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Jacques Arnaud ∗, Laurent Chusseau †, Fabrice Philippe ‡

December 15, 2008

Abstract

Contrary to what some texts are saying, the theory of heat en-
gines and heat pumps presented by Carnot around 1824 is entirely
accurate. We offer in this paper a simple mechanical model consisting
of reservoirs at altitude ǫ containing N ball locations and n weight-1
balls. The reservoir energy is Q = nǫ. We consider particularly two
such reservoirs, with the label l referring to the lower reservoir and
the label h to the higher reservoir. A cycle consists of exchanging
balls between the reservoirs. It is straightforward to show that the
efficiency, defined as the ratio of the work produced to the energy
lost by the higher reservoir is η = 1 − ǫl/ǫh. To relate this energy-
generating device to a heat engine, we introduce the entropy, defined
as the logarithm of the number of ball configurations in a reservoir,
S(n) = ln[N !/n!(N − n)!]. The absolute temperature is then de-
fined as T = [(Q(n + 1) − Q(n))/[(S(n + 1) − S(n))], and the large n
limit is assumed. It follows that when nl ≈ nh, the system efficiency
η = 1 − ǫl/ǫh = 1 − Tl/Th is the Carnot efficiency. Because the con-
cept of time is not involved, a treatment such as the one presented
here may be given early in Physics courses.
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1 Introduction

The purpose of this paper is to give newcomers to the field of Thermody-
namics a feel for the concepts involved in the simplest possible manner, the
concept of time being not involved. Our opinion is that these Thermody-
namical concepts are so simple that they could be presented early in Physics
courses. The first section of the paper is historical. It is often said in the
literature that Carnot discovered the second law of thermodynamics while
ignoring the first one, and furthermore, that he confused entropy and heat.
As a matter of fact, the Carnot theory is entirely accurate1. An empirical
result employed in the Carnot theory is that reversibility is broken when two
bodies at different temperatures are contacted. The present treatment fol-
lows from purely logical reasoning. As such, it is valid for quantum as well as
classical working substances, and could even be realized at the macroscopic
level, using lottery-type containers. In a subtle way, concepts that were in-
troduced only at the end of the 19th century by Boltzmann are involved. The
paper is directly applicable to the so-called Otto cycles with electrons in a
magnetic field as a working substance. A more general discussion is in [1].
Quan [2, 3] shows that the maximum efficiency of every quantum heat engine
is the Carnot efficiency. A good list of references is also given in his papers.

Some historical observations are made in Section 2. We consider in Sec-
tion 3 reservoirs at two different altitudes in the earth gravitational field,
containing weight-1 balls. Work is produced when balls at one location are
being transferred from one reservoir to the other. The relation of such a
device to heat engines is explained in Sections 4 and 5. Fluctuations are
considered in the appendix.

2 History

Carnot [4, 5, 6] suggested around 1824 that heat engines are in some sense
analogous to water mills, water-reservoir altitudes being analogous to heat-
reservoir absolute temperatures. The efficiency of water mills is the ratio
of the work actually performed and the work that would be performed if
the consumed higher-reservoir fluid had dropped all the way down to some
lower reference level. This efficiency is less than unity, even under ideal

1One reason for the misunderstanding is that part of the Carnot contribution appeared
in print only decades after his early death. A second one is that his work was popularized
by Clapeyron in a partly erroneous manner. A third one is the unfortunate use by Carnot
of the word “calorique” to designate what Clausius later on called “entropy”. The word
“calorique” had been formerly employed to designate some hypothetical heat substance.
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conditions. Heat engine efficiency, on the other hand, is defined as the ratio of
the work performed and the higher temperature reservoir heat consumption,
both being expressed in the same energy units, e.g., in joules. In order to
evaluate the work produced and the efficiency, the first and second laws of
thermodynamics are needed. Both were established by Carnot. The first law
asserts that heat is a form of energy and that isolated systems energies do
not vary in the course of time. Let us cite Carnot [4] : “Heat is nothing but
motive power, or rather another form of motion. Wherever motive power is
destroyed, heat is generated in precise proportion to the quantity of motive
power destroyed; conversely, wherever heat is destroyed, motive power is
generated”. Carnot calculated that 1 calorie of heat is equivalent to 3.27 J,
instead of the modern value: 4.18 J. He proved that engine efficiencies reach
their maximum value when they are reversible, from the consideration that
energy cannot be obtained for free. He therefore looked for processes that
could work in a reversed manner, ending up with the celebrated “Carnot
cycle”.

On the other hand, it is a well-known empirical fact that heat may flow
spontaneously (i.e., with no work involved) from a body to another having a
lower temperature, but that the converse never occurs. Eventually, the tem-
peratures of the two bodies equalize. Carnot established that the maximum
efficiency of heat engines operating between baths at absolute temperatures
Tl and Th, respectively, is η = 1 − Tl/Th, and that this efficiency may be
reached under some idealized conditions (Carnot cycle). He also established
that the work produced is W = (Th−Tl)S, where S denote the entropy trans-
ferred from the hot bath to the cold bath. Because there is some confusion
in the literature concerning the significance of the Carnot contribution on
that respect, let us quote Zemansky and Dittman [7] : “Carnot used chaleur

when referring to heat in general, but when referring to the motive power of
fire that is brought about when heat enters an engine at high temperature
and leaves at low temperature, he uses the expression chute de calorique,
never chute de chaleur [. . . ]. Carnot had in the back of his mind the concept
of entropy, for which he reserved the term calorique”.

3 Exchange of balls between two reservoirs

Consider two reservoirs with N possible ball locations, at altitude ǫl and
ǫh > ǫl, respectively, as shown in Fig. 1. For each reservoir every ball
configuration is equally likely to occur in view of the fact that the energies
are the same. A “cycle” consists of carrying the left ball (if there is one)
from one reservoir to the other. It is straightforward to show that, among
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Figure 1: Schematic representation of an engine that converts potential en-
ergy into mechanical work. The figure represents two reservoirs located at
low and high altitudes, ǫl, ǫh respectively, with N possible ball locations
(N = 5 in the figure). The number of weight-1 balls (black circles) is nl in
the lower reservoir, and nh in the higher reservoir (nl = 1, nh = 2 in the fig-
ure). For each reservoir, every ball configuration is equally likely considering
that the energies are the same. A cycle consists of simultaneously carrying
the left ball from one reservoir (if there is one) to the other reservoir. In the
case of the figure, this would amount to increment the number of balls in the
lower reservoir from 1 to 2, and the number of balls in the higher reservoir
from 2 to 1. Averages are understood to be taken over all ball configura-
tions. This is equivalent to picking up a ball at random with probability
n/N , n = nl, nh.
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the N !/n!(N − n)! ball configurations, the fraction of these that have a ball
at a specific location is n/N , a most intuitive result. It is then easy to show
that the efficiency, defined as the ratio of the average work produced to the
average energy lost by the higher reservoir, is η = 1 − ǫl/ǫh (see below).

A reservoir energy is obviously Q = nǫ (kinetic energy being not consid-
ered, the total energy coincides with the potential energy). The letter Q is
employed anticipating a correspondence with heat. When a weight-1 ball is
added to a reservoir at altitude ǫ the reservoir energy is incremented by ǫ. On
the other hand, if a ball is randomly picked up from a reservoir containing n
weight-1 balls and subsequently carried to a reservoir at altitude ǫ, the latter
reservoir average energy is incremented by ∆Q = ǫ n/N . From now on the
word ”average” is omitted for brevity in the main text.

Consider now two such reservoirs. One at altitude ǫl (lower reservoir)
and containing nl weight-1 balls. The other at altitude ǫh (higher reservoir)
containing nh weight-1 balls. A cycle consists of exchanging balls picked up
at random between the two reservoirs. From what has just been said and
if we set l ≡ nl/N , h ≡ nh/N , the energies added to the lower and higher
reservoirs read respectively

∆Ql = ǫl(h − l),

∆Qh = −ǫh(h − l). (1)

The work performed follows from the law of conservation of energy

W = −∆Ql − ∆Qh = (ǫh − ǫl)(h − l). (2)

The engine efficiency, defined as the ratio of the work performed W and the
energy −∆Qh lost by the higher reservoir, is therefore

η ≡
W

−∆Qh

= 1 −
ǫl

ǫh

. (3)

The purpose of the next section is to relate the engine described above to
heat engines. We will show that when h ≈ l the efficiency given in (3)
coincides with the Carnot efficiency and the work given in (2) coincides with
the expression given by Carnot.

4 Heat engines

We consider again reservoirs containing N locations and n weight-1 balls.
As said above, a cycle consists of exchanging randomly-picked balls. To
relate this device to heat engines, let us first recall that the number of ball
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configurations is N !/n!(N − n)!. For example, if N = 3 and n = 1, there
are 3!/1!2!=3 configurations, namely: 100, 010 and 001. Next, we define the
entropy as the logarithm of the number of configurations, the Boltzmann
constant being set equal to unity, that is

S(n) = ln

(

N !

n!(N − n)!

)

. (4)

Note that

S(n + 1) − S(n) = ln

(

N !

(n + 1)!(N − n − 1)!

)

− ln

(

N !

n!(N − n)!

)

= ln

(

N − n

n + 1

)

≈ ln

(

N

n
− 1

)

, (5)

S(n − 1) − S(n) = ln

(

N !

(n − 1)!(N − n + 1)!

)

− ln

(

N !

n!(N − n)!

)

= ln (nN − n + 1) ≈ − ln

(

N

n
− 1

)

. (6)

for large n.
The absolute temperature of a reservoir is then defined as

T (n) =
Q(n + 1) − Q(n)

S(n + 1) − S(n)
≈

ǫ

ln(N

n
− 1)

. (7)

Temperature is an intensive quantity. For example, the temperature of two
identical bodies at temperature T , considered together, is again T . Because
heat has the nature of an energy and is an extensive quantity, it is required
that S be also an extensive quantity. Since the number of configurations in
two separate bodies is the product of the configurations (for each configura-
tion of one body one must consider all the configurations of the other body)
and the logarithmic function has the property that ln(ab) = ln(a) + ln(b),
the above definitions do ensure that T be an intensive quantity.

The cycle efficiency given in (3) may now be written in terms of temper-
atures as

η = 1 −
ǫl

ǫh

= 1 −
Tl

Th

ln(1

l
− 1)

ln( 1

h
− 1)

. (8)

Thus, when l ≈ h, the last fraction in the above equation drops out and
the Carnot efficiency is indeed obtained. In the limit l ≈ h the work W
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produced per cycle is very small. However, one may always add up the work
contributions of any number of similar devices having the same reservoir
temperatures (but possibly different values of ǫ, n), and achieve any specified
work at the Carnot efficiency.

The ball exchange discussed above may increment the reservoir entropies.
The number of balls in a reservoir may indeed be incremented by one, remain
the same, or be decremented by one. From what was said before, the proba-
bility that a weight-1 ball be transferred from the high reservoir to the lower
one is h ≡ nh/N , and the probability that a weight-1 ball be transferred
from the low reservoir to the higher one is l ≡ nl/N . Since these events are
independent, the lower reservoir entropy increment reads

∆Sl = h(1 − l)[S(nl + 1) − S(nl)] + l(1 − h)[S(nl − 1) − S(nl)]. (9)

Using (6) we obtain

∆Sl = (h − l) ln

(

1

l
− 1

)

. (10)

The increment of the higher reservoir entropy is obtained by exchanging the
h and l labels in the above expression, that is

∆Sh = −(h − l) ln

(

1

h
− 1

)

. (11)

We thus find that in the limit nl ≈ nh (or l ≈ h), ∆Sl ≈ −∆Sh ≡ S so
that there is no net entropy produced. Entropy is just carried from the higher
reservoir to the lower one. The Carnot expression for the work recalled in
Section 2 may thus be written as

W = (Th − Tl)∆Sl = −(Th − Tl)∆Sh ≈

(

ǫh

ln
(

1

h
− 1
) −

ǫl

ln
(

1

l
− 1
)

)

∆Sl

(12)

≈ (ǫh − ǫl)(h − l), (13)

so that the Carnot general formula for W recalled in Section 2 indeed coin-
cides with the expression for the work performed per cycle evaluated for our
model from simple reasoning.

5 Relation to practical heat engines

Real heat engines retrieve energy from two arbitrarily large baths, one at
temperature Tl and the other at temperature Th. A working agent such as
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a gas-filled cylinder of length L is put in contact with the hot bath. When
an equilibrium has been reached, the working agent is carried to the low-
temperature bath while the cylinder length is allowed to increase. Once
equilibrium with the low-temperature bath has been reached, the working
agent is carried back to the hot bath while the cylinder length is reduced to
its initial value. It is true (but not obvious) that net work may be obtained
in that manner.

The reservoirs considered in this paper model may reach equilibrium with
baths located at the same altitude ǫ provided they have the same h or l values.
This is achieved by allowing balls to be displaced from the reservoir and the
bath. Usually, working agents and baths exchange energy, but not particles.
If we insist on the condition that only energy be exchanged, our model needs
be slightly modified. Instead of balls one should consider electrons immersed
in a magnetic field. An electron has two energy levels depending on its spin
state. The lower one may be set at 0 (corresponding to empty locations) and
the other at 1 (corresponding to a weight-1 ball). What we previously called
the reservoir “altitude” corresponds here to the magnetic field in which the
electrons are being immersed.

There is an alternative model close to the one shown in the figure. Instead
of weight-1 balls in the earth gravitational field, one may have electrons in a
constant electrical field V/d created by two parallel conducting plates spaced
a distance d apart, with a potential difference V . The potential between the
plates is a constant if they are connected to an arbitrarily large capacitance.
As in the figure, there is a collection of nl electrons at altitude ǫl and a
collection of nh electrons at altitude ǫh. When an electron drops from altitude
ǫh to altitude ǫl, it delivers an energy eV (ǫh − ǫl)/d. Conversely, when at
altitude ǫl is raised to altitude ǫh, it absorbs an energy eV (ǫh − ǫl)/d. These
energies increment or decrement the large capacitance charge by q, such that
qV equals the energy delivered by the electron. In that model, the work W
evaluated above appears in the form of an electrical energy corresponding to
a current i = q/τ lasting during the cycle duration τ .

Another model is that of a shallow potential electron trap with a magnetic
field. The trap may possess N states having almost the same energy, ǫh for
one spin state, and ǫl < ǫh for the other spin state. Only n ≤ N electrons
of a given spin may occupy these states, according to the Pauli principle. If
un-polarized electrons are injected in the system, some will end up in the
higher energy state and others in the lower energy state, giving rise to a
temperature difference. The results presented in that paper should apply
approximately to such an electronic system.
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6 Conclusion

We have seen that heat engines may be equivalent to mechanical engines
of a special kind. Precisely, our model consists of two reservoirs containing
N locations and nl, nh weight-1 balls, at different altitudes. It involves a
concept of probability introduced for the first time in Thermodynamics by
Boltzmann at the end of the 19th century. To summarize, the only concepts
involved in the present paper are those of potential energy and of probability
of picking up specific balls from an ensemble of N identical balls. We have
been able to prove that the efficiency and work in our model coincide with
the Carnot expressions in the limit where nl ≈ nh. Full Carnot cycles may
be generated out of this elementary configuration.

7 Appendix: fluctuations

Recall that in our model a cycle consists of exchanging simultaneously a ball
from the higher reservoir (at altitude ǫh and containing nh balls) and a ball
from the lower reservoir (at altitude ǫl and containing nl balls). The prob-
ability that a ball be picked up from the higher reservoir is h ≡ nh/N (and
therefore the probability that no ball be picked up is 1− h), The probability
that a ball be picked up from the lower reservoir is l ≡ nl/N (and there-
fore the probability that no ball be picked up is 1 − l). The two events are
independent. N is the number of possible ball locations in each reservoir.

Setting ǫ ≡ ǫh − ǫl, we have seen in the main text that the average work
produced per cycle is 〈W 〉 = ǫ(h−l). We now evaluate 〈W 2〉. The probability
that a ball falls and none is raised is h(1 − l). If this event occurs, the work
performed squared is equal to ǫ2. Conversely, the probability that a ball is
raised and none falls is l(1 − h). If this event occurs, the work performed
squared is again equal to ǫ2. If follows that 〈W 2〉 = ǫ2[h(1 − l) + l(1 − h)].
Therefore, the variance of the work produced reads

var(W ) ≡
〈

W 2
〉

− 〈W 〉2 = ǫ2[h(1 − h) + l(1 − l)]. (14)

In the limit h ≈ l considered in the main text, we have

var(W ) ≈ 2ǫ2l(1 − l). (15)

Let us now consider the total entropy produced ∆S ≡ ∆Sl +∆Sh. When
a ball is being transferred from the high reservoir to the lower one and none
from the low reservoir to the higher one, an event that occurs with probability
h(1 − l), the increment of Sl is, according to (5), ∆S(nl + 1) − ∆S(nl) =
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ln(1

l
− 1), and the increment of Sh is ∆S(nh − 1) − ∆S(nh) = − ln( 1

h
− 1).

It follows that the increment in total entropy is ln(
1

l
−1

1

h
−1

) with probability

h(1 − l). When a ball is being transferred from the low reservoir to the
higher one and none from the high reservoir to the lower one, an event that
occurs with probability l(1 − h), the increment of Sl is, according to (5),
∆S(nl −1)−∆S(nl) = − ln(1

l
−1), and the increment of Sh is ∆S(nh +1)−

∆S(nh) = ln( 1

h
−1). It follows that the increment in total entropy is ln(

1

h
−1

1

l
−1

)

with probability l(1 − h).
The average increment in total entropy is therefore

〈∆S〉 = h(1 − l) ln

(

1

l
− 1

1

h
− 1

)

+ l(1 − h) ln

(

1

h
− 1

1

l
− 1

)

= (h − l) ln

(

1

l
− 1

1

h
− 1

)

> 0. (16)

As we said in the main text, when h ≈ l, ∆S ≈ 0 and the system tends
to be reversible and to achieve the highest efficiency. Note that the entropy
increment is non-negative for both a heat engine (h > l) and a heat pump
l > h). More precisely, noting that to first order in δ ≡ h − l we have
ln[(1/l − 1)/(1/h − 1)] ≈ δ/[l(1 − l)], and thus

〈∆S〉 ≈
δ2

l(1 − l)
(17)

Finally, we evaluate the variance of the total entropy increment. From
the above expressions, it follows that

〈

(∆S)2
〉

= h(1 − l)

[

ln

(

1

l
− 1

1

h
− 1

)]2

+ l(1 − h)

[

ln

(

1

h
− 1

1

l
− 1

)]2

= (h + l − 2lh)

[

ln

(

1

l
− 1

1

h
− 1

)]2

, (18)

and the variance reads

var(∆S) ≡
〈

(∆S)2
〉

− 〈∆S〉2

= (h + l − 2lh − (h − l)2)

[

ln

(

1

l
− 1

1

h
− 1

)]2

= [(h(1 − h) + l(1 − l)]

[

ln

(

1

l
− 1

1

h
− 1

)]2

, (19)
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which vanishes, as well as the average entropy produced, when h ≈ l. To
first order in δ ≡ h − l, we have

var(∆S) ≈ 2 〈∆S〉 , (20)

a remarkably simple result. This result is related to conclusions given in [8].
It has been presented before in [9] just after Eq. (18).
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