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Abstract. This paper is concerned with energy properties of the wave equa-

tion associated to the Dunkl-Cherednik Laplacian. We establish the conservation

of the total energy, the strict equipartition of energy under suitable assumptions

and the asymptotic equipartition in the general case.
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1. Introduction

We use [10] as a reference for the Dunkl-Cherednik theory. Let a be a Euclidean
vector space of dimension d equipped with an inner product 〈·, ·〉. Let R be a
crystallographic root system in a, R+ a positive subsystem and W the Weyl
group generated by the reflections rα(x) = x−2 〈α,x〉

‖α‖2 α along the roots α ∈ R.

We let k : R → [ 0, +∞) denote a multiplicity function on the root system R,
and ρ = 1

2

∑
α∈R+ kαα . We note that k is W -invariant. The Dunkl-Cherednik

operators are the following differential-difference operators, which are deformations
of partial derivatives and still commute pairwise :

Tξf(x) = ∂ξf(x) − 〈ρ, ξ〉f(x) +
∑

α∈R+

kα

〈α, ξ〉
1 − e−〈α,x〉

{f(x)−f(rαx)} .

Given an orthonormal basis {ξ1, . . . , ξd} of a , the Dunkl-Cherednik Lapla-
cian is defined by

Lf(x) =

d∑

j=1

T 2
ξj

f(x) .

More explicit formulas for L exist but they will not be used in this paper. The
Laplacian L is selfadjoint with respect to the measure µ(x)dx where

µ(x) =
∏

α∈R+

∣∣ 2 sinh
〈α, x〉

2

∣∣2kα
.
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Consider the wave equation
{

∂2
t u(t, x) = Lxu(t, x),

u(0, x) = f(x), ∂t

∣∣
t=0

u(t, x) = g(x),
(1)

with smooth and compactly supported initial data (f, g). Let us introduce:

• the kinetic energy K[u](t) = 1
2

∫

a

∣∣∂tu(x, t)
∣∣2µ(x) dx,

• the potential energy P[u](t) = − 1
2

∫

a

Lu(x, t) u(x, t)µ(x) dx,

• the total energy E [u](t) = K[u](t) + P[u](t).

In this paper we prove

• the conservation of the total energy:

E [u](t) = constant, (2)

• the strict equipartition of energy, under the assumptions that the dimension
d is odd and that all the multiplicities kα are integers:

K[u](t) = P[u](t) = 1
2
E [u] for |t| large , (3)

• the asymptotic equipartition of energy, for arbitrary d and R+ -valued mul-
tiplicity function k :

K[u](t) → 1
2
E [u] and P[u](t) → 1

2
E [u] as |t| goes to ∞. (4)

The proofs follow [6] and use the Fourier transform in the Dunkl-Cherednik
setting, which we will recall in next section. We mention that during the past
twenty years, several works were devoted to Huygens’ principle and equipartition
of energy for wave equations on symmetric spaces and related settings. See for
instance [3], [8, ch.V, § 5], [6], [7], [2], [4], [5], [1].

2. Generalized hypergeometric functions and Dunkl-Cherednik
transform

Opdam [9] introduced the following special functions, which are deformations of
exponential functions e〈λ,x〉 , and the associated Fourier transform.

Theorem 2.1. There exist a neighborhood U of 0 in a and a unique holo-
morphic function (λ, x) 7→ Gλ(x) on aC×(a+iU) such that

{
TξGλ(x) = 〈λ, ξ〉Gλ(x) ∀ ξ∈a ,

Gλ(0) = 1 .

Moreover, the following estimate holds on aC×a :

|Gλ(x)| ≤ |W | 12 e‖Re λ‖‖x‖ .
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Definition 2.2. Let f be a nice function on a, say f belongs to the space
C∞

c (a) of smooth functions on a with compact support. Its Dunkl-Cherednik trans-
form is defined by

Ff(λ) =

∫

a

f(x) G−iw0λ(w0x) µ(x) dx.

Here w0 denotes the longest element in the Weyl group W.

The involvement of w0 in the definition of F is related to the below skew-
adjointness property of the Dunkl-Cherednik operators with respect to the inner
product

〈f, g〉 =

∫

a

f(x) g(x)µ(x) dx, f, g ∈ C∞
c (a).

Lemma 2.3. The adjoint of Tξ is −w0Tw0ξw0 :

〈Tξf, g〉 = 〈f,−w0Tw0ξw0g〉 .

As an immediate consequence, we obtain:

Corollary 2.4. For every ξ, λ∈a and f ∈C∞
c (a), we have

F(Tξf)(λ) = i〈λ, ξ〉Ff(λ),

and therefore
F(Lf)(λ) = −‖λ‖2 Ff(λ) .

Next we will recall from [9] three main results about the Dunkl-Cherednik
transform (see also [10]). For R > 0, let C∞

R (a) be the space of smooth functions
on a vanishing outside the ball BR ={x∈a |‖x‖≤R}. We let HR(aC) denote the
space of holomorphic functions h on the complexification aC of a such that, for
every integer N >0,

supλ∈aC
(1+‖λ‖)N e−R ‖Im λ‖ |h(λ)| < +∞ .

Theorem 2.5. (Paley-Wiener) The transformation F is an isomorphism of
C∞

R (a) onto HR(aC), for every R>0.

The Plancherel formula and the inversion formula of F involve the complex
measure ν(λ) dλ with density

ν(λ) =
∏

α∈R+

0

Γ
(

i〈λ,α̌〉+ kα

)

Γ
(

i〈λ,α̌〉
) Γ

(
i〈λ,α̌〉+ kα

2
+ k2α

)

Γ
(

i〈λ,α̌〉+ kα
2

) Γ
(
− i〈λ,α̌〉+ kα

)

Γ
(
− i〈λ,α̌〉+1

) Γ
(

−i〈λ,α̌〉+ kα
2

+ k2α+ 1
)

Γ
(

−i〈λ,α̌〉+ kα
2

) ,

where R+
0 = {α∈ R+| α

2
/∈R} is the set of positive indivisible roots, α̌=2‖α‖−2α

the coroot corresponding to α , and k2α =0 if 2α /∈R. Notice that ν is an analytic
function on a, with a polynomial growth and which extends meromorphically
to aC . It is actually a polynomial if the multiplicity function k is integer-valued
and it has poles otherwise.
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Theorem 2.6. (Inversion formula) There is a constant c0 >0 such that, for
every f ∈C∞

c (a),

f(x) = c0

∫

a

Ff(λ) Giλ(x) ν(λ) dλ .

Theorem 2.7. (Plancherel formula) For every f, g∈C∞
c (a),

∫

a

f(x) g(x)µ(x) dx = c0

∫

a

Ff(λ) F̃g(λ) ν(λ) dλ ,

where F̃g(λ) := F(w0g)(w0λ) =

∫

a

g(x)Giλ(x) µ(x) dx .

3. Conservation of energy

This section is devoted to the proof of (2). Via the Dunkl-Cherednik transform,
the wave equation (1) becomes

{
∂2

t Fu(t, λ) = −‖λ‖2Fu(t, λ),

Fu(0, λ) = Ff(λ), ∂t

∣∣
t=0

Fu(t, λ) = Fg(λ),

and its solution satisfies

Fu(t, λ) = (cos t‖λ‖)Ff(λ) + sin t‖λ‖
‖λ‖

Fg(λ) . (5)

By means of the Paley-Wiener Theorem 2.5, in [1, p. 52-53] the author proves the
following finite speed propagation property:

Assume that the initial data f and g belong to C∞
R (a). Then the

solution u(t, x) belongs to C∞
R+|t|(a) as a function of x.

Let us express the potential and kinetic energies defined in the introduction
via the Dunkl-Cherednik transform. Using the Plancherel formula and Corollary
2.4, we have

P[u](t) = c0
2

∫

a

‖λ‖2Fu(t, λ) F̃u(t, λ) ν(λ) dλ . (6)

Moreover, since the Dunkl-Cherednik Laplacian is W -invariant, it follows that
(w0u)(t, x) = u(t, w0x) is the solution to the wave equation (1) with the initial
data w0f and w0g . Thus

F̃u(t, λ) = (cos t‖λ‖) F̃f(λ) + sin t‖λ‖
‖λ‖

F̃g(λ) . (7)

Now, by substituting (5) and (7) in (6), we get

P[u](t) = c0
2

∫

a

‖λ‖2 (cos t‖λ‖)2 Ff(λ) F̃f(λ) ν(λ) dλ

+ c0
2

∫

a

(sin t‖λ‖)2 Fg(λ) F̃g(λ) ν(λ) dλ

+ c0
4

∫

a

‖λ‖ (sin 2t‖λ‖)
{
Ff(λ) F̃g(λ) + Fg(λ) F̃f(λ)

}
ν(λ) dλ .

(8)
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Similarly to P[u], we can rewrite the kinetic energy as

K[u](t) = c0
2

∫

a

∂tFu(t, λ) ∂tF̃u(t, λ) ν(λ) dλ .

Using the following facts
{

∂tFu(t, λ) = −‖λ‖ (sin t‖λ‖)Ff(λ) + (cos t‖λ‖)Fg(λ) ,

∂tF̃u(t, λ) = −‖λ‖ (sin t‖λ‖) F̃f(λ) + (cos t‖λ‖) F̃g(λ) ,

we deduce that

K[u](t) = c0
2

∫

a

‖λ‖2 (sin t‖λ‖)2 Ff(λ) F̃f(λ) ν(λ) dλ

+ c0
2

∫

a

(cos t‖λ‖)2 Fg(λ) F̃g(λ) ν(λ) dλ

− c0
4

∫

a

‖λ‖ (sin 2t‖λ‖)
{
Ff(λ) F̃g(λ) + Fg(λ) F̃f(λ)

}
ν(λ) dλ .

(9)

By suming up (8) and (9), we obtain the conservation of the total energy :

E [u](t) = c0
2

∫

a

{
‖λ‖2 Ff(λ) F̃f(λ) + Fg(λ) F̃g(λ)

}
ν(λ) dλ = E [u](0) .

That is E [u](t) is independent of t.

4. Equipartition of energy

This section is devoted to the proof of (3) and (4). Using the classical trigonometric
identities for double angles, we can rewrite the identities (8) and (9) respectively
as

P[u](t) = c0
4

∫

a

{
‖λ‖2 Ff(λ) F̃f(λ) + Fg(λ) F̃g(λ)

}
ν(λ) dλ

+ c0
4

∫

a

(cos 2t‖λ‖)
{
‖λ‖2Ff(λ) F̃f(λ) − Fg(λ) F̃g(λ)

}
ν(λ) dλ

+ c0
4

∫

a

‖λ‖ (sin 2t‖λ‖)
{
Ff(λ) F̃g(λ) + Fg(λ) F̃f(λ)

}
ν(λ) dλ

and

K[u](t) = c0
4

∫

a

{
‖λ‖2 Ff(λ) F̃f(λ) + Fg(λ) F̃g(λ)

}
ν(λ) dλ

− c0
4

∫

a

(cos 2t‖λ‖)
{
‖λ‖2Ff(λ) F̃f(λ) − Fg(λ) F̃g(λ)

}
ν(λ) dλ

− c0
4

∫

a

‖λ‖ (sin 2t‖λ‖)
{
Ff(λ) F̃g(λ) + Fg(λ) F̃f(λ)

}
ν(λ) dλ .

Hence

P[u](t)−K[u](t) =

= c0
2

∫

a

(cos 2t‖λ‖)
{
‖λ‖2Ff(λ) F̃f(λ) − Fg(λ) F̃g(λ)

}
ν(λ) dλ

+ c0
2

∫

a

‖λ‖ (sin 2t‖λ‖)
{
Ff(λ) F̃g(λ) + Fg(λ) F̃f(λ)

}
ν(λ) dλ .

(10)
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Introducing polar coordinates in a , (10) becomes

P[u](t)−K[u](t) = c0
2

∫ +∞

0

{
cos(2tr) Φ(r) + sin(2tr) r Ψ(r)

}
rd−1 dr , (11)

where

Φ(r) =

∫

S(a)

{
r2Ff(rσ) F̃f(rσ) − Fg(rσ) F̃g(rσ)

}
ν(rσ) dσ ,

Ψ(r) =

∫

S(a)

{
Ff(rσ) F̃g(rσ) + Fg(rσ) F̃f(rσ)

}
ν(rσ) dσ ,

and dσ denotes the surface measure on the unit sphere S(a) in a . Let γ0∈(0, +∞]
be the width of the largest horizontal strip |Im z| < γ0 in which z 7→ ν(zσ) is
holomorphic for all directions σ∈S(a).

Lemma 4.1. (i) Φ(z) and Ψ(z) extend to even holomorphic functions in the
strip |Im z|<γ0 .

(ii) If γ0 < +∞, the following estimate holds in every substrip |Im z| ≤ γ
with γ < γ0 : For every N > 0, there is a constant C > 0 (depending on
f, g∈C∞

R (a), N and γ ) such that

|Φ(z)| + |Ψ(z)| ≤ C |z||R+

0
| (1+|z|)−N e 2R |Im z| .

(iii) If γ0 = +∞, the previous estimate holds uniformly in C.

Proof. (i) follows from the definition of Φ and Ψ. Let us turn to the estimates
(ii) and (iii). On one hand, according to the Paley-Wiener Theorem (Theorem 2.5),

all transforms Ff(zσ), F̃f(zσ), Fg(zσ), F̃g(zσ) are O
(
{1+|z|}−NeR |Im z|

)
. On

the other hand, let us discuss the behavior of the Plancherel measure. Consider
first the case where all multiplicities are integers. Without loss of generality, we
may assume that kα∈N∗ and k2α∈N for every indivisible root α . Then

ν(λ) = const.
∏

α∈R+

0
〈λ, α̌〉

{
〈λ, α̌〉+i(kα+2k2α)

}

×
∏

0<j<kα

{
〈λ, α̌〉2+j2

} ∏
0≤ej<k2α

{
〈λ, α̌〉2+(kα+2j̃)2

}

is a polynomial of degree 2 |k| = 2
∑

α∈R+kα . In general,

ν(λ) = const. π(λ) ν̃(λ) ,

where
π(λ) =

∏
α∈R+

0

〈λ, α̌〉
is a homogeneous polynomial of degree |R+

0 | and

ν̃(λ) =
∏

α∈R+

0

Γ
(

i〈λ,α̌〉+ kα

)

Γ
(

i〈λ,α̌〉+ 1
) Γ

(
i〈λ,α̌〉+ kα

2
+ k2α

)

Γ
(

i〈λ,α̌〉+ kα
2

) Γ
(
− i〈λ,α̌〉+ kα

)

Γ
(
− i〈λ,α̌〉+1

) Γ
(

−i〈λ,α̌〉+ kα
2

+ k2α+1
)

Γ
(

−i〈λ,α̌〉+ kα
2

)

is an analytic function which never vanishes on a . Notice that z 7→ ν(zσ) or ν̃(zσ)
has poles for generic directions σ ∈ S(a) as soon as some multiplicities are not
integers. Using Stirling’s formula

Γ(ξ) ∼
√

2π ξξ− 1

2 e−ξ as |ξ| → +∞ with | arg z|<π−ε ,
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we get the following estimate for the Plancherel density, in each strip |Im z|< γ
with 0<γ<γ0 :

|ν(zσ)| ≤ C |z||R+

0
| (1+|z|)2|k|−|R+

0
| .

The estimates (ii) and (iii) follow easily from these considerations.

Proposition 4.2. Assume that the dimension d is odd and that all multiplici-
ties are integers. Then there exists a constant C >0 (depending on the initial data
f, g∈C∞

R (a)) such that, for every γ≥0 and t∈R,

|P[u](t)−K[u](t)| ≤ C e 2γ(R−|t|) .

Proof. Evenness allows us to rewrite (11) as follows :

P[u](t)−K[u](t) = c0
4

∫ +∞

−∞

e i2tr
{
Φ(r)−irΨ(r)

}
rd−1 dr .

Let us shift the contour of integration from R to R±iγ , according to the sign
of t, and estimate the resulting integral, using Lemma 4.1.iii. As a result, the
difference of energy

P[u](t) −K[u](t) =
c0

4
e−2γ|t|

∫ +∞

−∞

e i2tr
{
Φ(r±iγ)− i(r±γ) Ψ(r±iγ)

}
(r±iγ)d−1dr

is O
(
(1+γ)−Ne 2γ(R−|t|)

)
.

As an immediate consequence of the above statement and in view of the
fact that γ0 = ∞ when k is integer valued, we deduce the strict equipartition of
energy (3) for |t|≥R, by letting γ→∞.

Henceforth, we will drop the above assumption on k. By resuming the proof
of Proposition 4.2 and using Lemma 4.1.ii instead of Lemma 4.1.iii, we obtain the
following result.

Proposition 4.3. Assume that the dimension d is odd. Then, for every 0 <
γ<γ0 , there is a constant C >0 (depending on the initial data f, g∈C∞

R (a)) such
that

|P[u](t)−K[u](t)| ≤ C e−2γ|t| ∀ t∈R .

As a corollary, we obtain the asymptotic equipartition of energy (4) in the
odd dimensional case, with an exponential rate of decay. In the even dimensional
case, the expression (11) cannot be handled by complex analysis and we proceed
differently.

Proposition 4.4. Assume that the dimension d is even. Then there is a
constant C >0 (depending on the initial data f, g∈C∞

R (a)) such that

|P[u](t)−K[u](t)| ≤ C (1+|t|)−d−|R+

0
| ∀ t∈R .
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Proof. The problem lies in the decay at infinity. According to lemma 4.1, Φ(r)
and Ψ(r) are divisible by rD , where D= |R+

0 | . Let us integrate (11) d+D times
by parts. This way

∫ +∞

0

cos(2tr) rd−1
{∫

S(a)

Fg(rσ) F̃g(rσ) ν(rσ) dσ
}

︸ ︷︷ ︸
eΦ(r)

dr

becomes

± 1 or 0
(2t)d+D

(d +D) !
(D+1) !

(
∂
∂r

)D+1
Φ̃(r)

∣∣
r=0

±
∫ +∞

0

cos(2tr) or sin(2tr)
(2t)d+D

(
∂
∂r

)d+D{
rd−1 Φ̃(r)

}
dr

which is O
(
|t|−d−D

)
. Similarly

∫ +∞

0

cos(2tr) rd+1
{∫

S(a)

Ff(rσ) F̃f(rσ) ν(rσ) dσ
}

dr = O
(
|t|−d−D−2

)

and ∫ +∞

0

cos(2tr) rd Ψ(r) dr = O
(
|t|−d−D−1

)
.

This concludes the proof of Proposition 4.4.

As a corollary, we obtain the asymptotic equipartition of energy (4) in the
even dimensional case, with a polynomial rate of decay.

Remark 4.5. Our result may not be optimal. In the W-invariant case, one
obtains indeed the rate of decay O

(
{1+|t|}−d−2|R+

0
|
)

as in [6].

References

[1] Ben Said, S., Huygens’ principle for the wave equation associated with
the trigonometric Dunkl-Cherednik operators, Math. Research Letters 13
(2006), no. 1, 43–58.

[2] Ben Said, S. and Ørsted, B., The wave equation for Dunkl operators, Math.
(N.S.) 16 (2005), no. 3–4, 351–391.
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France

Fatma.Ayadi@etu.univ-orleans.fr

Received

and in final form


