
HAL Id: hal-00347166
https://hal.science/hal-00347166

Submitted on 15 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification for control of multivariable systems:
Controller validation and experiment design via LMIs
Märta Barenthin, Xavier Bombois, Håkan Hjalmarsson, Gérard Scorletti

To cite this version:
Märta Barenthin, Xavier Bombois, Håkan Hjalmarsson, Gérard Scorletti. Identification for control of
multivariable systems: Controller validation and experiment design via LMIs. Automatica, 2008, 44
(12), pp.3070-3078. �10.1016/j.automatica.2008.05.022�. �hal-00347166�

https://hal.science/hal-00347166
https://hal.archives-ouvertes.fr


Identification forControl ofMultivariable Systems:

ControllerValidationandExperimentDesignviaLMIs

Märta Barenthin a, Xavier Bombois b, H̊akan Hjalmarsson a, Gérard Scorletti c

aAutomatic Control, School of Electrical Engineering, KTH, 100 44 Stockholm, Sweden

bDelft Center for Systems and Control, Mekelweg 2, 2628 CD Delft, The Netherlands

cLaboratoire Ampère Ecole Centrale de Lyon, 36 avenue Guy de Collongue - 69134 Ecully Cedex, France

Abstract

This paper presents a new controller validation method for linear multivariable time-invariant models. Classical prediction
error system identification methods deliver uncertainty regions which are nonstandard in the robust control literature. Our
controller validation criterion computes an upper bound for the worst case performance, measured in terms of the H∞-norm
of a weighted closed loop transfer matrix, achieved by a given controller over all plants in such uncertainty sets. This upper
bound on the worst case performance is computed via an LMI-based optimization problem and is deduced via the separation
of graph framework. Our main technical contribution is to derive, within that framework, a very general parametrization for
the set of multipliers corresponding to the nonstandard uncertainty regions resulting from PE identification of MIMO systems.
The proposed approach also allows for iterative experiment design. The results of this paper are asymptotic in the data length
and it is assumed that the model structure is flexible enough to capture the true system.

Key words: Identification for robust control; Experiment design; Closed loop system identification; Controller validation;
Multivariable plants; Linear multivariable feedback; LMI optimization.

1 Introduction

In this paper, we develop robustness analysis tools
which are appropriate for the particular uncertainty de-
scription delivered by the identification of a multi-input
multi-output (MIMO) system. Additionally, we show
how these tools can be used for experiment design.

Along with a model, an identification experiment in the
prediction error (PE) framework also delivers an uncer-
tainty region D which contains the true system at some
(user-chosen) probability level. Assuming that the model
error is entirely due to variance effects, the identified un-
certainty region D is a set of parametrized transfer ma-
trices G(q, θ) whose parameter vector θ is constrained to
lie in an ellipsoid U centered at the identified parameter

vector θ̂N and whose size is determined by the covari-

ance matrix P (θo) of
√

Nθ̂N , where N is the number
of input-output data collected on the true system. Such
uncertainty structure is nonstandard in the classical ro-
bustness analysis literature. However, the paper [4] has
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shown that, for the case of a single-input single-output
(SISO) true system, robustness analysis tools can be de-
rived for this particular uncertainty structure. These ro-
bustness analysis tools pertain to the validation of a con-

troller C designed from the identified model G(q, θ̂N ).
In particular, it is shown how to compute in an H∞

framework the worst case performance achieved by the
controller C over the plants in D. If this worst case per-
formance remains acceptable, the controller C can then
be applied to the true system Go since the performance
achieved by C over Go will be better than this worst case
performance.

A larger uncertainty region D implies worse control per-
formance. Furthermore, the shape of D depends on the
experimental conditions under which the model and its
uncertainty region have been identified. Based on this
reasoning, research has been conducted in order to de-
termine experimental conditions for which it is a-priori
guaranteed that the obtained uncertainty region is small
enough for the design of a robust controller achieving a
given level of performance. This research has lead to the
recent papers [10,11,5] where the robustness conditions
developed in [4] are explicitly used for the design of ex-
perimental conditions. Another approach for combining
input design and robust control design is presented in
[2].
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The robustness conditions developed in [4] make exten-
sive use of the fact that the true system is assumed SISO.
As a consequence, these robustness tools cannot be ex-
tended as such to the case of MIMO systems 1 . Conse-
quently, another approach is proposed in this paper to
develop robustness analysis tools for the case of MIMO
systems. For this purpose, the uncertain system is ex-
pressed as a linear fractional transformation (LFT) of
a known transfer matrix M and an uncertain part ∆
only known to vary in a given set ∆. The robust per-
formance properties of the uncertain system is then in-
vestigated based on the separation of graphs theorem
[15,8,16]. Roughly speaking, the graph of a system is the
set of its inputs/outputs. An extensive discussion on this
topic can be found in [8,16]. If we can describe all the
quadratic constraints satisfied by the graphs of all un-
certainties ∆ ∈ ∆, then a necessary and sufficient con-
dition guaranteeing the robust performance of the un-
certain system is obtained from the separation of graphs
theorem. Testing this necessary and sufficient condition
is in general not tractable. However, a condition which is
tractable but only sufficient can be deduced if we restrict
attention to an explicit parametrization of the quadratic
constraints satisfied by the graphs of all uncertainties
∆ ∈ ∆. In [16], such a parametrization (called set of
multipliers) is derived for some classical uncertainty sets
encountered in the robustness analysis literature. How-
ever, the set ∆ corresponding to the MIMO systems in
the uncertainty region D is not at all classical. The set ∆
has indeed a very particular structure where the param-
eter vector θ of the systems in D is repeated on the di-
agonal. To the best of our knowledge, such structure has
never been considered in the literature. Consequently,
our main technical contribution is to determine a (very
general) parametrization for the set of multipliers corre-
sponding to the set ∆.

Based on this set of multipliers, we develop an optimiza-
tion problem involving linear matrix inequality (LMI)
constraints which allow to compute an upper bound for
the worst case performance achieved by a controller over
the plants in D. We can only obtain an upper bound
for the worst case performance since we apply the sep-
aration of graphs theorem restricting attention to a set
of multipliers which is parametrized in an explicit way.
However, this intrinsic conservatism is here strongly re-
duced by the choice of a very general set of multipliers
(see [17] for an analysis of this conservatism reduction).
Another contribution of this paper is to show how we can
perform experiment design using the results on the vali-
dation of a controller for performance (worst case perfor-
mance computation). The experiment design problem is
also formulated as an LMI-based optimization problem.

Note that experiment design for MIMO systems is also
treated in [6]. However, unlike the approach to experi-
ment design proposed in the present paper, the approach
presented in [6] is non-convex and the results can only

1 In [3], it is shown that the results in [4] can be extended
to the case of multiple input single output systems, modulo
the choice of a particular model structure. However, the ex-
tension of the result in [3] to MIMO systems is not possible.
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Fig. 1. The closed loop [Go Cid] during identification.

be obtained if the identification is performed in a model
structure which is linear in the parameter vector, such as
Finite Impulse Response and Laguerre [20] model struc-
tures.

2 Notation

The transpose of A is denoted AT and the complex
conjugate transpose by A∗. For positive definite and
positive semidefinite matrices the notation A > 0 and
A ≥ 0 is used, respectively. The norm ‖ · ‖∞ is the
H∞-norm of the stable discrete transfer matrix A(ejω),
i.e. ‖A‖∞ = supω ‖A(ejω)‖ where ‖·‖ denotes the max-
imum singular value. The symbol ⊗ denotes the Kro-
necker product and ? the Redheffer star product. Let M
denote a complex matrix partitioned as

M =

(

M11 M12

M21 M22

)

∈ C
(p1+p2)×(q1+q2). (1)

An (upper) LFT with respect to ∆ ∈ Cq1×p1 is defined as
the map F(M, •) : Cq1×p1 7→ Cp2×q2 with F(M, ∆) =
M22+M21∆(I−M11∆)−1M12, provided that the inverse
(I − M11∆)−1 exists, see [23]. The time shift operator
is given by q, i.e. qr(t) = r(t + 1), q−1r(t) = r(t − 1).
Given an m × n matrix X , the operation Y = vec(X)
produces the vector Y of size 1 × mn that contains the
rows of the matrix X , stacked adjacent to each other.

3 Prediction Error Identification Aspects

We consider the following multivariable true system with
output y ∈ Rny and input u ∈ Rnu ,

S : y(t) = Go(q)u(t) + v(t) (2)

v(t) = Ho(q)e(t),

where Go(q) is a stable transfer matrix. Furthermore,
e(t) ∈ Rny is white noise and Ho(q) is a stable in-
versely stable monic transfer matrix. The power spec-
trum of the additive noise v(t) is therefore given by
Φv(ω) = Ho(e

jω)ΛoH
∗

o (ejω), where Λo is the covariance
of e(t), i.e. E{e(t)eT (t)} = Λo. The true system will be
identified within the following model structure chosen
globally identifiable:

M : y(t) = G(q, θ)u(t) + v(t) (3)

v(t) = H(q, θ)e(t),
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where the vector θ ∈ Rn represents the parameters to be
identified. We assume that this model structure has been
chosen in such a way that it is flexible enough to capture
the true system i.e. there exists a parameter vector θo

for which Go(q) = G(q, θo) and Ho(q) = H(q, θo). The
parameter estimate is then picked as

θ̂N = arg min
θ

1

2N

N∑

t=1

(y(t) − ŷ(t, θ))T Λ−1
o (y(t) − ŷ(t, θ)),

(4)

where the predictor ŷ(t, θ) is given by the stable filter

ŷ(t, θ) = H−1(q, θ)G(q, θ)u(t) + [I − H−1(q, θ)]y(t),
(5)

see [19,13]. Notice that (4) requires knowledge of the true
noise covariance. One way of handling this contradiction
in a practical situation is to estimate Λo iteratively, see
Section 15.2 in [13]. Both open loop and closed loop iden-
tification of the true system (2) is considered. For closed
loop identification, the setup is represented in Figure 1
where Cid is the controller in the loop during identifica-
tion and r(t) is the excitation signal added to the loop
in order to identify the system. In this configuration, the
input and output signals used for the identification are
given by:

u(t) = Sid
u (q)r(t)
︸ ︷︷ ︸

=ur(t)

−Sid
u (q)Cid(q)Ho(q)e(t) (6)

y(t) = Sid
y (q)Go(q)r(t)
︸ ︷︷ ︸

=yr(t)

+Sid
y (q)Ho(q)e(t) (7)

where Sid
y = (I + GoCid)−1 and Sid

u = (I + CidGo)
−1.

For open loop identification, the excitation signal is di-
rectly applied via the input u(t). Note that open loop
identification is thus equivalent with closed loop identifi-
cation for Cid = 0. Consequently, for the sake of brevity,
we will in the sequel only consider closed loop identifica-
tion since open loop identification is only a special case.

When the model is flexible enough to capture the true
system, a very important property of the prediction er-

ror estimate θ̂N is that it is asymptotically normally dis-

tributed around the true parameter vector θo (i.e. θ̂N ∼
N (θo,

1
N

P (θo))) as N → ∞. This allows one to deter-

mine uncertainty regions for θ̂N . In particular, θ̂N lies
within the following ellipsoid in the parameter space:

U =
{

θ : (θ − θo)
T P (θo)

−1(θ − θo) <
χ

N

}

, (8)

with probability Pr(χ2(n) ≤ χ). The symbol χ2(n) de-
notes the χ2-distribution with n degrees of freedom. A
corresponding uncertainty region for the model is thus:

D = {G(q, θ) | θ ∈ U} . (9)

Note that U and P (θo) depend on the true, and un-
known, system. In controller validation, for a given

model θ̂N , we can construct a confidence region U
θ̂N

for
θo, where

U
θ̂N

=
{

θ : (θ − θ̂N )T P̂−1
N (θ − θ̂N ) < χ

}

(10)

with P̂N an estimate of 1
N

P (θo) [13]. The true parameter
vector θo is contained, to a certain probability, in U

θ̂N
.

A corresponding confidence region for Go is thus:

D
θ̂N

=
{

G(q, θ) | θ ∈ U
θ̂N

}

. (11)

In experiment design, the need for apriori system knowl-
edge is a well known Achilles’ heel [9,14]. One common
approach to handle this issue in practice is by replacing
θo by an initial estimate in (8) and then to use sequen-
tial procedures where the input design is altered on-line
as more information becomes available, see e.g. [7].

4 Controller Validation

In the previous section, we showed how a model G(θ̂N ) of
the true system Go can be identified. Often, the purpose

of this identified model G(θ̂N ) is the design of a controller

C(θ̂N ) for the true system Go. Since it has been de-
signed from the identified model, the designed controller
achieves of course satisfactory performance with this
model. However, it is not guaranteed that the designed
controller also achieves satisfactory performance with
the true system. Since the true system is unknown, we
cannot directly verify whether the controller is satisfac-
tory with Go. However, since we know that Go lies in the
uncertainty region D

θ̂N
, we can verify whether the de-

signed controller achieves satisfactory performance with
all systems G(θ) in D

θ̂N
. If this is the case, the con-

troller can be deemed validated since it is then guaran-
teed, with a probability chosen by the user, to achieve
good performance with the true system. In this paper,
we will measure the performance of a loop [G C] via the
largest singular value of a weighted closed loop transfer
function. A general expression of this weighted closed
loop transfer function is:

J(G(θ), C) = WlF (G(θ), C)Wr , (12)

where Wl and Wr are weight matrices of appropriate
dimensions and the matrix F is one closed loop transfer
function such as the sensitivity function (I + GC)−1 or
the complementary sensitivity function GC(I +GC)−1.
In fact, the only constraint on F for the sequel is that it
is a rational function of the system G (or, in other words,
an LFT in G) 2 .

2 Controller independent model quality measure such as G−

G(θ̂N ) can therefore also be considered.
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Remark 1 Also the noise model H(θ) can be included in
the performance function (12). The same LFT technique
can be used in this case.

Based on the reasoning above, a very important quan-

tity in order to validate the controller C(θ̂N ) designed
with the identified model is the worst case performance
achieved over the plants in the confidence region D

θ̂N
:

σW C(C(ejω , θ̂N ), D
θ̂N

) =

= max
θ∈U

θ̂N

‖J(G(ejω , θ), C(ejω , θ̂N))‖. (13)

The worst case performance (13) is thus a frequency

function. Since σW C(C(ejω , θ̂N ), D
θ̂N

) is an upper bound

of the performance ‖J(Go(e
jω), C(ejω , θ̂N ))‖ of the loop

[Go C(θ̂N )], the controller C(θ̂N ) can be deemed val-
idated if the worst case performance remains below a
given threshold representing the required performance.
We will show in the sequel that an upper bound for the
worst case performance at each frequency can be ob-
tained using LMI-based optimization.

The problem of computing, at each frequency ω, the
worst case performance achieved by a given controller

C(θ̂N ) over the plants in the confidence region D
θ̂N

can
be formulated equivalently as determining at each fre-
quency the scalar γ solving:

min
γ

γ

subject to

‖J(G(ejω , θ), C(ejω , θ̂N ))‖ < γ, ∀θ ∈ U
θ̂N

. (14)

5 A Tractable Formulation of the Worst Case
Performance Problem in the Robustness
Analysis Framework

Computing the worst case performance at one frequency
ω is thus equivalent to determining the smallest γ such
that the constraint (14) holds. The constraint (14) as
such is not tractable. However, we will show in this sec-
tion that if we solve an LMI-based optimization problem
then the constraint (14) is satisfied. For this purpose, we
will show that J(G(θ), C) can be expressed as an LFT
in (a function of) θ. (For an extensive discussion on LFT
techniques, see i.e. [23]). This will allow us to use the
following classical result of the robustness analysis liter-
ature that we present in the sequel in its general form
(see Proposition 1) before particularizing it to the prob-
lem considered in the present paper. This result consid-
ers a transfer matrix J of dimension ny,J × nu,J that
can be expressed, for some given stable transfer matrix
M(q), as an LFT in a parametric uncertainty ∆. The

uncertainty ∆ varies in a given set ∆, which contains
the point 0: 3

J(q, ∆) = F(M(q), ∆). (15)

In order to be able to use the result of Proposition 1
to verify a constraint similar to (14) for this uncertain
transfer matrix J , it is required to associate to the para-
metric uncertainty set ∆ a so-called set of multipliers.
The set A of multipliers used here is a set of affinely
parametrized Hermitian matrices A satisfying:

A ∈ A ⇒
(

I

∆

)∗(

A11 A12

A∗

12 A22

)

︸ ︷︷ ︸

=A

(

I

∆

)

> 0, ∀∆ ∈ ∆ (16)

The set A constitutes an affine parametrization of the
quadratic constraints satisfied by the graph of all uncer-
tainties ∆.

Proposition 1 Consider a performance level γ and a
transfer matrix J as defined in (15) for a stable M and a
parametric uncertainty ∆ varying in a given set ∆ con-
taining 0. Suppose furthermore that we have associated
a set of multipliers to ∆. Then, at a given frequency ω,
a sufficient condition for

‖J(ejω, ∆)‖ < γ, ∀∆ ∈ ∆ (17)

is the existence of a matrix A in the set A such that

(

M(ejω)

I

)∗









A11 0 A12 0

0 I 0 0

A∗

12 0 A22 0

0 0 0 −γ2I









(

M(ejω)

I

)

< 0

(18)

PROOF. By the small gain theorem, expression (17) is
equivalent to the fact that det(I−M(ejω)diag(∆, ∆ext)) 6=
0 ∀∆ ∈ ∆ and for all complex matrices ∆ext of dimen-
sion nu,J × ny,J such that ‖∆ext‖ < 1

γ
, see e.g. [23,18].

The sufficient condition presented in the statement of
the proposition is then a consequence of the separation
of graphs theorem [15,8,16].

�

Remark 2 It is important to stress that, in order to
verify (17) at different frequencies ω, the condition (18)
can be verified with different matrices A ∈ A.

3 Note that the set ∆ must satisfy some additional minor
assumptions which are classically met, see e.g. [16]. Note
also that the result holds for any type of uncertainty, but we
restrict our attention to parametric uncertainties since it is
the case considered in this paper.
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The broader the parametrization of the matrices A in
the set of multipliers, the smaller the conservatism re-
lated to the non-necessary formulation of the condition
(18). Proposition 1 formulates the constraint (17) as a
convex feasibility problem. In order to use this propo-
sition to formulate the constraint (14) also as a convex
feasibility problem it is required to rewrite the functional

J(G(ejω , θ), C(ejω , θ̂N )) as an LFT in which θ represents
the uncertainty and then to determine the set A of mul-
tipliers corresponding to the uncertainty involved in this
LFT.

5.1 LFT representation of J(G(θ), C(θ̂N ))

As mentioned above, the functional J must be formu-
lated as an LFT. A first step towards this end is to note
that G(q, θ) is a matrix of transfer functions for which
each entry is a rational function of θ. Consequently, each
entry of G(q, θ) is an LFT in θ. It is then a direct conse-
quence of the properties of LFT functions that G(θ) is
an LFT in

m(θ) = Iñ ⊗ θ. (19)

where the value of ñ depends on the particular
parametrization (see the following example), but is al-
ways smaller than or equal to nuny (the number of
entries of the matrix G(q, θ)).

Example 1 An autoregressive exogeneous (ARX)
model with 2 inputs/2 outputs is given by

G(q, θ) =
1

1 + ZT
1 θ

(

ZT
2 θ ZT

3 θ

ZT
4 θ ZT

5 θ

)

, (20)

H(q, θ) =
1

1 + ZT
1 θ

I2, (21)

where θ ∈ R
5 and Zi = q−1ei with ei defining the i:th unit

vector. The LFT description of G(q, θ) is F(X, m(θ))
with

X =

(

X11 X12

X21 X22

)

, X11 =

(

−ZT
1 0

0 −ZT
1

)

, X12 = I,

X21 =

(

ZT
2 ZT

3

ZT
4 ZT

5

)

, X22 = 0, m(θ) =

(

θ 0

0 θ

)

.

Consequently, for this model structure ñ = 2.
�

Since G(θ) is an LFT in m(θ), it is also an LFT in m(δθ),

where δθ = θ − θ̂N , that is, G(θ) = F(MG, m(δθ)) for
some known MG. Note that we consider δθ instead of θ
to fulfill the requirement of Proposition 1 of a parametric
uncertainty varying in a set containing 0. Indeed, δθ is
constrained to lie in Ũ where

Ũ = {δθ | (δθ)T P̂−1
N δθ < χ}. (22)

Now that we have shown that G(θ) is an LFT in m(δθ),
we recall that J(G(θ), C) has been chosen as an LFT
in G(θ) i.e. J(G(θ), C) = F(MJ , G(θ)) for some known
MJ . Combining these two facts, we conclude that the
transfer matrix J(G(θ), C) is also a LFT in m(δθ). In-
deed,

J(G(q, θ), C(q, θ̂N )) = F(M(q), m(δθ)), (23)

where M(q) = MG(q) ? MJ(q). Note that, as required
by Proposition 1, M(q) is here stable since the loop

[C(q, θ̂N ) G(q, θ̂N )] is stable.

5.2 Set A of multipliers

Given the LFT representation (23), in order to use
Proposition 1 to obtain a convex sufficient condition for
(14) to hold, we need to determine the set A of multi-
pliers corresponding to the uncertainty m(δθ) present
in the LFT (23). The matrices A ∈ A must therefore
satisfy (16) for the parametric uncertainty m(δθ) with

δθ ∈ Ũ with Ũ defined in (22). This set of multipli-
ers is given in the following proposition. Before giving
this proposition, it is important to recall that the more
general the parametrization of the matrices A ∈ A is,
the less conservative the sufficient condition presented
in Proposition 1 is for the verification of (17). Conse-
quently, in Proposition 2, we present the most general
affine parametrization we could find for the set of mul-
tipliers corresponding to the LFT (23).

Proposition 2 Consider the uncertainty m(δθ) with

δθ ∈ Ũ defined in (22). Define the parametrized set A of
matrices A as

A =

{

A | A =

(

A11 A12

A∗

12 A22

)}

. (24)

In this set the matrices A11, A12 and A22 are affinely
parametrized as follows:

A11 = A0, (25)

A12 =










jpT
11 jpT

12 . . . jpT
1ñ

jpT
12 jpT

22 . . . jpT
2ñ

...
...

. . .
...

jpT
1ñ . . . . . . jpT

ññ










+










0 p̃T
12 . . . p̃T

1ñ

−p̃T
12 0 . . . p̃T

2ñ

...
. . .

. . .
...

−p̃T
1ñ . . . . . . 0










,

(26)

A22 = −
(

A0 ⊗
1

χ
P̂−1

N − jÃ + B̃

)

. (27)

The elements of this parametrization ( i.e. A0, Ã, B̃, plm

and p̃lm, l = 1, 2, . . . , ñ; m = 1, 2, . . . , ñ) can take any
values provided that

5



1) A0 is a positive definite complex Hermitian matrix of
dimension ñ × ñ,

2) Ã ∈ Rnñ×nñ belongs to the set

Ã =
















L11 L12 . . . L1ñ

L12 L22 . . . L2ñ

...
. . .

...

L1ñ L2ñ . . . Lññ










∣
∣ Lij = −LT

ij ∈ R
n×n

}

(28)

3) B̃ ∈ Rnñ×nñ belongs to the set

B̃ =

















0 K12 . . . K1ñ

−K12 0
...

...
. . . K(ñ−1)ñ

−K1ñ . . . −K(ñ−1)ñ 0











∣
∣ Kij = −KT

ij ∈ R
n×n

}

(29)

4) plm, p̃lm ∈ Rn, l = 1, 2, . . . , ñ and m = 1, 2, . . . , ñ.

Then for any A ∈ A we have

(

I

m(δθ)

)∗

A

(

I

m(δθ)

)

> 0, ∀δθ ∈ Ũ (30)

PROOF. First, notice that, for all A12, Ã and B̃ as
defined in the statement of the proposition, we have:

A12m(δθ) + (m(δθ))T A∗

12 = 0 (31)

(m(δθ))T jÃm(δθ) = 0 (32)

(m(δθ))T B̃m(δθ) = 0. (33)

Therefore, for every matrix A ∈ A, we can write

(

I

m(δθ)

)∗

A

(

I

m(δθ)

)

=

= (1 − δθT (
1

χ
P̂−1

N )δθ)A0, (34)

and we observe that this matrix is indeed positive defi-
nite when δθ ∈ Ũ since A0 > 0.

�

Remark 3 The determination of the set of multipliers
corresponding to the uncertainty involved in the LFT (23)
is the main technical contribution of this paper. Indeed,
to our knowledge, such uncertainty structure has never
been considered in the robustness analysis literature. An
interesting feature of this set of multipliers is the skew-
symmetric multipliers Ã and B̃ in the diagonal block A22.
Indeed, skew-symmetric terms (such as A12 here) are
generally only present in the off-diagonal blocks.

Remark 4 The matrices A ∈ A are explicit functions
of the inverse P̂−1

N of the estimated covariance matrix.

This is not an issue here since P̂N is known. However,
this observation will be important when we consider ex-
periment design in Section 6.

5.3 Sufficient convex formulation of constraint (14)

Gathering the LFT representation (23), the set of mul-
tipliers defined in Proposition 2 and the result of Propo-
sition 1, we can now formulate the constraint (14) as a
convex feasibility problem involving LMI constraints.

Theorem 1 Consider the constraint (14) at a partic-
ular frequency ω and suppose that γ is given. Then,
the constraint (14) holds if there exists a matrix A as
parametrized in Proposition 2 such that the following LMI
holds:

(

M(ejω)

I

)∗









A11 0 A12 0

0 I 0 0

A∗

12 0 A22 0

0 0 0 −γ2I









(

M(ejω)

I

)

< 0

(35)

for M(q) as defined in (23).

PROOF. This theorem is a direct consequence of
Proposition 1. Indeed, the functional J is represented
by the LFT (23) and the matrix A as defined in Proposi-
tion 2 represent the set of multipliers for the uncertainty
involved in (23). Note that (35) is indeed an LMI since
the matrix A is linearly parametrized in the elements A0,
Ã, B̃, plm and p̃lm, l = 1, 2, . . . , ñ; m = 1, 2, . . . , ñ.

�

5.4 Computing an upper bound for the worst case per-
formance

Observe that (35) is not only affine in the matrices A11,
A12, A22, but also in the variable γ2. Based on this ob-
servation, we are now ready to derive an algorithm to
compute a frequency wise upper bound for the worst case

performance achieved by the designed controller C(θ̂N )
over the plants in the confidence region D

θ̂N
.

Theorem 2 Consider, at a particular frequency ω, the

worst case performance σW C(C(ejω , θ̂N ), D
θ̂N

) achieved

by a controller C(θ̂N ) over the plants in a confidence

region D
θ̂N

. An upper bound for σW C(C(ejω , θ̂N ), D
θ̂N

)
can be obtained by solving the LMI-based optimization
problem consisting of determining the smallest value γ2

opt

of γ2 for which there exists a matrix A in the set A de-
fined in (24) such that (35) holds. The upper bound on

σW C(C(ejω , θ̂N ), D
θ̂N

) is then given by
√

γ2
opt.
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PROOF. The worst case performance at the frequency
ω can be computed by finding the smallest γ such that
(14) holds. Consequently, this theorem is a direct conse-
quence of Theorem 1.

�

Since Theorem 2 only delivers an upper bound for

σW C(C(ejω , θ̂N ), D
θ̂N

), it may be important to check
how conservative this upper bound is. Due to the very
general parametrization of the set of multipliers, this
conservatism should be limited (see [17]). However, in
order to have a good idea of the conservatism, we will,
besides the upper bound, also compute a lower bound

for σW C(C(ejω , θ̂N ), D
θ̂N

). This can be done e.g. by
gridding the uncertainty region U

θ̂N
and take, at each

ω, the maximal value of ||J(G(ejω , θ), C(ejω , θ̂N ))|| for
the θ in this grid.

6 Experiment Design

Let us sum up what we have done until now. We consider

the situation where a model G(θ̂N ) of the true system
Go has been deduced by an identification experiment (in
open loop or closed loop). Based on this model, we have

designed a controller C(θ̂N ) for the true system. In order
to verify whether this controller is satisfactory for the
true system, we need to verify whether this controller
achieves satisfactory performance with all plants in the
constructed confidence region D

θ̂N
. In order to do that,

we have shown in Theorem 2 how to compute an upper
bound for the worst case performance achieved by the
controller over the plants in D

θ̂N
. The validation of the

controller can therefore be achieved by checking that
this bound is at each frequency below some threshold
representing the required performance.

It can happen, the uncertainty region D
θ̂N

being too
large, that the worst case performance cost is too large
for the controller to be applied to the true system. A
new identification has therefore to be performed in order
to obtain a more accurate model. Assuming that the
number N of data in the second experiment is the same
as in the initial experiment, the only method to reduce
the size of the uncertainty region is to modify the power
spectrum Φr(ω) of the excitation signal r(t). Indeed,
the asymptotic covariance matrix P (θo) which defines
the size of U is uniquely influenced by Φr(ω). In fact,
P−1(θo) is an affine function in Φr(ω) [13,1,5]:

P−1(θo) = R1(Φr(ω), θo) + R2(θo). (36)

For the MIMO case, the matrices R1(Φr(ω), θo) and
R2(θo) are given by the following proposition.

Proposition 3 The matrices R1(Φr(ω), θo) and R2(θo)
in (36) are given by

R1(Φr(ω), θo) =

=
1

2π

∫ π

−π

Γr(e
jω, θo)

(

Λ−1
o ⊗ Φr(e

jω)
)

Γ∗

r(e
jω, θo)dω,

(37)

R2(θo) =
1

2π

∫ π

−π

Γe(e
jω, θo)

(
Λ−1

o ⊗ Λo

)
Γ∗

e(e
jω, θo)dω,

(38)

where

Γr(q, θ) =










vec(F 1
r (q, θ))

vec(F 2
r (q, θ))
...

vec(F n
r (q, θ))










, (39)

Γe(q, θ) =










vec(F 1
e (q, θ))

vec(F 2
e (q, θ))
...

vec(F n
e (q, θ))










, (40)

F i
r(q, θ) = H−1

o (q)
dG(q, θ)

dθi

Sid
u (q) (41)

F i
e(q, θ) = H−1

o (q)

(
dH(q, θ)

dθi

−

−dG(q, θ)

dθi

Sid
u (q)Cid(q)Ho(q)

)

, (42)

i = 1, . . . , n, (43)

and θi defines the i:th component of the vector θ.
�

PROOF. See Appendix A.
�

In the sequel, we will present a way to optimally de-
termine the spectrum Φr(ω) for the second experiment.
This experiment design procedure is an extension to the
MIMO case of the previous work done in the SISO case
(see e.g. [12,11,5]). An important step in this proce-
dure is to parametrize the spectrum Φr(ω). A common
parametrization is as follows:

Φr(ω) =

m∑

k=−m

cke−jωk, (44)

where m is a user-choice and the matrices ck ∈
Rnu×nu , k = −m, . . . , m, must be such that c−k = cT

k
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and such that Φr(ω) ≥ 0, ∀ω. Using the Positive Real
Lemma [22,21], the constraint that Φr(ω) ≥ 0, ∀ω,
can be recast into an LMI constraint on the matri-
ces ck, k = −m, . . . , m, (see [12,11,5]). The matrices
ck, k = −m, . . . , m, in (44) entirely determine the
spectrum Φr(ω) and are the actual decision variables
of the experiment design problem. In this aspect, it is
important to note that any affine function of Φr(ω)
(such as e.g. P−1(θo)) is also an affine function of the
frequency-independent matrices ck, k = −m, . . . , m,.

In this experiment design problem, our objective is to
determine the matrices ck, k = −m, . . . , m, in (44) in
such a way that the corresponding spectrum Φr(ω) is
the least disturbing spectrum 4 which nevertheless guar-
antees that the covariance matrix P (θo) is small enough
for (45) to hold:

‖J(G(ejω , θ), C(ejω , θ̂N ))‖ < γmax(ω) ∀ω,

∀θ ∈ U (45)

In (45), γmax(ω) is a given threshold representing the

minimal admissible performance. Furthermore, θ̂N and

C(θ̂N ) are the ones corresponding to the experiment we
want to design and are thus unknown at the very mo-
ment we design the experiment. They are therefore re-
placed by initial estimates, cf Section 3. Reasonable ini-
tial estimates (see e.g. [5]) are those obtained in the ini-
tial experiment 5 . See also [1].

The constraint (45) is an infinite-dimensional constraint
since it must hold at each frequency. This constraint can
nevertheless be made finite-dimensional by considering
a finite frequency grid Ω instead of the whole frequency
range. The corresponding optimization problem is thus
made up of one constraint per frequency in the finite
grid Ω (see [11]). Given the result of Theorem 1, this
problem can be reformulated as: determine the matrices
ck, k = −m, . . . , m, corresponding to the least costly
spectrum for which we can still find, ∀ω ∈ Ω, a matrix
A(ω) ∈ A for which it holds that:

(
M(ejω)

I

)∗
(

A11(ω) 0
0 I

A12(ω) 0
0 0

A∗

12
(ω) 0

0 0

A22(ω) 0

0 −γ2

max
(ω)I

)
(

M(ejω)
I

)

< 0.

(46)

Here, we use the notation A11(ω) etc. to stress that
these matrices can be different at each frequency (see
Remark 2). Note also that, in the parametrization of the

4 i.e. the one with smallest Tr
(∫ π

−π
Φur (ω) + Φyr (ω)dω

)

,

where ur and yr are defined in (6)-(7). This expression
is affine in Φr(ω) and thus also in the matrices ck, k =
−m, . . . , m, defining Φr(ω).
5 The parameter vector θ̂N identified in the first experiment
is generally also used to approximate θo in (36).

set of multipliers A, P̂−1
N is replaced by NP−1(θo). The

constraint (46) at each ω ∈ Ω is dependent on the deci-
sion variables ck, k = −m, . . . , m, via the parametriza-
tion of A(ω). Indeed, A22(ω) is a function of P−1(θo)
and thus of the matrices ck, k = −m, . . . , m, via (36)
and (44). Even though P−1(θo) is affine in the matrices
ck, k = −m, . . . , m, defining Φr(ω) (see above), the con-
straint (46) is not an LMI due to the product of P−1(θo)
and the multiplier A0(ω) which is also a decision vari-
able. The only solution is then to modify the set A of
multipliers by fixing A0(ω) to a constant matrix e.g. the
identity matrix. For a fixed A0(ω), (46) is an LMI in the
matrices ck, k = −m, . . . , m, and these matrices can
therefore be easily determined. Fixing A0(ω) neverthe-
less increases conservatism since the set of multipliers
is then less general and it is furthermore very unlikely
that the chosen A0(ω) is the optimal for the considered
optimization problem. In order to improve the choice of
A0(ω), we propose the following iterative procedure in-
spired by the so called D-K iterations [23]. In a first step,
we determine the matrices ck, k = −m, . . . , m, with a
fixed A0(ω) as already described. This delivers the ma-
trices ck,int. In a second step, we then parametrize the
matrices ck, k = −m, . . . , m, as ck = λck,int with λ
a to-be-optimized scalar and we then determine by di-
chotomy the smallest λ for which we can find at each fre-
quency ω ∈ Ω a matrix A(ω) ∈ A for which (46) holds,
but this time with a free A0(ω) ((46) is indeed an LMI
in A0 for a fixed λ i.e. for fixed ck, k = −m, . . . , m). De-
note ∀ω ∈ Ω by A0,int(ω) the value for A0(ω) found with
this optimal λ. Next we repeat the first step with A0(ω)
now fixed to A0,int(ω), etc. Note that multiplying the
matrices ck,int by a scalar λ corresponds to multiplying
the corresponding spectrum by λ, i.e. λΦr,int(ω).

Remark 5 For the case the goal of the experiment design
is to reduce the duration of the experiment, we can by
dichotomy find the smallest N for which (46) holds ∀ω ∈
Ω, for a given Φr(ω).

7 Numerical Illustration

Consider the model in Example 1 with the true dynamics
of the system defined by

θo = (−0.7558, 0.4577,−0.2180, 0.2180,−0.4577)T

(47)

and Λo = 0.2I2. First a closed loop identification exper-
iment with N = 1000 data is performed. The controller
in the loop is Cid = Cstart where

Cstart(q) =





ZT ηs,1

ZT ηs,3

ZT ηs,2

ZT ηs,3

−ZT ηs,2

ZT ηs,3
−ZT ηs,1

ZT ηs,3



 . (48)

Here Z = (1 q−1 q−2 . . . q−6)T and ηs,1, ηs,2, ηs,3 are

given in Appendix B. Furthermore, since the controller
Cstart is of sufficient order, it is so that the closed loop
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identification can be performed consistently using the
excitation of the noise e(t) exclusively i.e. with r(t) = 0.
Therefore, we decide to collect N = 1000 data in this
particular situation. The following parameter estimate
is obtained:

θ̂N,1 = (−0.7344, 0.4039,−0.1706, 0.2378,−0.4740)T .
(49)

Now the proposed controller validation procedure will
be applied. The closed loop expression (12) is given by

J(G(θ), C1) = WS(I + G(θ)C1)
−1 (50)

where WS(q) is a scalar weight transfer function whose

inverse is plotted in Figure 3 6 and C1 = C1(θ̂N,1) is a
model based controller constructed using a 4-block H∞

design method where one of the objectives is to satisfy
that the H∞-norm of the right hand side of (50) is less
than one. Here

C1(q) =
1

ZT η1,5

(

ZT η1,1 ZT η1,2

ZT η1,3 ZT η1,4

)

(51)

where η1,1, η1,2, . . . , η1,5 are given in Appendix B. The
scalar χ in (8) is here chosen in such a way that θo belongs
to U

θ̂N,1
with a probability of 95%. The largest accept-

able worst case performance is specified as γmax(ω) =
1.05, ∀ω, and we will now use Theorem 2 to validate
whether this requirement is fulfilled with the controller
C1 or not. The computed upper bound of the worst case
performance is plotted in Figure 2 for a frequency grid of
100 points. It is clearly larger than our specified γmax(ω).
The controller C1 is therefore invalidated.

In order to get an idea of the conservatism of this upper
bound, a lower bound is calculated using gridding and
plotted in Figure 2. It is clear that the lower bound is
close to the upper bound. Thus in this case the conser-
vatism is small.

Since the controller C1 is deemed invalidated we now
perform experiment design for Φr(ω). The new designed

identification experiment will deliver a model G(θ̂N,2)

and a model based controller C2 = C2(θ̂N,2) which guar-
antees the worst case performance γmax(ω). We still con-
sider closed loop identification with Cid = Cstart in the
loop. This controller Cstart is also used as initial esti-

mate for C(θ̂N,2) in (45). The design is based on knowl-
edge on θo, cf Section 3. Furthermore, we have chosen
m = 9 in (44). The choice of A0(ω) is improved through
2 D-K like iterations, which decreases the cost function
by 32%. The spectrum Φr(ω) designed after these 2 iter-
ations is shown in Figure 3. A new parameter estimate

6 We have used MATLAB R©Version 7.3.0.267 (R2006b)
with Control System Toolbox.
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Fig. 2. Thick solid line: γmax versus frequency. Thin solid
line: upper bound for the worst case performance γ using
the controller C1. Dotted line: lower bound for γ using the
controller C1. Dashed line (partly coinciding with the thick
solid line): upper bound for the worst case performance using
C2.

identified with 1000 data generated with the designed
excitation signal r(t) 7 is given by:

θ̂N,2 = (−0.7570, 0.4527,−0.2087, 0.2133,−0.4711)T

(52)

and a controller C2 = C2(θ̂N,2) is designed (with the
same H∞ method as in the first experiment) as

C2(q) =
1

ZT η2,5

(

ZT η2,1 ZT η2,2

ZT η2,3 ZT η2,4

)

(53)

where η2,1, η2,2, . . . , η2,5 are given in Appendix B. In Fig-
ure 2 the resulting upper bound for the worst case per-
formance achieved by C2 over the plants in the uncer-

tainty region identified along with θ̂N,2 is plotted. For
each ω, it is clearly equal to or below γmax(ω) and there-
fore C2 is validated. Also here, a lower bound for the
worst case performance is calculated using gridding. It
almost coincides with the upper bound.

8 Conclusions

This paper presents a new controller validation method
for multivariable models obtained with standard PE
identification methods. The confidence regions of such
models are nonstandard in classical robust control the-
ory. The main contribution is a parametrization of a
certain set of multipliers which allows a classical robust

7 There are many possible realizations corresponding to one
spectrum, see e.g. [11]. Here the signal r(t) is realized as
filtered white noise.
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1/WS .

control theory framework to be used for the considered
confidence regions. Therefore, this paper is part of the
wide-spread effort to connect PE system identification
and robust control. Only variance errors are considered
(i.e. not bias errors) and it is assumed that the data
length is large. It is shown that the problem of com-
puting an upper bound for the worst case performance
(measured in terms of the H∞-norm of a weighted
closed loop transfer matrix) achieved over all plants in
the identified confidence region can be formulated as
an LMI-based optimization problem. The method pro-
posed can also be extended to experiment design. More
specifically, the method enables us to design the spec-
trum or the duration of an external excitation signal
such that a specified worst case performance is guar-
anteed. The design is suboptimal, however it can be
improved by iterative procedures.
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A Proof of Proposition 3

Define Ψ(t, θ) = d
dθ

ŷ(t, θ) and denote the columns of the

matrix ΨT (t, θ) by ΨT
i (t, θ) ∈ Rny , i = 1, . . . , n. With

(6)-(7) in (5) we obtain

ΨT
i (t, θo) = F i

r(q, θo)r(t) + F i
e(q, θo)e(t) (A.1)

Now, the transpose of (A.1) can be written

Ψi(t, θo) =vec(F i
r(q, θo))(Iny

⊗ r(t))+

+vec(F i
e(q, θo))(Iny

⊗ e(t)), (A.2)

which is the i:th row of Ψ(t, θo). This implies that

Ψ(t, θo) =










Ψ1(t, θo)

Ψ2(t, θo)
...

Ψn(t, θo)










=

= Γr(q, θo)
(

Iny
⊗ r(t)

)

+ Γe(q, θo)
(

Iny
⊗ e(t)

)

.

(A.3)

A similar open loop expression for Ψ(t, θo) is found in
[24]. When N → ∞ and the model structure is flexible
enough to capture the true system, we have

P−1(θo) = EΨ(t, θo)Λ
−1
o ΨT (t, θo) (A.4)

[13]. Expressions (37) and (38) are obtained by inserting
(A.3) in (A.4), which concludes the proof.

B Controller Parameters

ηs,1 = (1.263, 2.585,−0.6939,−4.057,−1.304, 1.472, 0.7345)T

ηs,2 = (−0.6145,−1.213, 0.3533, 1.908, 0.611,−0.6947,−0.3502)T

ηs,3 = (1, 1.222,−1.559,−2.467, 0.1467, 1.244, 0.4147)T

η1,1 = (1.406, 2.89,−0.7027,−4.442,−1.49, 1.554, 0.7872)T

η1,2 = (−0.5181,−1.025, 0.2733, 1.578, 0.528,−0.5534,−0.2837)T

η1,3 = (−0.5181,−1.025, 0.2733, 1.578, 0.528,−0.5534,−0.2837)T

η1,4 = (−1.195,−2.468, 0.592, 3.793, 1.273,−1.326,−0.6708)T

η1,5 = (1, 1.215,−1.562,−2.455, 0.1525, 1.238, 0.4115)T

η2,1 = (1.238, 2.553,−0.6392,−3.97,−1.314, 1.418, 0.7155)T

η2,2 = (−0.6064,−1.206, 0.3302, 1.879, 0.6189,−0.6729,−0.3431)T

η2,3 = (0.5927, 1.178,−0.3232,−1.835,−0.6044, 0.6572, 0.3352)T

η2,4 = (−1.241,−2.558, 0.6407, 3.979, 1.316,−1.421,−0.7171)T

η2,5 = (1, 1.227,−1.557,−2.478, 0.1419, 1.249, 0.4174)T

References

[1] M. Barenthin, X. Bombois, and H. Hjalmarsson. Mixed H∞

andH2 input design for multivariable systems. In Proceedings
of the 14th IFAC Symposium on System Identification,
Newcastle, Australia, March 2006.

[2] M. Barenthin and H. Hjalmarsson. Identification and control:
Joint input design and H∞ state feedback with ellipsoidal
parametric uncertainty via LMIs. Automatica, 44(2):543–
551, February 2008.

[3] X. Bombois and P. Date. Connecting PE identification and
robust control theory: the multiple-input single-output case.
Part ii: controller validation. In Proceedings of the 13th
IFAC Symposium on System Identification, Rotterdam, The
Netherlands, 2003.

10



[4] X. Bombois, M. Gevers, G. Scorletti, and B.D.O. Anderson.
Robustness analysis tools for an uncertainty set obtained
by prediction error identification. Automatica, 37(10):1629–
1636, 2001.

[5] X. Bombois, G. Scorletti, M. Gevers, P. Van den Hof, and
R. Hildebrand. Least costly identification experiment for
control. Automatica, 42(10):1651–1662, October 2006.

[6] B.L. Cooley and J. H. Lee. Control-relevant experiment
design for multivariable systems described by expansions in
orthonormal bases. Automatica, 37:273–281, 2001.

[7] L. Gerencsér and H. Hjalmarsson. Adaptive input design
in system identification. In Proceedings of the 44th
IEEE Conference on Decision and Control, Seville, Spain,
December 2005.

[8] K-C. Goh and M.G. Safonov. Robust analysis, sectors, and
quadratic functionals. In Proceedings of the 34th IEEE
Conference on Decision and Control, New Orleans, LA, USA,
1995.

[9] G. C. Goodwin and R. L. Payne. Dynamic System
Identification: Experiment Design and Data Analysis.
Academic Press, New York, 1977.

[10] R. Hildebrand and M. Gevers. Identification for control:
Optimal input design with respect to a worst case ν-gap
cost function. SIAM Journal on Control and Optimization,
41(5):1586–1608, 2003.

[11] H. Jansson and H. Hjalmarsson. Input design via LMIs
admitting frequency-wise model specifications in confidence
regions. IEEE Transactions on Automatic Control,
50(10):1534 – 1549, October 2005.

[12] K. Lindqvist and H. Hjalmarsson. Identification for control:
Adaptive input design using convex optimization. In
Proceedings of the 40th IEEE Conference on Decision and
Control, Orlando, US, December 2001.

[13] L. Ljung. System Identification - Theory For the User, 2nd
ed. Prentice Hall, Upper Saddle River, New Jersey, 1999.

[14] R. Mehra. Optimal input signals for parameter
estimation in dynamic systems - survey and new results.
IEEE Transactions on Automatic Control, 19(6):753–768,
December 1974.

[15] M.G. Safonov. Stability and Robustness of Multivariable
Feedback Systems. MIT Press, Cambridge, MA, 1980.

[16] G. Scorletti. Robustness analysis with time-delays. In
Proceedings of the 36th IEEE Conference on Decision and
Control, pages 3824–3829, San Diego, US, December 1997.

[17] G. Scorletti, X. Bombois, M. Barenthin, and V. Fromion.
Improved efficient analysis for systems with uncertain
parameters. In Proceedings of the 46th IEEE Conference on
Decision and Control, New Orleans, USA, December 2007.

[18] S. Skogestad and I. Postlethwaite. Multivariable feedback
control-analysis and design (2nd edition). Wiley,
Chippenham, Wiltshire, 2005.
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