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Asteroids in rooted and directed path graphs∗

Kathie Cameron† Ch́ınh T. Hoàng‡ Benjamin Lévêque§

December 15, 2008

Abstract

An asteroidal triple is a stable set of three vertices such that each pair is con-
nected by a path avoiding the neighborhood of the third vertex. Asteroidal triples
play a central role in a classical characterization of interval graphs by Lekkerkerker
and Boland. Their result says that a chordal graph is an interval graph if and only
if it contains no asteroidal triple. In this paper, we prove an analogous theorem for
directed path graphs which are the intersection graphs of directed paths in a directed
tree. For this purpose, we introduce the notion of a strong path. Two non-adjacent
vertices are linked by a strong path if either they have a common neighbor or they
are the endpoints of two vertex-disjoint chordless paths satisfying certain conditions.
A strong asteroidal triple is an asteroidal triple such that each pair is linked by a
strong path. We prove that a chordal graph is a directed path graph if and only if it
contains no strong asteroidal triple. We also introduce a related notion of asteroidal
quadruple, and conjecture a characterization of rooted path graphs which are the
intersection graphs of directed paths in a rooted tree.

1 Introduction

A hole is a chordless cycle of length at least four. A graph is a chordal graph if it contains
no hole as an induced subgraph. Gavril [4] proved that a graph is chordal if and only if
it is the intersection graph of a family of subtrees of a tree. In this paper, whenever we
talk about the intersection of subgraphs of a graph we mean that the vertex sets of the
subgraphs intersect.

A graph is an interval graph if it is the intersection graph of a family of intervals on
the real line; or equivalently, the intersection graph of a family of subpaths of a path. An
asteroidal triple in a graph G is a set of three non-adjacent vertices such that for any two
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of them, there exists a path between them in G that does not intersect the neighborhood
of the third. The graph of Figure 1 is an example of a graph that minimally contains
an asteroidal triple; the three vertices forming the asteroidal triple are circled.

Figure 1: Graph containing an asteroidal triple

The following classical theorem was proved by Lekkerkerker and Boland.

Theorem 1 ([9]) A chordal graph is an interval graph if and only if it contains no
asteroidal triple.

Lekkerkerker and Boland [9] derived from Theorem 1 the list of minimal forbidden
subgraphs for interval graphs (see Figure 13).

The class of path graphs lies between interval graphs and chordal graphs. A graph is
a path graph if it is the intersection graph of a family of subpaths of a tree. Lévêque, Maf-
fray and Preissman [10] found a characterization of path graphs by forbidden subgraphs
(see Figure 11).

Two variants of path graphs have been defined when the tree is a directed graph. A
directed tree is a directed graph whose underlying undirected graph is a tree. A graph is
a directed path graph if it is the intersection graph of a family of directed subpaths of a
directed tree. Panda [14] found a characterization of directed path graphs by forbidden
subgraphs (see Figure 12). A rooted tree is a directed tree in which the path from a
particular vertex r to every other vertex is a directed path; vertex r is called the root. A
graph is a rooted path graph if it is the intersection graph of a family of directed subpaths
of a rooted tree. The problem of finding a characterization of rooted path graphs by
forbidden subgraphs is still open.

Clearly, we have the following inclusions between the classes considered :

interval ⊂ rooted path ⊂ directed path ⊂ path ⊂ chordal

In this paper, we study directed path graphs and rooted path graphs. Our main result is
a characterization of directed path graphs analogous to the theorem of Lekkerkerker and
Boland. For this purpose, we introduce the notion of a strong path. Two non-adjacent
vertices u and v are linked by a strong path if either they have a common neighbor or
they are the endpoints of two vertex-disjoint chordless paths satisfying certain technical
conditions. (The complete definition is given in Section 4.) A strong asteroidal triple in
a graph G is an asteroidal triple such that each pair of vertices of the triple is linked by
a strong path in G.
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Our main result is the following theorem.

Theorem 2 A chordal graph is a directed path graph if and only if it contains no strong
asteroidal triple.

In Section 2, we give the definitions and background results needed to prove our theo-
rems. In Section 3, we give a new proof of Theorem 1 based on clique trees. In Section 4,
we define strong paths and establish a property of strong paths in clique directed path
trees (which are defined in Section 2). In Section 5, we give a proof of Theorem 2 us-
ing the results of Section 4. In sections 6 and 7, we discuss asteroidal quadruples and
their relationship with graphs which are minimally not rooted path graph. Finally, in
Section 8, we discuss new problems arising from our work.

2 Definitions and background

In a graph G, a clique is a set of pairwise adjacent vertices. Let Q(G) be the set of
all (inclusionwise) maximal cliques of G. When there is no ambiguity we will write Q
instead of Q(G). If a vertex u is adjacent to a vertex v, we say that u sees v; otherwise,
we say u misses v. A vertex in a graph G is called universal if it sees every other vertex
of G. Given a vertex v and a set S of vertices, v is called complete to S if v sees every
vertex of S. Given two vertices u and v in a graph G, a {u, v}-separator is a set S
of vertices of G such that u and v lie in two different components of G \ S and S is
minimal with this property. A set is a separator if it is a {u, v}-separator for some u
and v in G. Let S(G) be the set of separators of G. When there is no ambiguity we will
write S instead of S(G). A classical result [7, 1] (see also [6]) states that, in a chordal
graph G, every separator is a clique; moreover, if S is a separator, then there are at least
two components of G \ S that contain a vertex that is complete to S, and so S is the
intersection of two maximal cliques.

A clique tree T of a graph G is a tree whose vertices are the members of Q and such
that, for each vertex v of G, those members of Q that contain v induce a subtree of T ,
which we will denote by T v. A classical result [4] states that a graph is chordal if and
only if it has a clique tree. A clique path tree T of G is a clique tree of G such that, for
each vertex v of G, T v is a path. Gavril [5] proved that a graph is a path graph if and
only if it has a clique path tree. A clique directed path tree T of G is a clique path tree
of G such that edges of the tree T are directed and for each vertex v of G, the subpath
T v is a directed path. A clique rooted path tree T of G is a clique directed path tree of
G such that T is a rooted tree. Monma and Wei [13] proved that a graph is a directed
path graph if and only if it has a clique directed path tree, and that a graph is a rooted
path graph if and only if it has a clique rooted path tree. A clique path T of G is a
clique tree of G such that T is a path. A graph is an interval graph if and only if it has
a clique path [3]. These results allow us to consider only the intersection models that
are clique trees when studying the properties of the graph classes.
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For a clique tree T , the label of an edge QQ′ of T is defined as SQQ′ = Q ∩ Q′.
Note that every edge QQ′ satisfies SQQ′ ∈ S; indeed, there exist vertices v ∈ Q \ Q′

and v′ ∈ Q′ \ Q such that the set SQQ′ is a {v, v′}-separator. The number of times an
element S of S appears as a label of an edge is equal to c− 1, where c is the number of
components of G \S that contain a vertex complete to S [4, 12]. Note that this number
is at least one and that it depends only on S and not on T , so for a given S ∈ S it is the
same in every clique tree. For more information about clique trees and chordal graphs,
see [6, 12].

Given X ⊆ Q, let G(X) denote the subgraph of G induced by all the vertices that
appear in the members of X. If T is a clique tree of G, then T [X] denotes the subtree of
T of minimum size whose vertices contains X. Note that if |X| = 2, then T [X] is a path.
Given a subtree T ′ of a clique tree T of G, let Q(T ′) be the set of vertices of T ′ and
S(T ′) be the set of separators of G(Q(T ′)). Note that T ′ is a clique tree of G(Q(T ′)).

Given a set z1, . . . , zr, r ≥ 2, of pairwise non-adjacent vertices of G, and a clique
tree T of G, the subtrees T zi , 1 ≤ i ≤ r, are disjoint and we can define T (z1, . . . , zr) the
subtree of T of minimum size that contains at least one vertex of each T zi . Clearly, the
number of leaves of T (z1, . . . , zr) is at most r. Moreover, if T (z1, . . . , zr) has exactly r
leaves, then they can be denoted by Qi, 1 ≤ i ≤ r, with Qi ∩ {z1, . . . , zr} = {zi}.

3 Asteroidal triples

In this section, we give a proof of Theorem 1 using clique trees. First, we need the
following lemma which is folklore (for example, see [11].)

Lemma 1 Let G be a chordal graph and z1, z2, z3 three vertices that form an asteroidal
triple, then for every clique tree T of G, the subtree T (z1, z2, z3) has exactly 3 leaves.

Proof. Suppose the subtree T (z1, z2, z3) is a path. For 1 ≤ i ≤ 3, let Qi be a vertex
of T (z1, z2, z3) containing zi (they are all distinct as they are cliques of G and z1, z2, z3

are not adjacent). We can assume that Q1, Q2, Q3 appear in this order along the path
T (z1, z2, z3). Vertices z1 and z3 are in two different components of the graph G\Q2 so
every path that goes from z1 to z3 has to use a vertex of Q2 and thus a neighbor of z2,
contradicting the fact that z1, z2, z3 is an asteroidal triple. 2

A consequence of Lemma 1 is that an interval graph does not contain an asteroidal
triple. Lekkerkerker and Boland [9] proved that the converse is also true. Halin [8] gave
a short proof of Theorem 1. Unfortunately, this proof is hard to follow as it uses the so
called prime graph decomposition. In the book [12], McKee and McMorris shorten the
proof of Halin by considering the clique tree, but this proof is incomplete. A correction
proposed by the authors afterward on the book’s website is also incomplete.

It seems to be easier to understand Halin’s proof in terms of clique trees rather than
in terms of his prime graph decomposition. We are going to give such a proof. The ideas
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of this proof have been generalized and extensively used in [10] to obtain a forbidden
subgraph characterization of path graphs.

Proof of Theorem 1. (=⇒) Suppose G is an interval graph and z1, z2, z3 is an asteroidal
triple of G. Let T be a clique path of G. By Lemma 1, the subtree T (z1, z2, z3) has
exactly 3 leaves, so T is not a path, a contradiction.

(⇐=) Suppose that G is a chordal graph containing no asteroidal triple and that G
is a minimal non-interval graph. Let T be any clique tree of G. The graph G is not
an interval graph, so T has at least three distinct and non-adjacent leaves Q1, Q2, Q3.
For i = 1, 2, 3, let Q′

i be the neighbor of Qi on T . (The vertices Q′
i are distinct from

Q1, Q2, Q3 but not necessarily pairwise distinct.) For i = 1, 2, 3, let zi ∈ Qi\Q
′
i and

Si = Qi ∩ Q′
i. Vertices z1, z2, z3 are three non-adjacent vertices that do not form an

asteroidal triple. So, by symmetry, we can assume that every path that goes from z2 to
z3 use some vertices in N(z1).

We claim that there is an edge of T [Q2, Q3] such that z1 is complete to the label
of the edge. (Recall that a label is a set of vertices. So here, z1 is complete to the set
of vertices which are the label of the edge.) Suppose, on the contrary, that there is no
edge of T [Q2, Q3] such that z1 is complete to its label. Then, in each label of edges of
T [Q2, Q3], one can select a vertex of G that is not adjacent to z1. The set of selected
vertices forms a path from z2 to z3 that uses no vertex from N(z1), a contradiction. So
z1 is complete to the label S0 of an edge of T [Q2, Q3], so S0 ⊆ S1. The vertex Q1 is not
on T [Q2, Q3], so S0 and S1 are labels of two different edges of T , even if they may be
equal.

Let P be a clique path of G(Q(T )\{Q1}). Let T ′ be the clique tree of G obtained
from P by adding vertex Q1 and edge Q1Q

′
1. For the two clique trees T and T ′ of G,

the number of times a label appears in each clique tree is the same, so S0, S1 are labels
of two different edges of T ′ and so S0 is the label of an edge of P .

Let P ′ be the maximal subpath of P that contains Q′
1 and such that no label of edges

of P ′ is a subset of S1. Let T0 be the clique tree of G(Q(P ′) ∪ {Q1}) obtained from P ′

by adding vertex Q1 and edge Q1Q
′
1. As Q1 is a leaf of T0, every label of T0 that is a

subset of Q1 is a subset of S1. Since only one label of T0 is a subset of S1, only one
label of T0 is a subset of Q1. The label S0 is a subset of S1, and so P ′ has strictly fewer
vertices than P . So G(Q(P ′) ∪ {Q1}) is an interval graph. Let P0 be a clique path of
this graph. For the two clique trees T0, P0 of G(Q(P ′) ∪ {Q1}), the number of times a
label appears in each clique tree is the same, so only one label of P0 is a subset of Q1.
So Q1 is a leaf of P0.

The path P ′ is a proper subpath of P , so P\P ′ is either a path or the union of two
paths.

Case 1 : P\P ′ is a path. Let P1 be the path P\P ′. Let L be the leaf of P1 such that
there exists a vertex L′ in P ′ with LL′ being an edge of P . By definition of P ′, the label
SLL′ of LL′ is included in S1. So P0 and P1 can be linked by the edge LQ1 to obtain a
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clique path of G, a contradiction.

Case 2 : P\P ′ is the union of two paths. Let P1, P2 the paths of P\P ′. Let Li be
the leaf of Pi such that there exists a vertex L′

i in P ′ with LiL
′
i being an edge of P . By

definition of P ′, labels SLiL
′
i

of LiL
′
i are subsets of S1. Let L0 be the leaf of P0 that

is different from Q1. The vertex L0 is a vertex of P ′, so it is either on P ′[Q′
1, L

′
1] or

on P ′[Q′
1, L

′
2]. Suppose, by symmetry, that L0 is on P ′[Q′

1, L
′
2]. Since every vertex of

the path P ′[Q′
1, L

′
2] contains SL2L′

2
, vertex L0 contains SL2L′

2
. So P0, P1 and P2 can be

linked by edges L1Q1, L2L0 to obtain a clique path of G, a contradiction. 2

4 Strong paths and clique directed path trees

Two non-adjacent vertices u and v are linked by a strong path if either they have a
common neighbor, or there exist three sets of distinct vertices X = {x1, . . . , xr}, Y =
{y1, . . . , ys}, Z, (r, s ≥ 2, |Z| ≥ 0), such that u-x1-· · · -xr-v and u-y1-· · · -ys-v are two
chordless paths and for every clique of size four xi, xi+1, yj , yj+1 (1 ≤ i < r, 1 ≤ j < s),
one of the following is satisfied with {l1, l2} = {xi, yj} and {r1, r2} = {xi+1, yj+1}:

• Attachment of type 1 on {l1, l2}, {r1, r2} : There exist two non-adjacent vertices
z, z′ of Z such that vertex z sees l1, l2, r1 and not r2, vertex z′ sees r1, r2, l1 and
not l2.

• Attachment of type 2 on {l1, l2}, {r1, r2} : There exist 4t + 3 (t ≥ 0) vertices
z1, . . . , z2t+1, z

′
1, . . . , z′2t+2 of Z such that vertices l1, l2, r1, r2, z1, . . . , z2k+1 form a

clique Q, vertices z1, . . . , z2t+1 sees exactly l1, l2, r1, r2 on X ∪ Y ∪ {u, v}, vertices
z′1, . . . , z

′
2t+2 form a stable set, vertex z′k (1 ≤ k ≤ 2t + 2) sees exactly zk−1, zk on

Q ∪X ∪ Y ∪ {u, v} (with z0 = l1 and z2t+2 = r1).

The graphs of Figure 2 are examples of chordal graphs in which vertices u and v are
linked by a strong path.

Strong paths are interesting when considering directed path graphs because of the
following lemma.

Lemma 2 Let G be a directed path graph and u and v two non-adjacent vertices that
are linked by a strong path, then for every clique directed path tree T of G, the subpath
T (u, v) is a directed path.

Proof. Suppose on the contrary that T is a clique directed tree of G such that T (u, v)
is not a directed path. Let Qu and Qv be the two extremities of T (u, v) with u ∈ Qu

and v ∈ Qv. By assumption, the subpath T (u, v) contains two edges not oriented in
the same direction. Let Q1, Q2, Q3 be three consecutive vertices of T (u, v) such that
Qu, Q1, Q2, Q3, Qv appears in this order along T (u, v) (we may have Qu = Q1, Q3 = Qv)
and edges Q1Q2 and Q2Q3 are not oriented in the same direction. By reversing all the
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Figure 2: Examples of strong paths

edges of T if necessary, we may assume that Q1 → Q2 and Q2 ← Q3 (where Q1 → Q2

mean there is a edge directed from Q1 to Q2). As T is a clique directed path tree,
SQ1Q2

∩ SQ2Q3
= ∅.

Suppose that there exists w ∈ N(u)∩N(v). Then w is not in SQ1Q2
or not in SQ2Q3

.
By symmetry, we may assume that w /∈ SQ1Q2

. Then u and v are in two components of
G\SQ1Q2

, a contradiction because u-w-v is a path. So, we have N(u) ∩ N(v) = ∅ and
there exists a strong path with X = {x1, . . . , xr}, Y = {y1, . . . , ys}, Z, (r, s ≥ 2, |Z| ≥ 0).

We claim that every label of the edges of T (u, v) contains at least one vertex from
X and at least one vertex from Y . Suppose on the contrary that there exists an edge
QQ′ of T (u, v) such that SQQ′ ∩X = ∅. Then u and v are in two different components
of G\SQQ′ , contradicting the fact that u-X-v is a path. The case for Y is similar and
thus our claim holds.

Let i and j be the maximum subscripts with 1 ≤ i ≤ r, 1 ≤ j ≤ s such that
xi, yj ∈ SQ1Q2

. As SQ1Q2
∩SQ2Q3

= ∅, we have xi, yj ∈ SQ1Q2
\SQ2Q3

. Vertex v is not in
Q2 by definition of T (u, v), so not in SQ2Q3

. In G\SQ2Q3
, vertices xi, yj are not in the

same component as v, so xi, yj are not adjacent to v and i < r, j < s.

The set SQ2Q3
contains at least one vertex from X and at least one vertex from Y .

Vertices of SQ2Q3
are in Q2, and thus are adjacent to both xi, yj. As X and Y are

chordless paths, SQ2Q3
contains at least one of xi−1, xi+1 and at least one of yj−1, yj+1.
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Suppose that SQ2Q3
contains xi−1 (so i > 2). Then xi−1 is not in SQ1Q2

. Because
SQ1Q2

contains xi and u-x1-· · · -xi−1-xi is a chordless path, SQ1Q2
contains no vertex

of {u, x1, . . . , xi−2}. Then u and xi−1 are in two different components of G\SQ1Q2
,

contradicting the fact that u-x1-· · · -xi−1 is a path. So, we have xi−1 /∈ SQ2Q3
, and

xi+1 ∈ SQ2Q3
. Similarly, we have yj+1 ∈ SQ2Q3

.

Now, the vertices xi, yj, xi+1, yj+1 form a clique of size four in X ∪ Y . So, there are
vertices of Z forming an attachment of type 1 or 2 on {xi, yj}, {xi+1, yj+1}.

Suppose first that there is an attachment of type 1. Then, by symmetry, we may
assume that there exist two non-adjacent vertices z, z′ of Z such that z sees xi, yj , xi+1

and not yj+1 and z′ sees xi, xi+1, yj+1 and not yj. Let Qz be a vertex of T containing
z, xi, yj, xi+1 and Qz′ a vertex of T containing z′, xi, xi+1, yj+1. All of Q1, Q2, Qz, Qz′

contain xi so there are all vertices of the path T xi . Vertex Q1 is not between Qz and
Q2 or between Qz′ and Q2 along this path, since otherwise SQ1Q2

contains xi+1. Vertex
Qz is not between Q′

z and Q2, since otherwise z sees yj+1. So vertices Q1, Q2, Qz′ , Qz

appear in this order along the path T xi , but then z′ sees yj, a contradiction.

Suppose now that there is an attachment of type 2. Then, by symmetry, we can
assume that there exist 4t + 3 (t ≥ 0) vertices z1, . . . , z2t+1, z

′
1, . . . , z

′
2t+2 of Z such that

vertices xi, yj, xi+1, yj+1, z1, . . . , z2t+1 form a clique Q, vertices z1, . . . , z2t+1 see exactly
xi, yj , xi+1, yj+1 on X ∪ Y ∪ {u, v}, vertices z′1, . . . , z

′
2t+2 form a stable set, vertex z′k

(1 ≤ k ≤ 2t + 2) sees exactly zk−1 and zk on Q ∪ X ∪ Y ∪ {u, v} (with z0 = xi and
z2t+2 = xi+1). Let K be a vertex of T containing Q (we may have K = Q2) and for
1 ≤ k ≤ 2t + 2, let Zk be a vertex of T containing z′k, zk−1, zk.

Vertices Q1, Q2,K are all on the path T xi . If Q1 is between K and Q2, then SQ1Q2

contains yj+1, a contradiction. So Q1, Q2,K appear in this order along T xi . Vertex Z1

is also on T xi . Vertex Z1 is not between Q1 and K as it does not contain yj.

Suppose that Z1, Q1, Q2,K appear in this order along T xi . If Z1 is on T yj , then
z′1 sees yj, a contradiction. So Z1 is not on T yj . Let Q′

1 be the clique of T (Z1, Q1)
nearest to Z1 that contains yj (we may have Q′

1 = Q1). If Q′
1 = Qu, then z1 sees u,

a contradiction. So Q′
1 6= Qu. Let Z ′

1 be the neighbor of Q′
1 on T (Z1, Q

′
1). If Z ′

1 is a
vertex of T (u, v), then SZ′

1
Q′

1
contains a vertex of Y that sees yj and that is different

from yj+1, so SZ′
1
Q′

1
contains yj−1 and z1 sees yj−1, a contradiction. So Z ′

1 is not a vertex
of T (u, v). Let Q′′

1 be the clique of T (Q′
1, Q1) nearest to Q′

1 that is in T (u, v) (we may
have Q′′

1 = Q1 or Q′′
1 = Q′

1 or both). If Q′′
1 = Qu, then z1 sees u, a contradiction. Let

Q′
u be the neighbor of Q′′

1 on T (u, v) that is not on T (Z1, Q2). Then SQ′
uQ′′

1
contains a

vertex of X that sees xi and that is different from xi+1, so SQ′
uQ′′

1
contains xi−1 and z1

sees xi−1, a contradiction. So Q1, Q2,K,Z1 appear in this order along T xi . Similarly,
Q3, Q2,K,Z2t+2 appear in this order along T xi+1.

For every k and ℓ, 1 ≤ k < ℓ ≤ 2t + 2, vertices Zk,K,Zℓ appear in this order along
T [K,Zk, Zℓ], since otherwise, Zk contains zℓ or Zℓ contains zk−1. Vertices Q1,K,Z1

appear in this order along T xi and Q1 → Q2, so T [K,Z1] is directed from K to Z1.
Vertices Z1,K,Z2 appear in this order along T z1, so T [K,Z2] is directed from Z2 to K.
And so on, for 2 ≤ k ≤ 2t + 2, vertices Zk−1,K,Zk appear in this order along T zk , so
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T [K,Zk] is directed from K to Zk when k is odd and from Zk to K when k is even. So
T [K,Z2t+2] is directed from Z2t+2 to K. Vertices Q3, Q2,K,Z2t+2 appear in this order
along T xi+1, so T [K,Q3] is directed from K to Q3, contradicting Q2 ← Q3. 2

5 Asteroidal triples in directed path graphs

The graph of Figure 1 is a directed path graph that is minimally not an interval graph;
in fact, it is a rooted path graph. (It is the graph F18 of Figure 13.) So, directed path
graphs may contain asteroidal triples. But one can define a particular type of asteroidal
triples that is forbidden in directed path graphs. Recall from Section 1 that a strong
asteroidal triple in a graph G is an asteroidal triple such that each pair of vertices of the
triple are linked by a strong path in G. The graph of Figure 3 is example of a graph
that minimally contains a strong asteroidal triple. This graph is a path graph which
is minimally not a directed path graph. (It is the graph F17(6) of Figure 12, and also
F21(6) of Figure 13.)

Figure 3: Graph containing a strong asteroidal triple

The graph of Figure 4 is another example of a graph that minimally contains a
strong asteroidal triple. This graph is interesting as it shows that sometimes the path
between two vertices of the asteroidal triple that avoids the neighborhood of the third
must contain some vertices outside the strong path. The only strong path linking 2 and
3 is X = {x1, x2}, Y = {y1, y2}, Z = ∅ and the only path between 2 and 3 that avoids
the neighborhood of 1 is y1-t-x2. This graph is a chordal graph which is minimally not
a path graph. (It is the graph F10(8) of Figures 11, 12 and F21(8) of Figure 13.)

The graph of Figure 1 is an example of a graph that contains an asteroidal triple that
is not strong as for two vertices of the asteroidal triple, there is no common neighbor
and no pair of disjoint paths between them. The graph of Figure 5 is another example
of a graph that contains an asteroidal triple that is not strong. In this graph, there exist
two disjoint paths {x1, x2}, {y1, y2} between 2 and 3 but x1, x2, y1, y2 is a clique of size
four and there are no vertices that can play the role of Z in the definition of strong path.
This graph is a rooted path graph which is minimally not an interval graph. (It is the
graph F21(7) of Figure 13.)

We will now prove Theorem 2 which gives a characterization of directed path graphs

9



1

y2x1

2 3

y1 t x2

Figure 4: Graph containing a strong asteroidal triple

1

x1

2 3

y1 y2

x2

Figure 5: Graph containing an asteroidal triple that is not strong

using strong asteroidal triples.

Proof of Theorem 2. (=⇒) Suppose that G is a directed path graph and z1, z2, z3

is a strong asteroidal triple of G. Let T be a clique directed path tree of G. By
Lemma 1, T (z1, z2, z3) has exactly 3 leaves Qi, 1 ≤ i ≤ 3, with zi ∈ Qi. By Lemma 2,
T (z1, z2), T (z2, z3), T (z3, z1) are directed paths of T (z1, z2, z3). Suppose, by symmetry,
that T (z1, z2) is directed from Q1 to Q2. Then T (z1, z3) is directed from Q1 to Q3, but
then T (z2, z3) is not a directed path, a contradiction.

(⇐=) All chordal graphs of Figure 12 contain a strong asteroidal triple. The graphs
F1, F3, F4, F5(n)n≥7 are obtained from a graph containing an asteroidal triple by adding
a universal vertex; this universal vertex forms a strong path linking each pair of vertices
of the asteroidal triple. In the graphs F6, F7, F9, F10(n)n≥8, the strong paths are either
a common neighbor or four vertices without attachment. In the graphs F13(4k + 1)k≥2,
F15(4k + 2)k≥2, F16(4k + 3)k≥2, F17(4k + 2)k≥1, the strong paths are either a common
neighbor, four vertices without attachment, or four vertices plus attachment of type 1
or 2. So if G is a chordal graph containing no strong asteroidal triple, it contains no F1,
F3, F4, F5(n)n≥7, F6, F7, F9, F10(n)n≥8, F13(4k +1)k≥2, F15(4k +2)k≥2, F16(4k +3)k≥2,
F17(4k + 2)k≥1, and so it is a directed path graph by the result of Panda [14]. 2

In the proof of Theorem 2, we use the list of forbidden subgraph obtained by
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Panda [14]. It would be nice to find a simple and direct proof of this result, similar
to the proof of Theorem 1 presented in Section 3.

A corollary of Theorem 2 and [14] is the following.

Corollary 1 The chordal graphs that minimally contain a strong asteroidal triple are
the graphs F1, F3, F4, F5(n)n≥7, F6, F7, F9, F10(n)n≥8, F13(4k +1)k≥2, F15(4k +2)k≥2,
F16(4k + 3)k≥2, F17(4k + 2)k≥1.

One can notice that only short strong paths are used in the proof of Theorem 2
(where short means either a common neighbor or |X| = |Y | = 2). So if one is interested
only in characterizing directed path graphs, there is no need to define long strong path
(where long means one of |X|, |Y | is at least 3). As we will see in next sections, long
strong paths are useful for rooted path graphs.

6 Asteroidal quadruples in rooted path graphs

The notion of asteroidal triple can be generalized to four vertices. An asteroidal quadru-
ple in a graph G is a set of four vertices such that any three of them is an asteroidal
triple. The graph of Figure 6 is an example of a graph that minimally contains an
asteroidal quadruple.

Figure 6: Graph containing an asteroidal quadruple

The following lemma is analogous to Lemma 1 for asteroidal quadruple (see also
[11]).

Lemma 3 Let G be a chordal graph and let z1, z2, z3, z4 be four vertices that form an
asteroidal quadruple. Then for every clique tree T of G, the subtree T (z1, z2, z3, z4) has
exactly 4 leaves.

Proof. Suppose that the subtree T (z1, z2, z3, z4) has fewer than 4 leaves. Then there is at
least one zi that is not in a leaf. Suppose by symmetry that z4 is not in a leave. Let Q4 be
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a vertex of T (z1, z2, z3, z4) that contains z4. Then T (z1, z2, z3, z4) = T (z1, z2, z3) and by
Lemma 1, T (z1, z2, z3) has exactly 3 leaves. Vertex Q4 is either on T (z1, z2) or T (z1, z3).
Suppose by symmetry that Q4 is a vertex of T (z1, z2). Then T (z1, z2, z4) = T (z1, z2) is
a path, contradicting Lemma 1. 2

The graph of Figure 6 is a rooted path graph, so a rooted path graph may contain
asteroidal quadruples. But one can define a particular type of asteroidal quadruple that
is forbidden in rooted path graphs.

One can try to use the notion of strong asteroidal triple to define a strong asteroidal
quadruple as a set of four vertices such that any three of them is an strong asteroidal
triple. This is not interesting for our purpose because then every graph that contains a
strong asteroidal quadruple also contains a strong asteroidal triple. And, by Theorem 2,
we already know that directed path graphs and thus rooted path graphs contain no
strong asteroidal triple.

One can define another four-vertex variant of asteroidal triple that will be useful. A
weak asteroidal triple in a graph G is an asteroidal triple such that two vertices of the
asteroidal triple are linked by a strong path in G. The difference from the definition of a
strong asteroidal triple is that we do not expect that there is a strong path linking any
two of the three vertices but just linking two of them.

Now we can generalize this notion to four vertices. A weak asteroidal quadruple is
a set of four vertices such that any three of them is a weak asteroidal triple. Weak
asteroidal quadruples are interesting when considering directed path graphs because of
the following theorem.

Theorem 3 A rooted path graph contains no weak asteroidal quadruple.

Proof. Suppose that G is a rooted path graph and z1, z2, z3, z4 is a weak asteroidal
quadruple of G. Let T be a clique rooted path tree of G. By Lemma 3, T (z1, z2, z3, z4)
has exactly 4 leaves Qi, 1 ≤ i ≤ 4, with zi ∈ Qi. A subtree of a rooted tree is a rooted
tree, so T (z1, z2, z3, z4) is also rooted.

By definition of weak asteroidal quadruple, the three vertices z1, z2, z3 form a weak
asteroidal triple, so two of them are linked by a strong path. Suppose, by symmetry,
that there is a strong path linking z1 and z2. Then, by Lemma 2, T (z1, z2) is a directed
path. So, Q1 or Q2 is the root of T (z1, z2, z3, z4). Suppose by symmetry that Q1 is the
root of T (z1, z2, z3, z4).

The three vertices z2, z3, z4 also form a weak asteroidal triple, so there is a strong
path linking two of them. Let zi and zj be two vertices of z2, z3, z4 that are linked by a
strong path. Then, by Lemma 2, T (zi, zj) is a directed path; so Qi or Qj is the root of
T (z1, z2, z3, z4), a contradiction. 2

By Theorems 2 and 3, we know that a rooted path graph contains no hole, no strong
asteroidal triple and no weak asteroidal quadruple. We conjecture that the converse is
also true.
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Conjecture 1 A chordal graph is a rooted path graph if and only if it contains no strong
asteroidal triple and no weak asteroidal quadruple.

If Conjecture 1 is true, it will give a characterization of rooted path graphs anal-
ogous to our Theorem 2 on directed path graphs and to Lekkerkerker and Boland’s
characterization of interval graphs.

7 Forbidden subgraphs of rooted path graphs?

Recall that the problem of finding the forbidden induced subgraph characterization is
solved for interval graphs, path graphs, and directed path graphs, but not for rooted path
graphs. Whether Conjecture 1 is true or false, Theorems 2 and 3 can be used to obtain
many graphs that are minimally not rooted path graphs. What are the graphs that
contain a strong asteroidal triple or a weak asteroidal quadruple and that are minimally
not rooted path graphs?

The graphs of Figure 7 are examples of graphs that minimally contain a weak aster-
oidal quadruple. They are also minimally not rooted path graphs. They are of particular
interest since together with F17(6) (see Figure 3) they show that rooted path graphs con-
tain no suns. A sun is the graph obtained by taking a clique on vertices a1, a2, . . . , ak

for some k ≥ 3, a stable set on vertices s1, s2, . . . , sk, and adding edges siai, siai+1 for
all i, with the subscripts taken modulo k. Farber showed [2] that a graph is strongly
chordal if and only if it is chordal and does not contain a sun. Thus, rooted path graphs
are a subclass of strongly chordal graphs.

F22 F23 F24

Figure 7: Examples of graphs which are minimally not rooted path graphs and contain
a weak asteroidal quadruple

Corollary 1 gives the list of chordal graphs that minimally contain a strong asteroidal
triple. One may notice that F13(4k+1)k≥3, F15(4k+2)k≥2, F16(4k+3)k≥2, and F17(4k+
2)k≥2 all strictly contain a weak asteroidal quadruple. All the other chordal graphs that
minimally contain a strong asteroidal triple are minimally not rooted path graphs (see
Figure 8).

Proposition 1 The chordal graphs that are minimally not rooted path graphs and that
contain a strong asteroidal triple are F1, F3, F4, F5(n)n≥7, F6, F7, F9, F10(n)n≥8,
F13(9), F17(6).
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Proof. The graphs F1, F3, F4, F5(n)n≥7, F6, F7, F9, F10(n)n≥8, F13(9), and F17(6)
contain a strong asteroidal triple, so they are forbidden in directed path graphs by
Theorem 2, and thus forbidden in rooted path graphs. We omit the proof of minimality;
one has to check that, for each of these graphs, one can remove any vertex and then one
can find a clique rooted path tree for the resulting graph.

Suppose there is a chordal graph G that is minimally not a rooted path graph, that
contains a strong asteroidal triple and that is different from F1, F3, F4, F5(n)n≥7, F6,
F7, F9, F10(n)n≥8, F13(9), and F17(6). Since G is minimally not a rooted path graph,
G does not strictly contain any of the graphs listed. By Corollary 1, G contains one of
F13(4k + 1)k≥3, F15(4k + 2)k≥2, F16(4k + 3)k≥2, or F17(4k + 2)k≥2. But all these graphs
strictly contain F23 of Figure 7. The graph F23 is not a rooted path graph, so G fails to
be minimally not a rooted path graph, a contradiction. 2

F1 F3 F4 F5(n)n≥7

F6 F7 F9 F10(n)n≥8

F13(9) F17(6)

Figure 8: Minimal forbidden induced subgraphs of rooted path graphs that are chordal
and contain a strong asteroidal triple

Now that we know the complete list of minimal forbidden induced subgraphs of
rooted path graphs that are chordal and contain a strong asteroidal triple, we can look
at those that contain a weak asteroidal quadruple. In this case, we have not obtained a
complete list. We need the following lemma for which we omit the proof.

Lemma 4 If G is a graph on four vertices such that any of its induced subgraphs on
three vertices contains at least one edge, then G contains a triangle or two disjoint edges.

A parallel asteroidal quadruple is an asteroidal quadruple z1, z2, z3, z4 such that there
is a strong path linking z1 and z2 and a strong path linking z3 and z4. Parallel asteroidal
quadruples are a particular type of weak asteroidal quadruple. By replacing edges by
strong paths in Lemma 4, it is easy to see that a weak asteroidal quadruple either

14



contains a strong asteroidal triple or is a parallel asteroidal quadruple. So we have the
following corollary.

Corollary 2 If a chordal graph does not contain a strong asteroidal triple but does
contain a weak asteroidal quadruple, then it contains a parallel asteroidal quadruple.

The following lemma shows that we do not need to consider attachments of type 2
when dealing with graphs that are minimally not rooted path graphs and contain no
strong asteroidal triple.

Lemma 5 Let G be a chordal graph that is minimally not a rooted path graph and that
contains no strong asteroidal triple. If u and v are linked by a strong path, then they are
linked by a strong path that uses no attachment of type 2.

Proof. First, notice that the graph F23 satisfies the hypothesis of the lemma, so we
can assume that G is different from F23. Also G does not strictly contain F23 as G
is minimally not a rooted path graph. Suppose u and v are linked by a strong path.
We may assume that u and v have no common neighbors, for otherwise the lemma
is true. Let X,Y,Z be a strong path linking u and v such that |X ∪ Y | is mini-
mum. We use the same notation as in the definition of strong path. Suppose there
is a clique of size four xi, yj, xi+1, yj+1 of X ∪ Y with an attachment of type 2. We
may assume that there exist 4t + 3 (t ≥ 0) vertices z1, . . . , z2t+1, z

′
1, . . . , z

′
2t+2 of Z such

that vertices xi, yj , xi+1, yj+1, z1, . . . , z2t+1 form a clique Q, vertices z1, . . . , z2t+1 see ex-
actly xi, yj , xi+1, yj+1 on X ∪ Y ∪ {u, v}, vertices z′1, . . . , z

′
2t+2 form a stable set, vertex

z′k (1 ≤ k ≤ 2t + 2) sees exactly zk−1, zk on Q ∪ X ∪ Y ∪ {u, v} (with z0 = xi and
z2t+2 = xi+1).

Let x0 = u and xr+1 = v. If xi−1 sees yj+1, then there is a strong path X ′, Y ′, Z
between u and v with X ′ ⊆ {x1, . . . , xi−1, yj+1, . . . , ys}, Y

′ ⊆ {y1, . . . , yj, xi+1, . . . , xr}
such that |X ′∪Y ′| < |X∪Y |, a contradiction to the minimality of |X∪Y |. So, xi−1 misses
yj+1. Similarly, yj−1 misses xi+1. If xi−1 misses yj and yj−1 misses xi, then X ∪Y ∪{u}
contains a hole. So, there exists z′0 ∈ {xi−1, yj−1} that misses both xi+1 and yj+1 and
sees both xi and yj. Similarly, there exists z′2t+3 ∈ {xi+1, yj+1} that misses both xi and
yj and sees both xi+1 and yj+1. Write z−1 = yj, z0 = xi, z2t+2 = xi+1, z2t+3 = yj+1.
Now, the vertices z−1, z0, z1, z2, z3, z

′
0, z

′
1, z

′
2, z

′
3 form the graph F23, a contradiction. 2

Thus, we may consider only parallel quadruples in which strong paths use no at-
tachment of type 2. Even with this restriction, one can obtain many minimal forbidden
subgraphs of rooted path graphs, and we can find no simple way to represent them as a
finite number of infinite families, as the case for interval graphs, path graphs or directed
path graphs.

There is no way to represent all types of strong paths, with attachment of type 1, that
can link two vertices in a chordal graph. One can put many cliques of size four between
X ∪ Y (each with an attachment of type 1). And, given such a strong path X,Y,Z
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linking z1 and z2 and such a strong path X ′, Y ′, Z ′ linking z3 and z4 (all these vertices
are distinct and there are no edges between the two parts), one can easily construct a
graph which is minimally not a rooted path graph by adding a path v1-· · · -vℓ (ℓ ≥ 1)
where v1 sees all the vertices of X ∪ Y ∪ Z and vℓ sees all the vertices of X ′ ∪ Y ′ ∪ Z ′

(see Figure 9).

Figure 9: Example of graph which is minimally not a rooted path graph and which
contains a weak asteroidal quadruple

And, there are many more different possibilities as the two strong paths may share
some vertices, they may have some edges between them, the attachment of type 1 can
see more than 3 vertices on the strong path, they can be used in more than one clique
of size four, etc. In Figure 10, we give more examples of graphs which are minimally not
rooted path graphs and which contain a weak asteroidal quadruple where strong paths
are just a common neighbor. Even with this restriction, they are many variants and we
give just a few.

8 Conclusion

We have defined particular asteroids on three and four vertices to obtain a character-
ization of directed path graphs and some partial results on rooted path graphs. The
characterization of rooted path graphs that we conjecture will be a nice alternative to
finding the list of all minimal forbidden induced subgraphs for this class.

One can also try to do similar work for path graphs. Path graphs are a superclass of
directed path graphs that may contain some strong asteroidal triples (odd suns). Can one
define a particular type of strong asteroidal triple that will give a nice characterization
of path graphs?
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Figure 10: Examples of minimal forbidden induced subgraphs of rooted path graphs
which contain a weak asteroidal quadruple

References
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F0(n)n≥4

F1 F2 F3 F4 F5(n)n≥7

F6 F7 F8 F9 F10(n)n≥8

F11(4k)k≥2 F12(4k)k≥2 F13(4k + 1)k≥2 F14(4k + 1)k≥2 F15(4k + 2)k≥2 F16(4k + 3)k≥2

Figure 11: Minimal forbidden induced subgraphs for path graphs. (bold edges form a
clique)
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F0(n)n≥4

F1 F3 F4 F5(n)n≥7

F6 F7 F9 F10(n)n≥8

F13(4k + 1)k≥2 F15(4k + 2)k≥2 F16(4k + 3)k≥2 F17(4k + 2)k≥1

Figure 12: Minimal forbidden induced subgraphs for directed graphs. (bold edges form
a clique)

F0(n)n≥4 F18 F19 F20(n)n≥6 F21(n)n≥6

Figure 13: Minimal forbidden induced subgraphs for interval graphs.
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