaux. [The bridge equation
and analytic classification of local objects].

Jean Ecalle. Singularités non abordables par la géométrie. Ann. Inst.
Fourier (Grenoble), 42(1-2):73-164, 1992.

Héctor Figueroa and José M. Gracia-Bondia. Combinatorial Hopf algebras
in quantum field theory. I. Rev. Math. Phys., 17(8):881-976, 2005.

Christophe Reutenauer. Free Lie algebras, volume 7 of London Mathe-
matical Society Monographs. New Series. The Clarendon Press Oxford
University Press, New York, 1993. , Oxford Science Publications.

25



