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A POOR MAN’S SQUARE FUNCTION ESTIMATE ON

DOMAINS

O.IVANOVICI AND F.PLANCHON

Abstract. The purpose of this note is to provide an elementary proof of a
weak version of the square function estimate on L

p(Ω), which is often used
in the context of wave or Schrödinger equations to reduce estimates for data
in Sobolev spaces to spectrally localized data. In the process we obtain use-
ful L

p(Ω) bounds for the heat kernel and its derivatives, through a simple
argument which holds irrespective of the domain.

1. Introduction

Let Ω be a domain in Rn, n ≥ 2, with smooth boundary ∂Ω. Let ∆D denote the
Laplace operator on Ω with Dirichlet boundary conditions, acting on L2(Ω), with
domain H2(Ω) ∩ H1

0 (Ω).
Our main result reads as follows

Theorem 1.1. Let f ∈ C∞(Ω) and Ψ ∈ C∞
0 (R∗) such that

(1.1)
∑

j∈Z

Ψ(2−2jλ) = 1, λ ∈ R.

Then for all p ∈ [2,∞) we have

(1.2) ‖f‖Lp(Ω) ≤ Cp

(

∑

j∈Z

‖Ψ(−2−2j∆D)f‖2
Lp(Ω)

)1/2

,

where the operator Ψ(−2−2j∆D) is defined by (2.1) below.

Readers who are familiar with functional spaces’theory will have recognized the
embedding Ḃ0,2

p (Ω) →֒ Lp(Ω), where the Besov space is defined using the right
hand-side of (1.2) as a norm. One expects, by analogy with the Rn case, the much
stronger equivalence

‖f‖Lp(Ω) ≈ ‖(
∑

j

|Ψ(−2−2j∆D)f |2) 1
2 ‖Lp(Ω)

to hold for all 1 < p < +∞; in other words, Lp(Ω) and the Triebel-Lizorkin space

Ḟ 0,2
p (Ω) coincide. Such an equivalence (and much more !) is proven in [20, 21, 22],

though one has to reconstruct it from several different sections (functional spaces are
defined differently, only the inhomogeneous ones are treated, among other things).
As such, the casual user with mostly a PDE background might find it difficult to
reconstruct the argument for his own sake without digesting the whole theory. In
contrast, the present note aims at giving a self-contained proof, with “acceptable”
black boxes, namely complex interpolation and spectral calculus. In fact, if one
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2 O.IVANOVICI AND F.PLANCHON

accepts to replace the spectral localization by the heat flow, the proof can be made
entirely self-contained, relying only on integration by parts. Our strategy to prove
Theorem 1.1 is indeed to reduce matters to an estimate involving the heat flow, by
proving almost orthogonality between spectral projectors and heat flow localization;
this only requires basic parabolic estimates in Lp(Ω), together with a little help from
spectral calculus.

Remark 1.2. For compact manifolds without boundaries, one may find a direct
proof of (1.2) (with ∆D replaced by the Laplace-Beltrami Laplacian) in [5], which
proceeds by reduction to the Rn case using standard pseudo-differential calculus.
Our elementary approach provides an alternative direct proof.

Remark 1.3. One can also adapt the proof to the case of Neumann boundary
conditions, provided special care is taken of the zero frequency (note that on an
exterior domain, a decay condition at infinity solves the issue).

Remark 1.4. Theorem 1.1 is useful, among other things, when dealing with Lp esti-
mates for wave or dispersive evolution equations. For such equations, one naturally
considers initial data in Sobolev spaces, and spectral localization conveniently re-
duces matters to data in L2, and helps with finite speed of propagation arguments.
One however wants to sum eventually over all frequencies, if possible without loss.
Recent examples may be found in [13] or [17], as well as in [14].

Even in the Rn case, proving the strong version of the square function esti-
mate requires a lot more technology (more or less some Hilbert-valued version of
Calderon-Zygmund theory), and as such, in the case of domains, one may easily
see the benefit of adopting the functional spaces point of view and follow Triebel’s
path. Alternatively, one can derive everything from adapting to the domain case
the theory which ultimately led to the proof of the Kato conjecture ([4, 3]). Such a
possible development is pointed out by P. Auscher in [2] (chap. 7, p. 66) and was
originally our starting point; eventually we were led to the elementary approach we
present here, but we provide a sketch of an alternate proof (see Remark 3.2), which
was kindly outlined to us by Pascal Auscher.

2. Functional calculus

We start by recalling the Dynkin-Helffer-Sjöstrand formula ([11, 12]) and refer
to the appendix of [15] for a nice presentation of the use of almost-analytic exten-
sions in the context of functional calculus. In what follows we will also rely on
Davies’presentation ([9]) from which we will use a couple of useful lemma.

Definition 2.1. (see [15, Lemma A.1]) Let Ψ ∈ C∞
0 (R), possibly complex valued.

We assume that there exists Ψ̃ ∈ C∞
0 (C) such that |∂̄Ψ̃(z)| ≤ C|Imz| and Ψ̃|R = Ψ.

Then we have (as a bounded operator in L2(Ω))

(2.1) Ψ(−h2∆D) =
i

2π

∫

C

∂̄Ψ̃(z)(z + h2∆D)−1dz̄ ∧ dz.

The next result ensures the existence of Ψ̃ in the previous definition ( see [15,
Lemma A.2] and [19], where it is linked with Hadamard’s problem of finding a
smooth function with prescribed derivatives at a given point):
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Lemma 2.2. If Ψ belongs to C∞
0 (R) there exists Ψ̃ ∈ C∞

0 (C) such that Ψ̃|R = Ψ
and

(2.2) |∂̄Ψ̃(z)| ≤ CN,Ψ|Imz|N , ∀z ∈ C, ∀N ∈ N.

Moreover, if Ψ belongs to a bounded subset of C∞
0 (R) (elements of B are supported

in a given compact subset of R with uniform bounds), then the mapping B ∋ Ψ →
Ψ̃ ∈ C∞

0 (C) is continuous and CN,Ψ can be chosen uniformly w.r.t Ψ ∈ B.

Remark 2.3. Estimate (2.2) simply means that ∂̄Ψ̃(z) vanishes at any order on the
real axis. Precisely, if z = x + iy

∂N
y Ψ̃|R = (i∂x)N Ψ̃|R = (i∂x)NΨ|R.

In particular if 〈x〉 = (1 + x2)1/2 then for any given N ≥ 0, a useful example of an
almost analytic extension of Ψ ∈ C∞

0 (R) is given by

Ψ̃(x + iy) =
(

N
∑

m=0

∂mΨ(x)(iy)m/m!
)

τ(
y

〈x〉 ),

where τ is a non-negative C∞ function such that τ(s) = 1 if |s| ≤ 1 and τ(s) = 0
if |s| ≥ 2. For later purposes, we also set

‖Ψ‖N
def
=

N
∑

m=0

∫

R

|∂mΨ(x)|〈x〉m−1dx.

Our next lemma lets us deal with Lebesgue spaces.

Lemma 2.4. Let z /∈ R and |Imz| . |Rez|, then ∆D satisfies

(2.3) ‖(z − ∆D)−1‖Lp(Ω)→Lp(Ω) ≤
c

|Imz|

( |z|
|Imz|

)α

, ∀z /∈ R

for 1 ≤ p ≤ +∞, with a constant c = c(p) > 0 and α = α(n, p) > n| 12 − 1
p |.

Remark that, for all h ∈ (0, 1], the operator h2∆D satisfies (2.3) with the same
constants c and α (this is nothing but scale invariance).

For p = 2 the proof of Lemma 2.4 is trivial by multiplying the resolvent equation
−∆Du + zu = f by ū and we get α = 0; however for p 6= 2 it requires a non trivial
argument which we postpone to Appendix 2.

Corollary 2.5. For N ≥ α+1 the integral (2.1) is norm convergent and ∀h ∈ (0, 1]

(2.4) ‖Ψ(−h2∆D)‖Lp(Ω)→Lp(Ω) ≤ c‖Ψ‖N+1,

for some constant c independent of h.

Proof: By scale invariance it is enough to prove (2.4) for h = 1. The integrand
in (2.1) is norm continuous for z /∈ R. If we set

U
def
= {z = x + iy|〈x〉 < |y| < 2〈x〉}, V

def
= {z = x + iy|0 < |y| < 2〈x〉},

then the norm of the integrand is dominated by

c

N
∑

m=0

|∂mΨ(x)|2
m

m!
〈x〉m−2‖∂τ‖L∞([1,2])1U (x + iy)+

+c|∂N+1Ψ(x)|2
N

N !
|y|N

(〈x〉
|y|

)α

‖τ‖L∞([0,2])1V (x + iy).
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Integrating with respect to y for N ≥ α + 1 yields the bound

‖Ψ(−∆D)‖Lp(Ω)→Lp(Ω) .

∫

R

(

N
∑

m=0

|∂mΨ(x)|〈x〉m−1+

+ |∂N+1Ψ(x)|〈x〉N
)

dx = ‖Ψ‖N+1.

One may then prove that the operator Ψ(−∆D), acting on Lp(Ω), is independent

of N ≥ 1 + n/2 and of the cut-off function τ in the definition of Ψ̃, see [9].
We now recall two lemma which will be useful when composing operators.

Lemma 2.6 (Lemma 2.2.5,[9]). If Ψ ∈ C∞
0 (R) has support disjoint from the spec-

trum of −h2∆D then Ψ(−h2∆D) = 0.

Lemma 2.7 (Lemma 2.2.6, [9]). If Ψ1, Ψ2 ∈ C∞
0 (R), then (Ψ1Ψ2)(−h2∆D) =

Ψ1(−h2∆D)Ψ2(−h2∆D).

3. Heat equation

We consider the linear heat equation on Ω with Dirichlet boundary conditions
and initial data f

(3.1) ∂tu − ∆Du = 0, on Ω × R+; u|t=0 = f ∈ C∞(Ω); u|∂Ω = 0.

We denote the solution u(t, x) = S(t)f(x), where we set S(t) = et∆D . For the
sake of simplicity ∆D has constant coefficients, but the same method applies in
the case when the coefficients belong to a bounded set of C∞ and the principal
part is uniformly elliptic (one may lower the regularity requirements on both the
coefficients and the boundary, and a nice feature of the proof which follows is that
counting derivatives is relatively straightforward).

Proposition 3.1. Let 2 ≤ p < +∞, then we have
(3.2)

‖f‖Lp(Ω) ≤ cp‖
(

∫ ∞

0

|∇S(t)f |2dt
)1/2

‖Lp(Ω) ≤ Cp

(

∫ ∞

0

‖∇S(t)f‖2
Lp(Ω)dt

)1/2

.

Remark 3.2. The main drawback from (3.2) is the presence of ∇S(t) on the right
hand-side: one is leaving the functional calculus of ∆D, and in fact for domains
with Lipschitz boundaries the operator ∇S(t) may not even be bounded. As such,
a suitable alternative is to replace ∇S(t) by

√
∂tS(t). Then the corresponding

estimate may be obtained following [2] as follows:

• prove that the associated square function in time is bounded by the Lp

norm, for all 1 < p ≤ 2, essentially following step 3 in chapter 6, page 55
in [2]. This requires very little on the semi-group, and Gaussian bounds
on S(t) and ∂tS(t) ([8]) are more than enough to apply the weak (1, 1)
criterion from [2] (Theorem 1.1, chapter 1). Moreover, the argument can
be extended to domains with Lipschitz boundaries, assuming the Laplacian
is defined through the associated Dirichlet form;

• by duality, we get the square function bound for p > 2 (step 5, page 56 in
[2]);

• from now on one proceeds as in the remaining part of our paper to obtain
the bound with spectral localization, and almost orthogonality (3.8) is even
easier because we stay in the functional calculus. One has, however, to be
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careful if one is willing to extend this last step to Lipschitz boundaries, as
this would most likely require additional estimates on the resolvent to deal
with the ∆j .

Remark 3.3. We will later obtain (3.2) with
√

t∂tS(t) replacing ∇S(t), see Remark
4.3, but the outline from the previous remark would work for this slightly different
square function as well.

In order to prove Proposition 3.1 we need the following lemma.

Lemma 3.4. For all 1 ≤ p ≤ +∞, we have

(3.3) ‖S(t)f‖Lp(Ω) →t→∞ 0,

(3.4) sup
t≥0

‖S(t)f‖Lp(Ω) . ‖f‖Lp(Ω) .

Moreover,

(3.5) ‖ sup
t≥0

|S(t)f |‖Lp(Ω) . ‖f‖Lp(Ω) .

Proof: The estimate (3.4) clearly follows from (3.5), which in turn is a direct
consequence of the Gaussian nature of the Dirichlet heat kernel, see [7]. The same
Gaussian estimate implies (3.3). However we do not need such a strong fact to prove
(3.4), which will follow from the next computation as well (see (3.6)). Estimate
(3.3) can also be obtained through elementary arguments. We defer such a proof
to Appendix 1.

Proof of Proposition 3.1
If p = 2 the proof is nothing more than the energy inequality, combined with

(3.3). In fact, for p = 2, we have equality in (3.2) with C2 = 2. We now take p = 2m
where m ≥ 2. Multiplying equation (3.1) by ū|u|p−1 and taking the integral over
Ω and [0, T ], T > 0 yields, taking advantage of the Dirichlet boundary condition,

(3.6)
2

p

∫ T

0

∂t‖u‖p
Lp(Ω)dt + 2

∫ T

0

∫

Ω

|∇u|2|u|p−2dxdt

+
(p − 2)

2

∫ T

0

∫

Ω

(∇(|u|2))2|u|2|u|p−4dxdt = 0,

from which we can estimate either ‖u‖p
Lp(Ω)(T ) ≤ ‖f‖p

Lp(Ω) (which is (3.4)) or

‖f‖p
Lp(Ω) ≤ ‖u‖p

Lp(Ω)(T ) + p(p − 1)

∫ T

0

∫

Ω

|∇u|2|u|p−2dxdt.

Letting T go to infinity and using (3.3) from Lemma 3.4 and Hölder inequality we
find

‖f‖p
Lp(Ω) ≤ p(p − 1)

(

∫

Ω

(

∫ ∞

0

|∇u|2 dt
)

p

2

dx
)

2
p
(

∫

Ω

(sup
t

|u|p−2)
p

p−2 dx
)

p−2
p

.

The proof follows using again Lemma 3.4, as

‖f‖p
Lp(Ω) ≤ Cp‖

(

∫ ∞

0

|∇u|2dt
)

1
2 ‖Lp(Ω)

(

‖ sup
t≥0

|u|‖Lp(Ω)

)p−2

.

Note that we may prove the weaker part of (3.2), without assuming the maximal in
time bound, by reversing the order of integration in our argument. This would keep
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the argument essentially self-contained, without any need for Gaussian bounds on
the heat kernel.

Remark 3.5. We do not claim novelty here: our argument follows closely (a dual
version of) the proof of a classical square function bound for the Poisson kernel in
the whole space, see [18].

At this point, we have essentially proved Theorem 1.1, but with the Ψ opera-
tor replaced by the gradient heat kernel and the discrete parameter 2−2j by the
continuous parameter t. The rest of this note is devoted to proving the equiva-
lence between the Besov norms which are defined by the heat kernel or the spectral
localization.

Lemma 3.6. Let 1 ≤ p ≤ +∞ and Qt
def
= t1/2∇S(t). We have the following

equivalence between dyadic and continuous versions of the Besov norm:

3

4

∑

k∈Z

‖Q2−2kf‖2
Lp(Ω) ≤

∫ ∞

0

‖Qtf‖2
Lp(Ω)

dt

t
≤ 3

∑

k∈Z

‖Q2−2kf‖2
Lp(Ω).

This follows at once from factoring the semi-group: for 2−2j ≤ t ≤ 2−2(j−1),
write S(t) = S(t − 2−2j)S(2−2j) and use (3.4).

Lemma 3.7. Let 1 < p < +∞. The operators Qt, Qt

def
= t∆DS(t) are bounded on

Lp(Ω), uniformly in t ≥ 0.

We postpone the proof of the lemma to Appendix 1, Section 4 and turn to

the proof of Theorem 1.1. Let Ψ ∈ C∞
0 (R∗) satisfying (1.1) and denote ∆jf

def
=

Ψ(2−2j∆D)f , where Ψ(2−2j∆D)f is given by the Dynkin-Helffer-Sjöstrand formula
(2.1). From Proposition 3.1 and Lemma 3.6 we have

(3.7) ‖f‖Lp(Ω) ≤ 3Cp

(

∑

k∈Z

‖Q2−2kf‖2
Lp(Ω)

)1/2

and we will show that (3.7) implies (1.2): it suffices to prove the following almost
orthogonality property between localization operators ∆j and Q2−2k :

(3.8) ∀k, j ∈ Z, ‖Q2−2k∆jf‖Lp(Ω) . 2−|j−k|‖∆jf‖Lp(Ω).

Then, from (2−|j−k|)k ∈ l1 and (‖∆jf‖Lp(Ω))j ∈ l2 we estimate

(3.9)
∑

k∈Z

‖Q2−2kf‖2
Lp(Ω) =

∑

k∈Z

‖
∑

j∈Z

Q2−2k∆jf‖2
Lp(Ω)

as an l1 ∗ l2 convolution and conclude using Lemma 3.7. It remains to show (3.8):

• for k < j we write

Q2−2k∆jf = 23/22−2(j−k)
(

2−(2k+1)/2∇S(2−(2k+1))
)

(

2−(2k+1)∆DS(2−(2k+1))
)

Ψ̆(−2−2j∆D)Ψ(−2−2j∆D)f,

where we set Ψ̆(λ)
def
= 1

λ Ψ̃(λ), and Ψ̃ ∈ C∞
0 , Ψ̃ = 1 on suppΨ. By Lemma

3.7, the operators Q2−(2k+1) = 2−(2k+1)/2∇S(2−(2k+1)) and Q2−(2k+1) =
2−(2k+1)∆DS(2−(2k+1)) are bounded on Lp(Ω) and we obtain (3.8) using

Corollary 2.5 for Ψ̆.
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• for k ≥ j we set Ψ1(ξ) = Ψ̃(ξ) exp(ξ), Ψ2(ξ) = Ψ(ξ), and we use again
Lemma 2.7 to write (slightly abusing the notation as 2−2k − 2−2j < 0)

(3.10) S(2−2k − 2−2j)∆jf = S(2−2k)Ψ1(−2−2j∆D)Ψ2(−2−2j∆D)f.

Then

Q2−2k∆jf = 2−(k−j)
(

2−j∇S(2−2j)
)(

S(2−2k − 2−2j)∆jf
)

,

and using again Lemma 3.7 we see that the operator 2−j∇S(2−2j) is bounded
while the remaining operator (3.10) is bounded by Corollary 2.5. This ends
the proof.

Remark 3.8. One may prove a similar bound with Q2−2k and ∆j reversed, either
directly or by duality. Hence Besov norms based on ∆j or Q2−2k are equivalent.
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4. Appendix 1

We now return to the proof of Lemma 3.7. For Qt, boundedness on all Lp spaces,
including p = 1, +∞, follows once again from a Gaussian upper bound on ∂tS(t)
(see [8] or [10]). However the subsequent Gaussian bound on the gradient ∇xS(t) in
[8] is a direct consequence of the Li-Yau inequality, which holds only inside convex
domains. We were unable to find a reference which would provide the desired bound
for Qt in the context of the exterior domain. Therefore we provide an elementary
detailed proof for Qt. Furthermore, we only deal with 1 < p < 2 or powers of two,
p = 2m, m ∈ N

∗: complex interpolation takes care of remaining values of p, though
one could adapt the following argument to generic values p > 2, at the expense of
lengthier computations.

Set v(x, t) = Qtf = t1/2∇u(x, t) and assume without loss of generality that v is
real: we multiply the equation satisfied by v by v|v|p−2 and integrate over Ω,

(4.1) ∂t

(

1

p
‖v‖p

Lp(Ω)

)

−
∫

∂Ω

((−→n · ∇)v) · v|v|p−2dσ

+ (p − 1)

∫

Ω

|∇v|2|v|p−2 dx =
1

2t
‖v‖p

Lp(Ω),

where −→n is the outgoing unit normal vector to ∂Ω and dσ is the surface measure
on ∂Ω. We claim that the second term in the left hand side vanishes: in fact we
write
∫

∂Ω

(−→n ·∇v)·v|v|p−2dσ =
tp/2

2

∫

∂Ω

∂n(|∂nu|2+|∇tangu|2)(|∂nu|2+|∇tangu|2)(p−2)/2dσ,

and from u|∂Ω = 0 the time and tangential derivative (∂t,∇tang)u|∂Ω vanishes;
furthermore, using the equation, ∂2

nu = 0 on ∂Ω.
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Remark 4.1. Notice that this term vanishes as well with Neumann boundary con-
ditions.

Now, if 1 < p < 2, multiply by ‖v‖2−p
Lp(Ω) and integrate over [0, T ],

‖v‖2
Lp(Ω)(T ) .

∫ T

0

‖Qtf‖2
Lp(Ω)

dt

t
. ‖f‖2

p,

where the last inequality is the dual of (3.2). Hence we are done with 1 < p < 2.

Remark 4.2. We ignored the issue of v vanishing in the third term in (4.1). This

is easily fixed by replacing |v|p−2 by (
√

ε + |v|2)p−2 and proceeding with the exact
same computation. Then let ε go to 0 after dropping the positive term on the left
handside of (4.1).

Now let p = 2m with m ≥ 1: we proceed directly by integrating (4.1) over [0, T ],
to get

(4.2)
1

p
‖v‖p

Lp(Ω)(T ) + (p − 1)

∫ T

0

∫

Ω

|∇v|2|v|p−2 dxdt =

∫ T

0

1

2t
‖v‖p

Lp(Ω) dt,

On the other hand (recall (3.6)),

(4.3)
1

p
‖u‖p

Lp(Ω)(T ) + (p − 1)

∫ T

0

∫

Ω

|∇u|2|u|p−2 dxdt =
1

p
‖f‖p

Lp(Ω).

If p = 2 the estimates are trivial since from (4.2), (4.3),

1

2
‖v‖2

L2(Ω)(T ) ≤
∫ T

0

1

2t
‖v‖2

L2(Ω)dt =
1

2

∫ T

0

‖∇u‖2
L2(Ω) dt ≤ 1

4
‖f‖2

L2(Ω).

Now, let p ≥ 4; for convenience, denote by J the time integral on the left hand-side
of (4.2),

J =

∫ +∞

0

∫

Ω

|∇v|2|v|p−2 dxdt ≈
∫ +∞

0

|∇2u|2|∇u|p−2t
p

2 dxdt,

and set

Ik =

∫ T

0

∫

Ω

|∇u|2k|u|p−2ktk−1 dxdt where 2 ≤ 2k ≤ p.

For our purposes, it suffices to estimate the right hand-side of (4.2), which rewrites

(4.4)
1

2

∫ +∞

0

t
p

2−1‖∇xu‖p
Lp(Ω) dt =

1

2
I p

2
.

Integrate by parts the inner (space) integral in Ik, the boundary term vanishes and

(4.5) Ix = (p − 2k + 1)

∫

Ω

∇u∇u|∇u|2(k−1)|u|p−2k dx

≤ (2k − 1)

∫

Ω

|∇2u||∇u|2k−2|u|p−2k+1dx.

By Cauchy-Schwarz,

Ix .
(

∫

Ω

|∇2u|2|∇u|p−2dx
)1/2(

∫

Ω

|∇u|4k−4−(p−2)|u|2p+2−4kdx
)1/2

,

therefore

Ik . J
1
2 I

1
2

2k− p

2−1
.
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We aim at controlling Im by J1−ηIη
1 , for some η > 0 which depends on m (notice

that when p = 4, which is m = 2, we are already done, using k = 2 !). Set
k = p

2 − (2j − 1) with j ≤ m − 2,

I2m−1−(2j−1) . J
1
2 I

1
2

2m−1−(2j+1−1),

and iterating m − 2 times, we finally control I p

2
by J1−ηIη

1 , which proves that Qt

is bounded on Lp(Ω).
We now proceed to obtain boundedness of Qt on Lp(Ω) from the Qt bound; this

is worse than using the Gaussian properties of its kernel, as the constants blow up
when p → 1, +∞. It is, however, quite simple. By duality Q⋆

t is bounded on Lp(Ω),
and

Qt = t∂tS(t) = tS(
t

2
)∆S(

t

2
) = 2

√

t

2
S(

t

2
)∇ ·

√

t

2
∇S(

t

2
) = 2Q⋆

t
2
Q t

2
,

and we are done with Lemma 3.7.

Remark 4.3. From the previous decomposition, we also obtain

‖Qtf‖Lp(Ω) . ‖Qtf‖Lp(Ω),

which implies that any Besov norm defined with Qt is bounded by the corresponding
norm for Qt. The reverse bound is true as well, though slightly more involved. We
provide the proof for completeness. Consider f, h ∈ C∞

0 (Ω) and 〈f, g〉 =
∫

Ω
fg.

Then

〈f, g〉 = −
∫ +∞

0

〈∂tS(t)f, h〉 dt = −2

∫ +∞

0

〈∂tS(t)f, S(t)h〉 dt

= 2

∫

t<s

〈∂tS(t)f, ∂sS(s)h〉 dtds = 4

∫ +∞

0

〈∇S(s)∂tS(t)f,∇S(s)h〉 dtds

.

∫

s

∥

∥

∥

∥

∫ s

0

∇S(t)∂sS(s)f dt

∥

∥

∥

∥

p

‖∇S(s)h‖p′ ds .

∫

s

√
s‖∂sS(s)f‖p‖∇S(s)h‖p′ ds

where we used our bound on
√

t∇S(t) at fixed t. Then

〈f, h〉 .

∫

s

‖Qsf‖p‖Qsh‖p′

ds

s

from which we are done by Hölder.

We now return to Lemma 3.4 and provide an elementary proof of (3.3): while
we only write p = 2, there is nothing specific to the L2 case in what follows. Let
χ be a smooth cut-off near the boundary ∂Ω. Then v = (1 − χ)u solves the heat
equation in the whole space, with source term [χ, ∆]u:

(1 − χ)u = S0(t)(1 − χ)u0 +

∫ t

0

S0(t − s)[χ, ∆]u(s) ds,

where S0 is the free heat semi-group. We have, taking advantage of the localization
near the boundary,

‖[χ, ∆]u‖
L2

t(L
2n

n+2 )
. C(χ, χ′)‖∇u‖L2

t(L
2) < +∞,
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by the energy inequality (3.6). The integral equation on (1 − χ)u features S0 for
which we have trivial Gaussian estimates, and both the homogeneous and inhomo-
geneous terms are Ct(L

2) and go to zero as time goes to +∞. On the other hand,
by Poincaré inequality (or Sobolev),

∫ t

0

‖χu‖2
2 ds .

∫ t

0

‖∇u‖2
2 ds,

which ensures that ‖χu‖2 goes to zero as well at t = +∞.

5. Appendix 2

Let us prove the resolvent estimate (2.3) from Lemma 2.4. If Rez > 0, this is
nothing but a standard elliptic estimate. The trouble comes with Rez < 0 and
getting close to the spectrum. In Rn, one may evaluate directly the convolution
operator by proving its kernel to be in L1: this follows from

|z + |ξ|2|2 = sin2 (π − θ)

2
(|z| + |ξ|2)2 + cos2

(π − θ)

2
(|ξ|2 − |z|)2, with z = |z|eiθ,

and a direct computation of L2 norms of ∂α(z + |ξ|2)−1. By reflection, one then
extends this estimate to the half-space case, with both Dirichlet and Neumann
boundary conditions. By localizing Lp estimates close to the boundary and flat-
tening, one may then obtain the desired estimate (2.3); such an approach is carried
out in [1] in a greater generality (systems of Laplace equations, mixed boundary
conditions), at the expense of fixing the angle θ and not tracking explicit depen-
dances on |z| and θ. While (relatively) elementary, such a proof is, out of necessity,
filled with lenghty calculations and most certainly does not provide the sharpest
constant. It is worth noting, however, that it relies on standard elliptic techniques.

To keep in line with the parabolic approach, we present a short proof, relying on
the holomorphic nature of S(w) in the half-plane Rew > 0. Remark that by our
Lp bound on S(t), t ∈ R+, the trivial L2 bound on S(w), Rew ≥ 0, and Stein’s
parameter version of complex interpolation, one may easily derive that S(w) is
holomorphic in a sector around the positive real axis; but its angle will narrow
with large or small p. However the argument may be refined and S(w) was proved
to be holomorphic in the whole right half-plane in [16], using in a crucial way the
Gaussian nature of the heat kernel on domains ([7]). This was extented to more
general settings in [6], where an explicit bound is stated:

(5.1) ‖S(w)‖Lp→Lp ≤ Cε

( |w|
|Rew|

)n| 12− 1
p |+ε

.

Then (2.3) follows easily: recall the following formula, which is simply a Laplace
transform,

(5.2) (z − ∆D)−1 =

∫

L

ew∆D−wzdw,

where L can be chosen to be a half ray from the origin. Set z = reiθ , w = ρeiφ,
then

(z − ∆D)−1 =

∫ +∞

0

eρ exp(iφ)∆D−rρ exp i(θ+φ)dρ.

Now, if Rez > 0, we may take φ = 0 and use estimates for the semi-group S(ρ). We
would like to extend the range to the Rez < 0 region, up to a thin sector around the
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negative real axis (|π− θ| < ǫ); getting close to the spectrum is required if we want
to define Ψ(−∆D) with Ψ ∈ C∞

0 (]0, +∞[). One picks φ such that 2|θ + φ| < π,
which ensures a decaying exponential in 5.2, provided we bound S(w) in Lp. But
the condition on φ yields |φ| < π/2, and the bound amounts to the holomorphy of
S(w). The constant in (5.1) translates into a (|z|/|Imz|)α factor, while integration
over ρ provides the remaining 1/|Imz| in (2.3). This concludes the proof.

Remark 5.1. This seems the only place where the Gaussian bound on the heat ker-
nel is required. Since we emphasize the elementary nature of our proofs, it should
be noted that such a Gaussian bound is only a few steps away from the parabolic
estimates we obtained in Appendix 1, Section 4. In fact, the usual hypercontractiv-
ity bound is obtained from L2 regularity estimates and Sobolev embedding; then
off-diagonal kernel bounds follow from a clever use of weights, see [7].
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