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Tensor Decompositions
State of the Art and Applications

Pierre Comon

Lab. I3S, CNRS, BP121, F-06903 Sophia-Antipolis cedex, France

Abstract

In this paper, we present a partial survey of the tools borrowed from

tensor algebra, which have been utilized recently in Statistics and Signal

Processing. It is shown why the decompositions well known in linear al-

gebra can hardly be extended to tensors. The concept of rank is itself

difficult to define, and its calculation raises difficulties. Numerical algo-

rithms have nevertheless been developed, and some are reported here, but

their limitations are emphasized. These reports hopefully open research

perspectives for enterprising readers.

inMathematics in Signal Processing V, J. G. McWhirter and I. K.
Proudler Eds., Oxford University Press, Oxford, UK, 2001

1 Introduction

Applications. The decomposition of arrays of order higher than 2 has proven
to be useful in a number of applications. The most striking case is perhaps Factor
Analysis, where statisticians early identified difficult problems, tackling the lim-
its of linear algebra. The difficulty lies in the fact that such arrays may have more
factors than their dimensions. Next, data are often arranged in many-way ar-
rays, and the reduction to 2-way arrays sometimes results in a loss of information.
Lastly, the solution of some problems, including the so-called Blind Source Sepa-
ration (BSS) generally requires the use of High-Order Statistics (HOS), which are
intrinsically tensor objects [59] (McCullagh 1987). When second order statistics
suffice to establish identifiability, the corresponding algorithms are quite sensi-
tive to model uncertainties [57] (Liavas Regalia and Delmas 1999), so that the
complementary use of HOS statistics is often still recommended.

BSS finds applications in Sonar, Radar [13] (Chaumette Comon and Muller
1993), Electrocardiography [32] (DeLathauwer DeMoor at alterae 2000), Speech
[61] [52] [26] (Nguyen-Thi and Jutten 1996; Lee and Lewicki 1999; DeLathauwer
1997), and Telecommunications [35] [36] [70] [12] [39] (Ferreol and Chevalier
2000; Gassiat and Gamboa 1997; Van der Veen 1996; Castedo and Macchi 1997;
Grellier and Comon 2000), among others. In particular, the surveillance of radio-
communications in the civil context, or interception and classification in military
applications, resort to BSS. Moreover, in Mobile Communications, the mitigation
of interfering users and the compensation for channel fading effects are now
devised with the help of BSS; this is closely related to the general problem of
Blind Deconvolution.

High-Order Factor Analysis is applied in many areas including Economy,
Psychology [11] [10] (Carroll and Chang 1970; Carroll Pruzansky and Kruskal



1980), Chemometrics [37] [4] (Geladi et alterae 1989; Bro 1997), and Sensor
Array Processing [18] [70] [65] (Comon 1989; Van der Veen and Paulraj 1996;
Sidiropoulos Bro and Giannakis 2000; Comon 2000). Other fields where array
decompositions can turn out to be useful include Exploratory Analysis [45] (Jones
and Sibson 1987), Complexity Analysis [50] [43] (Kruskal 1977; Howell 1978), and
Sparse Coding [44] (Hyvärinen Hoyer and Oja 1999).

Bibliographical survey. Bergman [1] (1969) and Harshman [41] (1970)
were the first to notice that the concept of rank was difficult to extend from
matrices to higher order arrays. Carroll [11] (1970) provided the first canonical
decomposition algorithm of a three-way array, later referred to as Candecomp
model. Several years later, Kruskal [50] (1977) conducted a detailed analysis
of uniqueness, and related several definitions of rank. The algorithm Candelinc
was devised by Carroll and others in the eighties [10] (Carroll et alterae 1980);
it allowed to compute a canonical decomposition subject to a priori linear con-
straints.

Leurgans and others [54] (1993) derived sufficient identifiability conditions for
the 3-way array decomposition; as opposed to Kruskal, his proof was constructive
and yielded a numerical algorithm running several matrix SVD’s.

Instead of finding an exact decomposition of a d−way array, which requires
more than d terms (as we shall subsequently see), Comon proposed [15] (1991)
to approximately decompose it into d terms. The problem was then reduced to
finding an invertible linear transform (change of coordinates); see [16] [9] (Comon
1994; Cardoso 1993) and references therein. This decomposition is now referred
to as “Independent Component Analysis” (ICA), whereas the exact Canonical
Decomposition is sometimes referred to as underdetermined or over-complete ICA
[52] [18] (Lee et alterae 1999; Comon 1998).

The terminology of ICA is meaningful in the context of Signal Processing
and BSS [46] [16] [8] (Jutten and Hérault 1991; Comon 1994; Cardoso 1999).
Constructive algorithms for ICA either proceed by sweeping the pairs of indices
[14] [16] [9] (Comon 1989; Comon 1991; Cardoso and Souloumiac 1993; Comon
1994), or are of iterative nature, like power methods [28] [49] (DeLathauwer
Comon and others 1995; Kofidis and Regalia 2000), gradient descents [58] (Mac-
chi and Moreau 1997), or Robbins-Monro algorithms [46] [61] (Jutten and Hrault
1991; Nguyen-Thi Jutten and others 1996). Some less efficient early methods
were based on contracted versions of the array [6] (Cardoso 1989) or on noiseless
observations[14] (Comon 1989).

A solid account on decompositions of 3-way arrays can also be found in
DeLathauwer’s PhD thesis [26] (1997); an interesting tool defined therein is the
HOSVD [30] (DeLathauwer and others 1993), generalizing the concept of SVD to
arrays of order 3, in a different manner compared to Carroll, but quite similar to
the Tuckals decomposition [55] [68] [37] (Levin 1965; Tucker 1965; Geladi 1989).
A good survey of rank issues can also be found in [49] (Kofidis et alterae 2000).
An account on identifiability issues can be found in [5] (Cao and Liu 1996).
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2 Tensors

2.1 Terminology

The order of an array refers to the number of its ways; the entries of an array
of order d are accessed via d indices, say i1..id, with every index ia ranging from
1 to na. The integer na is one of the d dimensions of the array. For instance, a
matrix is a 2−way array (order 2), and thus has 2 dimensions. A vector is an
array of order 1, and a scalar is of order 0.

Throughout this paper, and unless otherwise specified, variables take their
values in the real field, although all the statements hold true in the complex field
with more complicated notations; boldface lowercase letters, like u, will denote
single-way arrays, i.e. vectors, whereas boldface uppercase letters, like G, will
denote arrays with more than one way, i.e. matrices or many-way arrays. The
entries of arrays are scalar quantities and are denoted with plain letters, such as
ui or Gijkℓ .

A tensor of order d is a d−way array that enjoys the multilinearity property
after a change of coordinate system. For instance, consider a 3rd order tensor
T with entries Tijk, and a change of coordinates defined by 3 square invertible
matrices, A, B and C. Then, in the new coordinate system, the tensor T ′ can
be written as a function of tensor T as:

T ′
ijk =

∑

abc

AiaBjbCkcTabc (1)

In particular, moments and cumulants of random variables may be treated as ten-
sors [59] (McCullagh 1987). This product is sometimes referred to as the Tucker
product [49] (Kofidis et al. 2000) between matrices A, B, and C, weighted
by T . Note that tensors enjoy property (1) even if the above matrices are not
invertible; only linearity is required.

Tensor algebra is a well identified framework; in particular, two kinds of
indices are distinguished, covariant or contravariant, depending on the role they
play in the application under consideration: an array can indeed be seen as an
operator from one space to another. For the sake of simplicity, we shall not pay
too much attention to this distinction, although it turns out to be important in
contexts other than the present one.

2.2 Notation

Given two arrays of order m and n, one defines their outer product C = A ◦B

as the array of order m + n:

Cij..ℓ ab..d = Aij..ℓ Bab..d (2)

For instance, the outer product of two vectors, u ◦ v, is a matrix.
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Given two arrays, A = {Aij..ℓ} and B = {Bi′j′..ℓ′} of orders dA and dB

respectively, having the same first dimension, one can define the mode−1 con-
traction product:

(A •B)j..ℓj′..ℓ′ =

n1∑

i=1

Aij..ℓBij′..ℓ′

For instance, the standard matrix-vector product is Au = AT •u. Similarly,
one defines the mode−p inner product when arrays A and B have the same pth
dimension, by summing over the pth index; the product is denoted as

A •
p
B

If unspecified, the contraction applies by default to the first index. Some authors
denote this product as A×pB, but we find it less readable.

We define the Kronecker product u⊗ v between two vectors u and v as the
vector containing all the possible cross-products [3] (Brewer 1978). If u and v

are of dimension J and K, then u⊗ v is of dimension JK.
Lastly, we define the symmetric Kronecker product of a K− dimensional

vector w by itself, denoted w ⊘ w = w⊘2, as the K((K + 1)/2−dimensional
vector containing all the distinct products, with an appropriate weighting of the
cross terms so that ||w ⊘ w|| = ||w ⊗ w||. The product w⊘d is defined in a
similar manner for d > 2. For instance, w⊘3 is of size K(K + 1)(K + 2)/6.

The vecs{·} operator puts a K × K symmetric matrix in the form of a
K(K + 1)/2−dimensional vector; conversely, Unvecs{·} puts it back in matrix
form. For instance, Unvecs{f⊘2} = f fT. Refer to [39] [70] (Van der Veen
1996; Grellier and Comon 2000) for a more detailed description.

2.3 Homogeneous polynomials

d−way arrays can be written in two different manners, as pointed out by several
authors [59] (McCullagh 1987), related to each other by a bijective mapping, f .

Assume the notations xj def
=

∏K

k=1 xjk

k and |j| def
=

∑

k jk. Then for homogeneous
monomials of degree d, xj , we have |j| = d.

To start with, take the example of (K, d) = (4, 3): one can associate every
entry Tijk to a monomial Tijk xixjxk. For instance, T114 is associated with
T114 x2

1x4, and thus to T114 x[2,0,0,1]; this means that f([1, 1, 4]) = [2, 0, 0, 1].
More generally, the d−dimensional vector index i = [i, j, k] can be associated

with a K−dimensional vector index f (i) containing the number of times each
variable xk appears in the associated monomial. Whereas the d entries of i take
their values in {1, . . . , K}, the K entries of f(i) take their values in {1, . . . , d}
with the constraint that

∑

k fk(i) = d, ∀i.
As a consequence, the linear space of symmetric tensors can be bijectively

associated with the linear space of homogeneous polynomials. To see this, it
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suffices to associate every polynomial p(x) with the symmetric tensor G as:

p(x) =
∑

|f(i)|=d

Gi xf(i) (3)

where Gi are the entries of G. The dimension of these spaces is S = (K+d−1
d ),

and one can choose as a basis the set of monomials: B(K; d) = {xj , |j| = d}.

Example. Let p and q be two homogeneous polynomials in K vari-
ables, associated with tensors P and Q, possibly of different orders.
Then, polynomial pq is associated with P ◦Q:

p(x)q(x) =
∑

i

∑

j

PiQjx
f(i)+f(j) =

∑

[i j]

[P ◦Q][i j] x
f([i j])

In practice, it is convenient to take into account the symmetry of the tensor,
by defining c(j) as the number of times the entry Tf−1(j) appears in the array

T : c(j) = |j|!/(j)!, where (j)!
def
=

∏

k jk!. For binary quantics, K = 2 and
c(j) = ( d

j1
) = ( d

j2
); for instance, for d = 4, c([3, 1]) = 4 and c([2, 2]) = 6.

Coefficients γ(j, p) of a polynomial p in basis B are chosen so as satisfy the
relation:

p(x) =
∑

|j|=d

γ(j, p) c(j)xj

Now, both spaces can be provided with a scalar product. For d−way arrays of
dimension K, define the Froebenius scalar product:

〈G, H〉 =
∑

i

Gi Hi

and the induced Euclidian norm. For homogeneous polynomials of degree d in
K variables, define the scalar product as

〈p, q〉 =
∑

|j|=d

c(j) γ(j, p) γ(j, q)

In particular, monomials in B satisfy ||xj ||2 = (j)!/d! = 1/c(j). In the case of
binary quantics (K = 2), this was called the apolar scalar product [51] (Kung
and Rota 1984). The latter definition has several advantages [24] (Comon and
Mourrain 1996). For instance, if a(x) is a homogeneous linear form with coeffi-
cient vector a, then the scalar product 〈ad, q〉 with any homogeneous polynomial
q of degree d turns out to be the value of q at a:

〈a(x)d, q(x)〉 =
∑

i

c(i) γ(i, q)ai = q(a)

The interest in establishing a link between tensors and polynomials lies in the
fact that polynomials have been studied rather deeply during the last century
[63] (Salmon 1885). Some of the results obtained will be useful in this chapter,
and in particular the classification of cubics.
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2.4 Genericity

A property will be referred to as generic if it is true on a dense algebraic subset.
The topology used is the standard one for homogeneous polynomials, namely
that of Zariski [64] (Shafarevich 1977). Recall that in this topology, the closed
subsets are defined by algebraic equations of the form p(x) = 0, where p is a
polynomial. Its particularity is that two open non empty subsets always intersect;
in other words, the topology is not separated.

For instance, a symmetric matrix is generically of full rank. In fact, the set
of singular matrices is defined by the polynomial relation det(A) = 0, which
is associated with a closed subset, whose complementary is dense. We shall
subsequently see that this does not hold true anymore for tensors of order higher
than 2. For instance, the 2× 2 × 2 tensor T such that T122 = T212 = T221 = 1,
and zero elsewhere (cf. figure 1), is known to be of rank 3. However, the generic
rank is 2 in that case, as will be discussed in section 4.2.

i

k

122

221

212

j

Figure 1: Non generic example of a binary cubic of maximal rank: position of
non-zero entries in the 2× 2× 2 associated symmetric tensor.

2.5 Array ranks

Let T be a tensor, not necessarily symmetric, of dimensions n1 × . . .× nd. One
defines the tensor rank ω of T as the minimal number of rank one tensors whose
linear combination yields T . The properties of tensor rank will be extensively
discussed in section 4.2. For completeness, let us also mention the definition of
mode−n ranks.

The mode−n vectors of T are obtained by varying index in and keeping the
others fixed; there are thus as many mode−n vectors as possibilities of fixing
indices ik, k 6= n. The mode−n rank, Rn, is defined as the dimension of the
linear space spanned by all mode−n vectors of T .

Bounds. Howell (1978) [43] showed that the tensor rank can be bounded
as ω ≤ maxi6=j{ninj}. On the other hand, mode−n ranks and tensor rank are
related by the inequality Rn ≤ ω, ∀k.

In the symmetric case, Reznick showed that the tensor rank can be bounded

6



as a function of the dimension K and the order, d:

ω ≤
(

K + d− 2
d− 1

)

(4)

but this bound is rather loose, except in some very particular cases, as will be
commented in section 4.2.

3 Cumulants

3.1 Definitions

Let z be a random variable of dimension K, with components zi. Then one
defines its moment and cumulant tensors of order d as:

Mz
i1i2..id

= E{zi1zi2 . . . zid
}

Cz
i1i2..id

= Cum{zi1 , zi2 , . . . zid
}

When the moment tensors of order less than or equal to d exist and are finite, the
cumulant tensor of order d exists and is finite. Whereas moments are the coeffi-
cients of the expansion of the first characteristic function Φz(u) = E{exp(uTz)}
about the origin, where the dotless  denotes

√
−1, cumulants are those of the

second characteristic function, Ψz(u) = log(Φz(u)); for complex random vari-
ables, it suffices to consider the joint distribution of their real and imaginary
parts. Moments and cumulants enjoy the multilinearity property (1) and may
be considered as tensors [59] (McCullagh 1987).

One important property of cumulant tensors is the following: if at least two
variables, or groups of variables, among {z1, ..zK} are statistically independent,
then all cumulants involving these variables are null. For instance, if all the zi

are mutually independent, then Cz
ij..ℓ = δ(i, j, ..ℓ) Cz

ii..i [48] (Kendall and Stuart
1977), where the Kronecker δ is null unless all its arguments are equal. This
property is not enjoyed by moments, hence the interest in cumulants.

The reverse is not true. In fact, unless the random variable z is Gaussian,
an infinite number of cumulants must vanish in order to ensure their strict sense
independence. Therefore, when a cumulant tensor Cz of order d is diagonal, we
shall say that the random variables zi are independent at order d.

Gaussian variables play a particular role, since they are the only random
variables that have a finite set of non-zero cumulants [47] [34] (Kagan et al.
1973; Feller 1968). The cumulants of order 1 and 2 are better known under the
names of statistical mean and covariance. To illustrate this property, I looked
for a long time for a simple non Gaussian random variable having null cumulants
of order 3 and 4. Take a random variable with values in the complex plane. If
its distribution is 0 with probability one half, and uniformly distributed on the
unit circle with probability one half, then its mean E{z} is zero, its variance
E{zz∗} = 1, its second-order non-circular cumulant E{z2} = 0, its 2 marginal
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cumulants of order 3, E{z3} and E{z2z∗}, are zero, as well as its 3 marginal
cumulants of order 4, Cum{z, z, z, z}, Cum{z, z, z, z∗}, Cum{z, z, z∗, z∗}. Yet,
this variable is obviously not Gaussian. This is a very striking example, that one
encounters in secondary radar applications.

3.2 Blind Source Separation

Consider the linear statistical model

y = Ax + v (5)

where y is an observed random variable of dimension K, x is a random vector of
dimension P referred to as the source vector, A is a mixing matrix, and v stands
for background noise, possible interferers, and measurement errors, independent
of x.

The Blind Source Separation (BSS) problem consists of estimating the mixing
matrix, A, and possibly the corresponding estimates of x, solely from measure-
ments of y. In the classical BSS framework, the components xi of x are assumed
to be statistically independent (generally not in the strict sense because a weaker
independence is sufficient) [16] (Comon 1994). In some cases however, sources
xi may be correlated [70] [39] [21] (Van der Veen 1996; Grellier and Comon
2000; Comon and Grellier 1999), as we shall subsequently see, and this is not
necessarily an obstacle to their separation.

To fix the ideas and simplify the notation, assume sources xi are independent
at order 4. Then, from the properties of cumulants we just described, we have:

Cy
ijkℓ =

P∑

p=1

AipAjpAkpAℓpCx
pppp (6)

up to an additive noise term, Cv. From measurements of y, it is possible to
estimate the cumulant tensor Cy. Estimating A then amounts to finding the
decomposition (6). In practice, because of the noise v, this decomposition is not
exact. In addition, since the only property utilized is the source independence
at a given order, matrix A can only be identified up to a multiplicative factor
PΛ, where P is a permutation and Λ is diagonal invertible; see identifiability
issues in [16] [5] (Cao and Liu 1996; Comon 1994).

Blind Deconvolution is related to the above BSS modeling in two respects.
First, a convolution with a finite impulse response can always be written as the
product with a Töplitz matrix, which means that the modeling (5) still holds
valid, provided matrix A is subject to the Töplitz structure [16] [40] (Comon
1994; Grigorascu and Regalia 1998). Second, if the source process is linear, then
extracting the sources is equivalent to computing the linear prediction residue
[17] (Comon 1994). Then, the problem reduces to an unstructured static sepa-
ration as in (5).
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4 Array decompositions

4.1 Diagonalization by change of coordinates

Preprocessing for square mixtures. If the mixing matrix A is square and
invertible, which means that the number of sources, P , is equal to the observa-
tion dimension, K, then the BSS problem may be seen as a bijective congruent
transformation (ICA).

Denote Ry the covariance matrix of the observation. The goal is to find an
estimate z of x such that its components zi are statistically independent. The
first idea is thus to build a vector ỹ = T y that has a diagonal covariance, yielding
decorrelated components. This can be easily done by searching for a (non unique)
square root factor of Ry; it can be obtained by a Cholesky factorization or by
an Eigen Value decomposition (EVD) of Ry. We then define T as the inverse of
this factor, so that TRyT T = I.

With this preprocessing T , the obtained random variable ỹ has a covariance
equal to identity. We say that this variable is standardized.

Now, it may be more appropriate, when the noise covariance, Rv, (or con-
versely the signal covariance Rs = Ry −Rv) is known, to build T as the inverse
of a square root of the signal covariance: T RsT

T = I. In fact, this yields an
unbiased solution in the presence of noise. Unfortunately, neither Rv nor Rs are
known in general, hence the former procedure based on Ry.

Preprocessing for rectangular mixtures. In practice, one can always re-
duce the problem to the latter when the number of sources, P , is smaller than the
observation dimension, K, in the absence of noise, or when the noise covariance
is known. This is now explained below.

If noise is present, denote T v the inverse of a square root of Rv, such that
we have T vRvT v

T = σvI; if noise is absent, set T v = I and σv = 0. Now
consider the matrix T vRyT v = T vRsT v + σI. Its EVD allows to detect the
number of non-zero eigenvalues in Rs [2] (Bienvenu and Kopp 1983), equal to P
by definition, as well as to estimate the source space spanned by the associated
eigenvectors: T vRyT v = UΣUT + σI . The matrix U is here of dimension
K × P and of full rank. The preprocessing defined as T = UTT v eventually
yields a P−dimensional standardized vector ỹ = Ty whose noiseless part has a
unit covariance, as in the previous paragraph.

Lastly, if the mixture is rectangular, but with more sources than sensors, i.e.,
P > K, the mixture cannot be linearly inverted. Such mixtures are referred to as
underdetermined or over-complete, as already pointed out in the bibliographical
survey, and their identification will be addressed separately in section 4.2. In
such a case, the preprocessing is unuseful, and not recommended.

Orthogonal change of coordinates. In the preprocessing, we have done
only part of the job. In fact, we have constructed a matrix T such that ideally
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TAATT T = I, but this only implies that TA = QT, for some P ×P orthogonal
matrix Q. This Q factor still remains undetermined. It is thus necessary to
resort statistics of order higher than 2, namely 3 or 4, unless other hypotheses
can be assumed. The choice between these two possibilities depends on the
conditioning of the problem, directly linked to the value of the diagonal tensor
Cx. At order 3, this tensor vanishes for all symmetrically distributed sources,
which strongly limits its use. At order 4, this tensor is generally non zero, except
in some exceptional pathological cases, as that mentioned in section 3.1.

In order to find Q, one can attempt to diagonalize (approximately) the cumu-
lant tensor of z = Qỹ, Cz

ijkℓ =
∑

pqrs QipQjqQkrQℓsCỹ
pqrs. The random variable

z is eventually an estimate of the source vector x; in the absence of noise, we
have z = PΛx. Because Q is orthogonal, minimizing the non diagonal entries
is equivalent to maximizing the diagonal ones [15] (Comon 1991), so that Q can
be determined by

Q = Arg Max
Q

Υα,4 ; Υα,4 =
∑

i

|Cz
iiii|α (7)

where α ≥ 1. Several optimization criteria of this type, called contrasts, have
been proposed [16] [60] [26] [8] [20] (Comon 1994; Moreau and Pesquet 1997;
DeLathauwer 1997; Cardoso 1999; Comon 2001) and are justified by Information
Theory arguments. Contrary to the matrix case [38] (Golub and Van Loan 1989),
it is generally impossible to exactly null the non diagonal entries of a symmetric
tensor of order higher than 2, by just rotating the coordinate axes. In other
words, the class of decompositions presented in this section lead to rank−K
approximations of K−dimensional symmetric tensors. More will be said in the
next section. Numerical ICA algorithms are surveyed in section 5.

4.2 Decomposition into a sum of rank−1 arrays

When the number of sources, P , is strictly larger than the observation dimen-
sion K, the previous approach does not apply. In fact, the matrix A now has
fewer rows than columns, and the noiseless relation y = Ax cannot be linearly
inverted. In other words, A must be identified without attempting to extract
the sources xp. A symmetric tensor of order d can be expressed via a Canonical
Decomposition (CAND) of the form:

Cy =

ω∑

p=1

γ(p)a(p) ◦ a(p) ◦ a(p) ◦ a(p) (8)

The number of terms, ω, reaches a minimum when it equals the tensor rank. This
CAND decomposition allows the identification of matrix A if: (i) it is unique up
to ΛP−indeterminations, and (ii) the tensor rank ω is larger than or equal to
the number of sources, P .
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Generic rank. We report in the tables below the generic value of the tensor
rank as a function of the dimension K and the order d [24] (Comon and Mourrain
1996). We also report the dimension D of the manifold of solutions; when it is
zero, it means that there are a finite number of CAND (at most dS), and there
is a chance of identifying matrix A this way.

Example. Fore matrices (d = 2), it is known that a quadratic form
cannot be uniquely decomposed into a sum of squares. The manifold
of solutions is of dimension D = K(K − 1)/2).

ω K 2 3 4 5 6 7 8

3 2 4 5 8 10 12 15
d 4 3 6 10 15 22 30 42

Table 1: Generic rank ω of symmetric tensors as a function of the dimension K
and the order d

D K 2 3 4 5 6 7 8

3 0 2 0 5 4 0 0
d 4 1 3 5 5 6 0 6

Table 2: Generic dimension D of the manifold of solutions

The first striking fact that appears in table 1 is that the rank can exceed
the dimension, which is not true for matrices. For instance, it can be seen that
P = 5 sources can be identified in dimension K = 4 with a 3rd order cumulant
tensor, whereas this number increases to P = 10 with a 4th order tensor.

One can also deduce from table 2 that 3rd order tensors have a finite number
of CAND for even dimensions. For 4th order tensors, this is satisfied for dimen-
sion 7, but not for lower ones. This is unfortunate, for 4th order cumulants are
very often better conditioned than 3rd order ones. Furthermore, most of the
proofs leading to these tables are not constructive. The only known constructive
result is given by the Sylvester theorem (section 5.3).

GI−orbit ω(p)

x3 1
x3 + y3 2 (generic)
x2y 3

Table 3: Equivalence classes of binary cubics: orbits under the action of GI, the
group of invertible 2−dimensional changes of coordinates.
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Non generic rank. In addition, these results are only valid in generic cases.
And it turns out that, contrary to matrices (i.e., 2nd order tensors), the generic
rank is not always maximal. In other words, the rank can exceed its generic
value. Unfortunately, the maximal achievable rank is not known for all pairs
(P, K). But we can still illustrate this odd fact with particular values.

Example. For instance, for K = 2 and d = 3, the maximal rank is
3. The symmetric tensors having rank 3 are associated with poly-
nomials in the orbit of x2y. The tensor associated with the latter
homogeneous polynomial is represented in figure 1, where only 3 en-
tries are equal to 1, the others being null. As reported in table 3
there is a single class associated with every value of the tensor rank.

Now to make it more explicit, the polynomial x2y can be written as:

6 x2y = (x + y)3 + (−x + y)3 − 2y3

This relation can be rewritten in tensor form as:

T =

(
1
1

)◦3

+

(
−1
1

)◦3

− 2

(
0
1

)◦3

which is an explicit irreducible CAND. This decomposition is de-
picted in figure 2. Also note that in this case, the Reznick bound (4)
is reached: ω = (32) = 3.

+ 2+=

Figure 2: Explicit decomposition of the non generic example of binary cubic of
maximal rank. Black bullets represent +1’s and white bullets −1’s.

Example. Now take K = 3 and d = 3. We are thus handling 3×3×3
symmetric tensors, or equivalently, ternary cubics. The generic rank
is 4, but the maximal rank is 5, according to table 4. The class of
maximal rank is unique, and a representative is depicted in figure
3; the 6 non-zero entries are all equal. Note that other non generic
classes occur with also a rank of 4, as pointed out in table 4.

Example. Finally, consider ternary quartics, i.e., (K, d) = (3, 4). In
this case, the number of free parameters in the tensor is S = (64) = 15.
The number of free parameters in CAND exceeds 15 as soon as ω ≥ 5.
So we could hope that we are lucky, because the number of free
parameters is the same on both sides of CAND. Unfortunately, this
is not the case, and Clebsh showed that the generic rank was 6 [33]
(Ehrenborg and Rota 1993), as reported in table 1.

12



GI−orbit ω(p)

x3 1
x3 + y3 2
x2y 3
x3 + 3 y2z 4
x3 + y3 + 6 xyz 4
x3 + 6 xyz 4
a (x3 + y3 + z3) + 6b xyz 4 (generic)
x2y + xz2 5

Table 4: Equivalence classes for ternary cubics: orbits under the action of GI,
the group of invertible 3−dimensional changes of coordinates.

313

133

331

223

322
232

i

j

k

Figure 3: Non generic example of ternary cubic, proved to be of maximal rank:
position of non-zero entries

4.3 Rank−1 approximation

Approximating a tensor by another of rank 1 has at least two applications in
the present context. The first one is encountered when when P ≤ K and when
the source extraction is performed one source at a time in model (5), contrary
to section 4.1; this is referred to as a deflation procedure.

The maximization of the contrast (7) then reduces to that of a single output
standardized cumulant (here the kurtosis), because a single unit-norm vector is
sought, instead of a whole orthogonal matrix:

w = Arg Max
||w||=1

∑

ijkℓ

wiwjwkwℓ Cy
ijkℓ (9)

Yet, it has been shown [28] [18] [49] (DeLathauwer Comon and others 1995;
Comon 1998; Kofidis and regalia 2000) that this maximization problem is equiv-
alent to minimizing ||Cy − σ w ◦ w ◦ w ◦ w||, which is simply finding the best
rank−1 approximate of tensor Cy.

The second application is found in analytical BSS when sources are discrete
[39] (Grellier and Comon 2000) or of constant modulus [70] (Van der Veen 1996).
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In this problem, we have to solve a system of N equations of the form (fTyn)d =
1, 1 ≤ n ≤ N . This is equivalent to solving a larger linear system Y f⊘d = 1,
under the constraint of Unvecs{f⊘d} being a rank−1 tensor. Denote {u⊘d

q , 1 ≤
q ≤ P̄} a basis of Ker{Y }. The solution to this system takes the form

f⊘d = f⊘d
min +

P̄∑

p=1

λp u⊘d
p

where f⊘d
min is the minimum norm solution. Unfolding these vectors in tensor

form leads to the relation

F = F min +

P̄∑

p=1

λp Up (10)

This problem can be shown to be related to the rank−1 combination problem
that we describe below.

4.4 Rank−1 combination

The rank−1 combination problem consists of finding the numbers λp so that,
given matrices Up, matrix

∑

p λpUp has a rank of 1. Up to now, this problem
has spawned solutions that are not entirely satisfactory. As a consequence, so
are the solutions to (10).

Incidentally, we can restate the Joint Approximate Diagonalization (JAD)
problem addressed in [9] (Cardoso and Souloumiac 1993) for the BSS into rank−1
combinations.

The Joint Approximate Diagonalization of P̄ matrices Np consists of
finding a square matrix T such that Np ≈ TΛpT

T, for all p, where Λp are
diagonal matrices. From a property recalled in section 2.2, this relation can be

rewritten in vector form as vecs{Np} def
= np ≈

∑

i λpit
⊘2
i , ti denoting the ith

column of T . If the matrix [λpi] is full rank and has more columns than rows,
then there exists a matrix B such that t⊘2

j ≈ ∑

p Bpjnp. Thus, given matrices
Np, the problem is to find for every j, scalar coefficients βp such that

∑

p βpNp

is a rank−1 matrix, and hence the link with the rank−1 combination problem.

However, the two problems are not equivalent, for matrix B is not necessarily
square.

5 Numerical algorithms

5.1 Contrast maximization

The ICA diagonalization of section 4.1 (as well as the JAD briefly mentioned in
section 4.4) can be solved entirely analytically in dimension K = 2, in a number
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of instances. In order to exploit this property, Comon [15] [16] (1991) proposed
a sweeping of the pairs of indices, in a similar manner as in the Jacobi diagonal-
ization algorithm for Hermitian matrices [38] (Golub and Van Loan 1989). This
idea has been later applied to JAD by Cardoso [9] (Cardoso and Souloumiac
1993). To see this more in detail, consider the Givens rotation

Q =

(
cosφ sinφ exp(θ)

− sinφ exp(−θ) cosφ

)

where the angle φ is imposed to lie in the interval (−π/2, π/2], because of
inherent ΛP−indeterminacies. Thus this matrix is entirely defined by the vector
u = [cos 2φ, sin 2φ cos θ, sin 2φ sin θ]. Now, as in (7), define the contrast Υα,d as
the sum of the d−th order tensor diagonal entries raised to the power α. Then
it can be shown that Υ1,3 and Υ1,4 are real quadratic forms in u, and can thus
be easily maximized with respect to u, and hence to (θ, φ) (by convention, if
α = 1, the absolute value is dropped in (7)). On the other hand, this holds true
for Υ2,3 but not for Υ2,4, which can be shown to be a quartic [16] [20] (Comon
1994; Comon 2001). Nevertheless, polynomials of degree 4 can still be rooted
analytically.

The procedure originally proposed by Comon (1989) consisting of sweeping
all the pairs, like in some numerical algorithms dedicated to matrices, has never
been proved to always lead to one of the ΛP−equivalent absolute maxima, even
if this is always observed in practice. Counter-examples have never been found
either. So we consider this convergence issue as an open problem, belonging to
the general class of optimization problems over multiplicative groups. However,
some elements of convergence are now reported below.

Convergence. For compactness, denote G the cumulant tensor of the stan-
dardized observation, ȳ, which has been denoted Cȳ up to now. Also denote
Z = Cz the cumulant tensor obtained after an orthogonal transformation Q.
According to the multi-linearity property, we have that:

Zpq..r =
∑

ij..ℓ

QpiQqj . . .Qrℓ Gij..ℓ (11)

Consider first the matrix case (order 2) in order to fix the ideas. The contrast
(7) can then be written as:

Υ2,2 =
∑

p

|Zpp|2 (12)

Because Q is orthogonal, its differential can be written as

dQ = dS Q (13)

where matrix S is skew-symmetric. This yields the relation characterizing sta-
tionary points, Z: 1

2 dΥ2,2 = 2
∑

p,t ZppSptZtp = 0. Yet, this is true for any
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skew-symmetric matrix S, and hence for every skew-symmetric matrix having
only two non zero entries (one +1 and one −1); based on this argument, one
concludes that:

(Zqq − Zrr)Zqr = 0, for q 6= r (14)

Next, the local convexity can be examined with the help of the same tools,
observing that:

1

4
d2Υ2,2 = 4Z2

qr − (Zqq − Zrr)
2 (15)

Thus, there are three kinds of stationary points: (i) those for which all diagonal
entries are equal, which correspond to minima of Υ2,2, (ii) those for which all non-
diagonal entries are null, which correspond to maxima, and (iii) saddle points,
for which some diagonal entries are equal and some non-diagonal entries vanish.
This result is well known, and proves that the only maxima are diagonal matrices,
which can be deduced from each other by mere permutation within the diagonal.

Now let us develop the same calculations for tensors of order 3 and 4. Sta-
tionary values are given by the relations:

1

2
dΥ2,3 = 3

∑

p,t

Zppp dSpt Ztpp = 0,

1

2
dΥ2,4 = 4

∑

p,t

Zpppp dSpt Ztppp = 0

or, on the basis of skew-symmetric matrices, for q 6= r:

ZqqqZqqr − ZrrrZqrr = 0, (16)

ZqqqqZqqqr − ZrrrrZqrrr = 0, (17)

whereas local convexity conditions are governed by (Comon 1994):

1

6
d2Υ3 = 4Z2

qqr +4Z2
qrr− (Zqqq− Zqrr)

2− (Zrrr− Zqqr)
2 (18)

1

8
d2Υ4 =

9

2
Z2

qqrr+ 4Z2
qqqr+ 4Z2

qrrr− (Zqqqq −
3

2
Zqqrr)

2− (Zrrrr−
3

2
Zqqrr)

2 (19)

The comparison of these results with (14) and (15) lead to two conclusions:
(a) non-diagonal terms do not factorize anymore in (16) and (17), so that sta-
tionary values are more difficult to characterize, and (b) diagonal tensors are
still local maxima, but there are a priori others. This is another problem, linked
to optimization in groups, that this author considers as open.

Sweeping strategies. We have presented several numerical algorithms aiming
at separating P = 2 sources from K = 2 sensors in the presence of noise of
unknown statistics. Inspired from the Jacobi cyclic-by rows sweeping strategy
proposed for matrices, we can process all the K(K − 1)/2 pairs one by one
sequentially (Comon 1989; Comon 1994). However, as in the matrix case, the
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noise part (constituted by the actual background noise and all the other K − 2
sources) changes at every step, so that a single sweeping is not sufficient. In
practice, an order of

√
K sweeps have been shown to be sufficient.

Other strategies have been analyzed, and consist of processing first the pair of
sensors that yields the maximal increase in the contrast criterion. This strategy
has also been implemented successfully, but is not always numerically efficient.

When processing one pair (i, j), one can either recompute all the entries of
the cumulant tensor that have been affected (i.e., those whose indices contain i
or j), or compute the rotated data instead. The two possibilities do not have
the same numerical complexity, and the best choice depends on the number of
sensors, K, and on the number of samples, N .

5.2 Parafac algorithm

In [54] (Leurgans et alterae 1993), SVD-based algorithms are proposed to com-
pute CAND of 3rd order tensors in larger dimensions. However, these algorithms,
called Parafac, need the number of sources, P , to be smaller than or equal to
3
2 K − 1, in the symmetric case we are interested in. See also [50] [4] (Kruskal
1977; Bro 1997) for more details. In view of table 1 reported above, this value
of P is strictly smaller than the generic rank, ω, except for (d, K) = (3, 2) or
(d, K) = (3, 4). As a consequence, Parafac algorithms can only approximate
d−way arrays, in general.

In the unsymmetric problem, the goal is to find three matrices, A, B, and
C, such that Gijk =

∑

p AipBjpCkp. One possible numerical algorithm is based
on alternating least squares, as explained below for 3−way arrays [11] (Carroll
and Chang 1970):

• Start with (A(0), B(0), C(0))

• Define matrices G(1), G(2), G(3):

Gijk = G
(1)
ip = G

(2)
jq = G

(3)
kr ; p = (jk), q = (ik), r = (ij)

• Estimate stage t + 1 from stage t by pseudo-inversion:

– Update mode 1:
A(t + 1) = G(1) [B(t)T C(t)T]−

– Update mode 2:
B(t + 1) = G(2) [A(t + 1)T C(t)T]−

– Update mode 3:
C(t + 1) = G(3) [A(t + 1)T B(t + 1)T]−

where M− denotes the Moore-Penrose pseudo inverse of M . See also [4] [26]
[50] (Bro 1997; DeLathauwer 1997; Kruskal 1977) for more details on Parafac

algorithms.
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5.3 Sylvester theorem

As already pointed out earlier, a rank-one tensor is associated with a linear form
raised to the dth power. In terms of polynomials, the CAND decomposition can
thus be rephrased: how can one decompose a quantic into a sum of dth powers of
linear forms [24] (Comon and Mourrain 1996) ? This is this topic that addresses
this theorem, restricted to the binary case however (i.e., two variables).

Theorem 5.1 A binary quantic p(x, y) =
∑d

i=0 γi c(i)xi yd−i can be written as
a sum of dth powers of ω distinct linear forms:

p(x, y) =

ω∑

j=1

λj (αj x + βj y)d,

if and only if (i) there exists a vector g of dimension ω +1, with components gℓ,
such that 




γ0 γ1 · · · γω

...
...

γd−ω · · · γd−1 γd




 g = 0. (20)

and (ii) the polynomial q(x, y)
def
=

∑ω

ℓ=0 gℓ xℓ yω−ℓ admits ω distinct roots.

Sylvester’s theorem not only proves the existence of the ω forms (second
column in the tables), but also gives a means to compute them [18] [24] (Comon
1998; Comon and Mourrain 1996). For odd values of d, we have thus a generic
rank of ω = d+1

2 , whereas for even values of d, ω = d
2 + 1. So when d is odd,

there is generically a unique vector g satisfying (20), but there are two of them
when d is even. This theorem shows that in column K = 2 of table 2, we have
D = 0 when d is odd, and D = 1 when d is even.

In [27] (DeLathauwer Comon and DeMoor 1999), several extensions to this
theorem are proposed in the complex case. The basic idea remains the same,
but the result becomes more complicated.

The disappointing fact is that Sylvester’s theorem cannot be extended to
dimensions higher than 2. In fact, a key step in the proof [24] [18] (Comon and
Mourrain 1996; Comon 1998) is that for any polynomial p of degree d, and any
monomial m of degree d − ω, there exists a polynomial q of degree ω such that
qm is orthogonal to p. Equation (20) expresses that orthogonality in terms of
polynomial coefficients. It is clear that this holds true only when d ≥ ω, which is
unfortunately satisfied only in the binary case, according to table 1. Possibilities
of extension to more than 2 variables is discussed in [24] (Comon and Mourrain
1996).

Simultaneous CAND. Let us go back to table 2. Among others, this table
reports that there are infinitely many CAND for even orders, d. In order to
fix this indeterminacy in the case (d, K, P ) = (4, 2, 3) (the manifold of solutions
is of dimension 1 in that situation), it is proposed in [18] (Comon 1998) to
simultaneously diagonalize a second cumulant tensor of order 4.
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The help of virtual sources. In [18] [21] (Comon 1998; Comon and Grellier
1999) an algorithm dedicated to discrete sources is proposed, and performs both
the identification of A and the extraction of sources xi, in the case (d, K, P ) =
(2, 2, 3).

In a few words, assume three sources xi are mixed and received on two
sensors, and assume these sources are all distributed in {−1, +1} (they are called
BPSK in digital communications). One can prove, if sources xi are statistically
independent, that the “virtual” source x1x2x3 is also BPSK-distributed, but
obviously statistically dependent of the three former ones. However, one can
still prove that all its fourth-order pairwise cross-cumulants vanish. Yet, only
pairwise cumulants are utilized in the sweeping strategies maximizing contrasts
such as Υ2,4 in (7). As a consequence, viewed by the algorithm, sources are
independent; one can thus build from yT = [y1, y2] virtual measurements y3

1 ,
y2
1y2, y1y

2
2 , and y3

2 , that can be modeled as linear mixtures of 4th order pairwise
independent unknown sources. This allows the separation of the four sources
(three actual and one virtual) from six sensors (two actual and four virtual).

5.4 Rank-one approximation

The rank−1 approximation problem (section 4.3) has been partly solved by al-
gorithms inspired from the matrix power method and devised for arrays of higher
orders [28] [26] [49] (DeLathauwer Comon and others 1995; DeLathauwer 1997;
Kofidis and Regalia 2000).

Criteria. Given tensor Cy, the goal is to find a vector w minimizing:

Ωo = ||Cy − σ w ◦w ◦w ◦w|| (21)

for some scalar number σ. One can prove that minimizing (21) is equivalent to
maximizing [18] (Comon 1998):

Ωd = ||Cy •w •w • . . . •w|| (22)

or to minimizing:
Ωd−1 = ||Cy •w • . . . •w − λw|| (23)

However, the other criteria Ωr, 0 < r < d− 1, are generally not equivalent.

Stationary uplets (v, λ) of Ωo, Ωd−1 or Ωd are the same and satisfy:

Cy • v • . . . •v
︸ ︷︷ ︸

d−1 times

= λv

this suggests a Rayleigh-like iteration, tat we can call the Tensor Rayleigh sym-
metric iteration:

w ← Cy •w • . . . •w
︸ ︷︷ ︸

d−1 times

w ← w/||w||
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In [28] (Delathauwer Comon et al. 1995), it is suggested to run a non symmetric
iteration, and to initialize the algorithm with the HOSVD.

The rank−1 combination problem (section 4.4) has been solved in a sub-
optimal way up to now in [70] [39] (Van der Veen and Paulraj 1996; Grellier
and Comon 2000) by solving a large unconstrained linear system, and trying to
restore the structure afterwards. The optimal one-stage solving still remains to
be devised.

6 Concluding remarks

In this chapter, we have partly surveyed the tools dedicated to tensor decomposi-
tions, mainly through the problem of source separation. Thus, this presentation
has been restrictive, but hopefully still informative.

Many other source separation algorithms do not resort to tensor tools, and
have not been reported here. It is worth noting that some of them do not need
the sources to be statistically independent, so that the output cumulant tensor
is not even aimed at being diagonal. Instead, other properties of the sources can
be exploited, such as their discrete character, or their constant modulus [70] [66]
[39] (Van der Veen and Paulraj 1996; Talwar Viberg and Paulraj 1996; Grellier
and Comon 2000). When more sources than sensors are present, general results
state that it is sometimes possible to identify the mixture, but source extraction
requires more knowledge about the sources (e.g., their distribution). These issues
have been tackled herein. Let us now turn to research perspectives.

In the area of source separation, current hot research topics include (i) blind
identification of under-determined mixtures, (ii) blind equalization of convolutive
mixtures, (iii) the theoretical proof of convergence of pair-sweeping algorithms,
and, in the context of telecommunications, (iv) handling properly carrier residu-
als when present in the measurements. In all cases, analytical block-algorithms
are suitable when computer power is available and when the stationarity duration
is short.

As far as tensors are concerned, open research directions include: (i) the
determination of the maximal achievable rank for arbitrary order and dimen-
sions, (ii) the actual calculation of general Canonical Decompositions for K > 2,
(iii) efficient numerical algorithms for computing an approximate of given rank.
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