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Tensor Decompositions

In this paper, we present a partial survey of the tools borrowed from tensor algebra, which have been utilized recently in Statistics and Signal Processing. It is shown why the decompositions well known in linear algebra can hardly be extended to tensors. The concept of rank is itself difficult to define, and its calculation raises difficulties. Numerical algorithms have nevertheless been developed, and some are reported here, but their limitations are emphasized. These reports hopefully open research perspectives for enterprising readers.

Introduction

Applications. The decomposition of arrays of order higher than 2 has proven to be useful in a number of applications. The most striking case is perhaps Factor Analysis, where statisticians early identified difficult problems, tackling the limits of linear algebra. The difficulty lies in the fact that such arrays may have more factors than their dimensions. Next, data are often arranged in many-way arrays, and the reduction to 2-way arrays sometimes results in a loss of information. Lastly, the solution of some problems, including the so-called Blind Source Separation (BSS) generally requires the use of High-Order Statistics (HOS), which are intrinsically tensor objects [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF] [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF]. When second order statistics suffice to establish identifiability, the corresponding algorithms are quite sensitive to model uncertainties [START_REF] Liavas | Robustness of leastsquares and subspace methods with respect to effective channel undermodeling/overmodeling[END_REF] (Liavas Regalia and Delmas 1999), so that the complementary use of HOS statistics is often still recommended.

BSS finds applications in Sonar, Radar [START_REF] Chaumette | An ICA-based technique for radiating sources estimation; application to airport surveillance[END_REF] (Chaumette Comon and Muller 1993), Electrocardiography [START_REF] Lathauwer | Fetal electrocardiogram extraction by blind source subspace separation[END_REF] (DeLathauwer DeMoor at alterae 2000), Speech [START_REF] Nguyen-Thi | Separation of sources: A method for speech enhancement[END_REF] [52] [START_REF] De Lathauwer | Signal Processing based on Multilinear Algebra[END_REF] (Nguyen-Thi and Jutten 1996; Lee and Lewicki 1999; DeLathauwer 1997), and Telecommunications [START_REF] Ferreol | On the behavior of current second and higher order blind source separation methods for cyclostationary sources[END_REF] [START_REF] Gassiat | Source separation when the input sources are discrete or have constant modulus[END_REF] [70] [START_REF] Castedo | Maximizing the information transfer for adaptive unsupervised source separation[END_REF] [39] (Ferreol and Chevalier 2000; Gassiat and Gamboa 1997; Van der Veen 1996; Castedo and Macchi 1997; [START_REF] Grellier | Analytical blind discrete source separation[END_REF], among others. In particular, the surveillance of radiocommunications in the civil context, or interception and classification in military applications, resort to BSS. Moreover, in Mobile Communications, the mitigation of interfering users and the compensation for channel fading effects are now devised with the help of BSS; this is closely related to the general problem of Blind Deconvolution.

High-Order Factor Analysis is applied in many areas including Economy, Psychology [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition[END_REF] [START_REF] Caroll | Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters[END_REF] [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition[END_REF]Carroll Pruzansky and Kruskal 1980), Chemometrics [START_REF] Geladi | Analysis of multi-way data[END_REF] [START_REF] Bro | PARAFAC, tutorial and applications[END_REF] (Geladi et alterae 1989;[START_REF] Bro | PARAFAC, tutorial and applications[END_REF], and Sensor Array Processing [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF] [70] [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF] [START_REF] Comon | Separation of stochastic processes[END_REF]; Van der Veen and Paulraj 1996; [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF][START_REF] Comon | Block methods for channel identification and source separation[END_REF]. Other fields where array decompositions can turn out to be useful include Exploratory Analysis [START_REF] Jones | What is projection pursuit[END_REF] [START_REF] Jones | What is projection pursuit[END_REF], Complexity Analysis [START_REF] Kruskal | Three-way arrays: Rank and uniqueness of trilinear decompositions[END_REF] [START_REF] Howell | Global properties of tensor rank[END_REF] [START_REF] Kruskal | Three-way arrays: Rank and uniqueness of trilinear decompositions[END_REF][START_REF] Howell | Global properties of tensor rank[END_REF], and Sparse Coding [START_REF] Ärinen | Denoising of non gaussian data by Independent Component Analysis and sparse coding[END_REF] (Hyvärinen Hoyer and Oja 1999).

Bibliographical survey. Bergman [START_REF] Bergman | Ranks of tensors and change of base field[END_REF] (1969) and Harshman [START_REF] Harshman | Determination and proof of minimum uniqueness conditions for parafac1[END_REF] (1970) were the first to notice that the concept of rank was difficult to extend from matrices to higher order arrays. Carroll [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition[END_REF] (1970) provided the first canonical decomposition algorithm of a three-way array, later referred to as Candecomp model. Several years later, Kruskal [START_REF] Kruskal | Three-way arrays: Rank and uniqueness of trilinear decompositions[END_REF] (1977) conducted a detailed analysis of uniqueness, and related several definitions of rank. The algorithm Candelinc was devised by Carroll and others in the eighties [START_REF] Caroll | Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters[END_REF] (Carroll et alterae 1980); it allowed to compute a canonical decomposition subject to a priori linear constraints.

Leurgans and others [START_REF] Leurgans | A decomposition for three-way arrays[END_REF] (1993) derived sufficient identifiability conditions for the 3-way array decomposition; as opposed to Kruskal, his proof was constructive and yielded a numerical algorithm running several matrix SVD's.

Instead of finding an exact decomposition of a d-way array, which requires more than d terms (as we shall subsequently see), Comon proposed [START_REF] Comon | Independent Component Analysis[END_REF] (1991) to approximately decompose it into d terms. The problem was then reduced to finding an invertible linear transform (change of coordinates); see [START_REF] Comon | Independent Component Analysis, a new concept ?[END_REF] [START_REF] Cardoso | Blind beamforming for non-Gaussian signals[END_REF] (Comon 1994;[START_REF] Cardoso | Blind beamforming for non-Gaussian signals[END_REF]) and references therein. This decomposition is now referred to as "Independent Component Analysis" (ICA), whereas the exact Canonical Decomposition is sometimes referred to as underdetermined or over-complete ICA [START_REF] Lee | Blind source separation of more sources than mixtures using overcomplete representations[END_REF] [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF] (Lee et alterae 1999; [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF].

The terminology of ICA is meaningful in the context of Signal Processing and BSS [START_REF] Jutten | Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture[END_REF] [16] [START_REF] Cardoso | High-order contrasts for independent component analysis[END_REF] (Jutten and Hérault 1991;Comon 1994;[START_REF] Cardoso | High-order contrasts for independent component analysis[END_REF]). Constructive algorithms for ICA either proceed by sweeping the pairs of indices [START_REF] Comon | Separation of stochastic processes[END_REF] [16] [START_REF] Cardoso | Blind beamforming for non-Gaussian signals[END_REF] [START_REF] Comon | Separation of stochastic processes[END_REF][START_REF] Comon | Independent Component Analysis[END_REF][START_REF] Cardoso | Blind beamforming for non-Gaussian signals[END_REF]Comon 1994), or are of iterative nature, like power methods [START_REF] Lathauwer | Higher-order power method, application in Independent Component Analysis[END_REF] [49] (DeLathauwer Comon and others 1995; Kofidis and Regalia 2000), gradient descents [START_REF] Macchi | Self-adaptive source separation. part I: Convergence analysis of a direct linear network controlled by the Herault-Jutten algorithm[END_REF] (Macchi and Moreau 1997), or Robbins-Monro algorithms [START_REF] Jutten | Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture[END_REF] [61] (Jutten and Hrault 1991; Nguyen-Thi Jutten and others 1996). Some less efficient early methods were based on contracted versions of the array [START_REF] Cardoso | Source separation using higher order moments[END_REF] [START_REF] Cardoso | Source separation using higher order moments[END_REF] or on noiseless observations [START_REF] Comon | Separation of stochastic processes[END_REF] [START_REF] Comon | Separation of stochastic processes[END_REF].

A solid account on decompositions of 3-way arrays can also be found in DeLathauwer's PhD thesis [START_REF] De Lathauwer | Signal Processing based on Multilinear Algebra[END_REF] (1997); an interesting tool defined therein is the HOSVD [START_REF] Lathauwer | A singular value decomposition for higher-order tensors[END_REF] (DeLathauwer and others 1993), generalizing the concept of SVD to arrays of order 3, in a different manner compared to Carroll, but quite similar to the Tuckals decomposition [START_REF] Levin | Three-mode factor analysis[END_REF] [68] [START_REF] Geladi | Analysis of multi-way data[END_REF] [START_REF] Levin | Three-mode factor analysis[END_REF]Tucker 1965;[START_REF] Geladi | Analysis of multi-way data[END_REF]. A good survey of rank issues can also be found in [START_REF] Kofidis | Tensor approximation and signal processing applications[END_REF] (Kofidis et alterae 2000). An account on identifiability issues can be found in [START_REF] Cao | General approach to blind source separation[END_REF] [START_REF] Cao | General approach to blind source separation[END_REF].

Tensors

Terminology

The order of an array refers to the number of its ways; the entries of an array of order d are accessed via d indices, say i 1 ..i d , with every index i a ranging from 1 to n a . The integer n a is one of the d dimensions of the array. For instance, a matrix is a 2-way array (order 2), and thus has 2 dimensions. A vector is an array of order 1, and a scalar is of order 0.

Throughout this paper, and unless otherwise specified, variables take their values in the real field, although all the statements hold true in the complex field with more complicated notations; boldface lowercase letters, like u, will denote single-way arrays, i.e. vectors, whereas boldface uppercase letters, like G, will denote arrays with more than one way, i.e. matrices or many-way arrays. The entries of arrays are scalar quantities and are denoted with plain letters, such as

u i or G ijkℓ .
A tensor of order d is a d-way array that enjoys the multilinearity property after a change of coordinate system. For instance, consider a 3rd order tensor T with entries T ijk , and a change of coordinates defined by 3 square invertible matrices, A, B and C. Then, in the new coordinate system, the tensor T ′ can be written as a function of tensor T as:

T ′ ijk = abc A ia B jb C kc T abc (1) 
In particular, moments and cumulants of random variables may be treated as tensors [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF] (McCullagh 1987). This product is sometimes referred to as the Tucker product [START_REF] Kofidis | Tensor approximation and signal processing applications[END_REF] ( [START_REF] Kofidis | Tensor approximation and signal processing applications[END_REF] between matrices A, B, and C, weighted by T . Note that tensors enjoy property (1) even if the above matrices are not invertible; only linearity is required.

Tensor algebra is a well identified framework; in particular, two kinds of indices are distinguished, covariant or contravariant, depending on the role they play in the application under consideration: an array can indeed be seen as an operator from one space to another. For the sake of simplicity, we shall not pay too much attention to this distinction, although it turns out to be important in contexts other than the present one.

Notation

Given two arrays of order m and n, one defines their outer product C = A • B as the array of order m + n:

C ij..ℓ ab..d = A ij..ℓ B ab..d (2) 
For instance, the outer product of two vectors, u • v, is a matrix.

Given two arrays, A = {A ij..ℓ } and B = {B i ′ j ′ ..ℓ ′ } of orders d A and d B respectively, having the same first dimension, one can define the mode-1 contraction product:

(A • B) j..ℓj ′ ..ℓ ′ = n1 i=1 A ij..ℓ B ij ′ ..ℓ ′
For instance, the standard matrix-vector product is A u = A T • u. Similarly, one defines the mode-p inner product when arrays A and B have the same pth dimension, by summing over the pth index; the product is denoted as

A • p B
If unspecified, the contraction applies by default to the first index. Some authors denote this product as A× p B, but we find it less readable.

We define the Kronecker product u ⊗ v between two vectors u and v as the vector containing all the possible cross-products [START_REF] Brewer | Kronecker products and matrix calculus in system theory[END_REF] [START_REF] Brewer | Kronecker products and matrix calculus in system theory[END_REF]. If u and v are of dimension J and K, then u ⊗ v is of dimension JK.

Lastly, we define the symmetric Kronecker product of a Kdimensional vector w by itself, denoted w ⊘ w = w ⊘2 , as the K((K + 1)/2-dimensional vector containing all the distinct products, with an appropriate weighting of the cross terms so that ||w ⊘ w|| = ||w ⊗ w||. The product w ⊘d is defined in a similar manner for d > 2. For instance, w ⊘3 is of size K(K + 1)(K + 2)/6.

The vecs{•} operator puts a K × K symmetric matrix in the form of a K(K + 1)/2-dimensional vector; conversely, Unvecs{•} puts it back in matrix form. For instance, Unvecs{f ⊘2 } = f f T . Refer to [START_REF] Grellier | Analytical blind discrete source separation[END_REF] [70] (Van der Veen 1996; Grellier and Comon 2000) for a more detailed description. To start with, take the example of (K, d) = (4, 3): one can associate every entry T ijk to a monomial T ijk x i x j x k . For instance, T 114 is associated with T 114 x 2 1 x 4 , and thus to T 114 x [2,0,0,1] ; this means that f ([1, 1, 4]) = [2, 0, 0, 1]. More generally, the d-dimensional vector index i = [i, j, k] can be associated with a K-dimensional vector index f (i) containing the number of times each variable x k appears in the associated monomial. Whereas the d entries of i take their values in {1, . . . , K}, the K entries of f (i) take their values in {1, . . . , d} with the constraint that k f k (i) = d, ∀i.

Homogeneous polynomials

As a consequence, the linear space of symmetric tensors can be bijectively associated with the linear space of homogeneous polynomials. To see this, it suffices to associate every polynomial p(x) with the symmetric tensor G as:

p(x) = |f (i)|=d G i x f (i) (3) 
where G i are the entries of G. The dimension of these spaces is S = ( K+d-1 d

), and one can choose as a basis the set of monomials: B(K; d) = {x j , |j| = d}.

Example. Let p and q be two homogeneous polynomials in K variables, associated with tensors P and Q, possibly of different orders. Then, polynomial pq is associated with P • Q:

p(x)q(x) = i j P i Q j x f (i)+f (j) = [i j] [P • Q] [i j] x f ([i j])
In practice, it is convenient to take into account the symmetry of the tensor, by defining c(j) as the number of times the entry T f -1 (j) appears in the array Now, both spaces can be provided with a scalar product. For d-way arrays of dimension K, define the Froebenius scalar product:

T : c(j) = |j|!/(j)!, where (j)! def = k j k !.
G, H = i G i H i
and the induced Euclidian norm. For homogeneous polynomials of degree d in K variables, define the scalar product as p, q = |j|=d c(j) γ(j, p) γ(j, q)

In particular, monomials in B satisfy ||x j || 2 = (j)!/d! = 1/c(j). In the case of binary quantics (K = 2), this was called the apolar scalar product [START_REF] Kung | The invariant theory of binary forms[END_REF] [START_REF] Kung | The invariant theory of binary forms[END_REF]. The latter definition has several advantages [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF] (Comon and Mourrain 1996). For instance, if a(x) is a homogeneous linear form with coefficient vector a, then the scalar product a d , q with any homogeneous polynomial q of degree d turns out to be the value of q at a:

a(x) d , q(x) = i c(i) γ(i, q) a i = q(a)
The interest in establishing a link between tensors and polynomials lies in the fact that polynomials have been studied rather deeply during the last century [START_REF] Salmon | Lessons introductory to the Modern Higher Algebra[END_REF] (Salmon 1885). Some of the results obtained will be useful in this chapter, and in particular the classification of cubics.

Genericity

A property will be referred to as generic if it is true on a dense algebraic subset. The topology used is the standard one for homogeneous polynomials, namely that of Zariski [START_REF] Shafarevitch | Basic Algebraic Geometry[END_REF] (Shafarevich 1977). Recall that in this topology, the closed subsets are defined by algebraic equations of the form p(x) = 0, where p is a polynomial. Its particularity is that two open non empty subsets always intersect; in other words, the topology is not separated.

For instance, a symmetric matrix is generically of full rank. In fact, the set of singular matrices is defined by the polynomial relation det(A) = 0, which is associated with a closed subset, whose complementary is dense. We shall subsequently see that this does not hold true anymore for tensors of order higher than 2. For instance, the 2 × 2 × 2 tensor T such that T 122 = T 212 = T 221 = 1, and zero elsewhere (cf. figure 1), is known to be of rank 3. However, the generic rank is 2 in that case, as will be discussed in section 4.2. 

Array ranks

Let T be a tensor, not necessarily symmetric, of dimensions n 1 × . . . × n d . One defines the tensor rank ω of T as the minimal number of rank one tensors whose linear combination yields T . The properties of tensor rank will be extensively discussed in section 4.2. For completeness, let us also mention the definition of mode-n ranks.

The mode-n vectors of T are obtained by varying index i n and keeping the others fixed; there are thus as many mode-n vectors as possibilities of fixing indices i k , k = n. The mode-n rank, R n , is defined as the dimension of the linear space spanned by all mode-n vectors of T .

Bounds.

Howell (1978) [START_REF] Howell | Global properties of tensor rank[END_REF] showed that the tensor rank can be bounded as ω ≤ max i =j {n i n j }. On the other hand, mode-n ranks and tensor rank are related by the inequality R n ≤ ω, ∀k.

In the symmetric case, Reznick showed that the tensor rank can be bounded as a function of the dimension K and the order, d:

ω ≤ K + d -2 d -1 (4) 
but this bound is rather loose, except in some very particular cases, as will be commented in section 4.2.

3 Cumulants

Definitions

Let z be a random variable of dimension K, with components z i . Then one defines its moment and cumulant tensors of order d as:

M z i1i2..i d = E{z i1 z i2 . . . z i d } C z i1i2..i d = Cum{z i1 , z i2 , . . . z i d }
When the moment tensors of order less than or equal to d exist and are finite, the cumulant tensor of order d exists and is finite. Whereas moments are the coefficients of the expansion of the first characteristic function Φ z (u) = E{exp(u T z)} about the origin, where the dotless  denotes √ -1, cumulants are those of the second characteristic function, Ψ z (u) = log(Φ z (u)); for complex random variables, it suffices to consider the joint distribution of their real and imaginary parts. Moments and cumulants enjoy the multilinearity property (1) and may be considered as tensors [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF] (McCullagh 1987).

One important property of cumulant tensors is the following: if at least two variables, or groups of variables, among {z 1 , ..z K } are statistically independent, then all cumulants involving these variables are null. For instance, if all the z i are mutually independent, then C z ij..ℓ = δ(i, j, ..ℓ) C z ii..i [START_REF] Kendall | The Advanced Theory of Statistics[END_REF] ( [START_REF] Kendall | The Advanced Theory of Statistics[END_REF], where the Kronecker δ is null unless all its arguments are equal. This property is not enjoyed by moments, hence the interest in cumulants.

The reverse is not true. In fact, unless the random variable z is Gaussian, an infinite number of cumulants must vanish in order to ensure their strict sense independence. Therefore, when a cumulant tensor C z of order d is diagonal, we shall say that the random variables z i are independent at order d.

Gaussian variables play a particular role, since they are the only random variables that have a finite set of non-zero cumulants [START_REF] Kagan | Characterization Problems in Mathematical Statistics, Probability and Mathematical Statistics[END_REF] [34] ( [START_REF] Kagan | Characterization Problems in Mathematical Statistics, Probability and Mathematical Statistics[END_REF][START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]). The cumulants of order 1 and 2 are better known under the names of statistical mean and covariance. To illustrate this property, I looked for a long time for a simple non Gaussian random variable having null cumulants of order 3 and 4. Take a random variable with values in the complex plane. If its distribution is 0 with probability one half, and uniformly distributed on the unit circle with probability one half, then its mean E{z} is zero, its variance E{zz * } = 1, its second-order non-circular cumulant E{z 2 } = 0, its 2 marginal cumulants of order 3, E{z 3 } and E{z 2 z * }, are zero, as well as its 3 marginal cumulants of order 4, Cum{z, z, z, z}, Cum{z, z, z, z * }, Cum{z, z, z * , z * }. Yet, this variable is obviously not Gaussian. This is a very striking example, that one encounters in secondary radar applications.

Blind Source Separation

Consider the linear statistical model

y = A x + v ( 5 
)
where y is an observed random variable of dimension K, x is a random vector of dimension P referred to as the source vector, A is a mixing matrix, and v stands for background noise, possible interferers, and measurement errors, independent of x.

The Blind Source Separation (BSS) problem consists of estimating the mixing matrix, A, and possibly the corresponding estimates of x, solely from measurements of y. In the classical BSS framework, the components x i of x are assumed to be statistically independent (generally not in the strict sense because a weaker independence is sufficient) [START_REF] Comon | Independent Component Analysis, a new concept ?[END_REF] (Comon 1994). In some cases however, sources x i may be correlated [START_REF] Van Der | An analytical constant modulus algorithm[END_REF] [39] [START_REF] Comon | Non linear inversion of underdetermined mixtures[END_REF] (Van der Veen 1996; Grellier and Comon 2000; Comon and Grellier 1999), as we shall subsequently see, and this is not necessarily an obstacle to their separation.

To fix the ideas and simplify the notation, assume sources x i are independent at order 4. Then, from the properties of cumulants we just described, we have:

C y ijkℓ = P p=1 A ip A jp A kp A ℓp C x pppp (6) 
up to an additive noise term, C v . From measurements of y, it is possible to estimate the cumulant tensor C y . Estimating A then amounts to finding the decomposition [START_REF] Cardoso | Source separation using higher order moments[END_REF]. In practice, because of the noise v, this decomposition is not exact. In addition, since the only property utilized is the source independence at a given order, matrix A can only be identified up to a multiplicative factor P Λ, where P is a permutation and Λ is diagonal invertible; see identifiability issues in [START_REF] Comon | Independent Component Analysis, a new concept ?[END_REF] [5] (Cao and Liu 1996; Comon 1994).

Blind Deconvolution is related to the above BSS modeling in two respects. First, a convolution with a finite impulse response can always be written as the product with a Töplitz matrix, which means that the modeling (5) still holds valid, provided matrix A is subject to the Töplitz structure [START_REF] Comon | Independent Component Analysis, a new concept ?[END_REF] [40] (Comon 1994; Grigorascu and Regalia 1998). Second, if the source process is linear, then extracting the sources is equivalent to computing the linear prediction residue [START_REF] Comon | Tensor diagonalization, a useful tool in signal processing[END_REF] (Comon 1994). Then, the problem reduces to an unstructured static separation as in (5).

Array decompositions 4.1 Diagonalization by change of coordinates

Preprocessing for square mixtures. If the mixing matrix A is square and invertible, which means that the number of sources, P , is equal to the observation dimension, K, then the BSS problem may be seen as a bijective congruent transformation (ICA).

Denote R y the covariance matrix of the observation. The goal is to find an estimate z of x such that its components z i are statistically independent. The first idea is thus to build a vector ỹ = T y that has a diagonal covariance, yielding decorrelated components. This can be easily done by searching for a (non unique) square root factor of R y ; it can be obtained by a Cholesky factorization or by an Eigen Value decomposition (EVD) of R y . We then define T as the inverse of this factor, so that T R y T T = I.

With this preprocessing T , the obtained random variable ỹ has a covariance equal to identity. We say that this variable is standardized. Now, it may be more appropriate, when the noise covariance, R v , (or conversely the signal covariance R s = R y -R v ) is known, to build T as the inverse of a square root of the signal covariance: T R s T T = I. In fact, this yields an unbiased solution in the presence of noise. Unfortunately, neither R v nor R s are known in general, hence the former procedure based on R y .

Preprocessing for rectangular mixtures. In practice, one can always reduce the problem to the latter when the number of sources, P , is smaller than the observation dimension, K, in the absence of noise, or when the noise covariance is known. This is now explained below.

If noise is present, denote T v the inverse of a square root of R v , such that we have

T v R v T v T = σ v I; if noise is absent, set T v = I and σ v = 0. Now consider the matrix T v R y T v = T v R s T v + σI.
Its EVD allows to detect the number of non-zero eigenvalues in R s [START_REF] Bienvenu | Optimality of high-resolution array processing using the eigensystem approach[END_REF] [START_REF] Bienvenu | Optimality of high-resolution array processing using the eigensystem approach[END_REF], equal to P by definition, as well as to estimate the source space spanned by the associated eigenvectors: T v R y T v = U ΣU T + σI. The matrix U is here of dimension K × P and of full rank. The preprocessing defined as T = U T T v eventually yields a P -dimensional standardized vector ỹ = T y whose noiseless part has a unit covariance, as in the previous paragraph.

Lastly, if the mixture is rectangular, but with more sources than sensors, i.e., P > K, the mixture cannot be linearly inverted. Such mixtures are referred to as underdetermined or over-complete, as already pointed out in the bibliographical survey, and their identification will be addressed separately in section 4.2. In such a case, the preprocessing is unuseful, and not recommended.

Orthogonal change of coordinates. In the preprocessing, we have done only part of the job. In fact, we have constructed a matrix T such that ideally T AA T T T = I, but this only implies that T A = Q T , for some P × P orthogonal matrix Q. This Q factor still remains undetermined. It is thus necessary to resort statistics of order higher than 2, namely 3 or 4, unless other hypotheses can be assumed. The choice between these two possibilities depends on the conditioning of the problem, directly linked to the value of the diagonal tensor C x . At order 3, this tensor vanishes for all symmetrically distributed sources, which strongly limits its use. At order 4, this tensor is generally non zero, except in some exceptional pathological cases, as that mentioned in section 3.1.

In order to find Q, one can attempt to diagonalize (approximately) the cumu-

lant tensor of z = Q ỹ, C z ijkℓ = pqrs Q ip Q jq Q kr Q ℓs C ỹ pqrs .
The random variable z is eventually an estimate of the source vector x; in the absence of noise, we have z = P Λx. Because Q is orthogonal, minimizing the non diagonal entries is equivalent to maximizing the diagonal ones [START_REF] Comon | Independent Component Analysis[END_REF] [START_REF] Comon | Independent Component Analysis[END_REF], so that Q can be determined by

Q = Arg Max Q Υ α,4 ; Υ α,4 = i |C z iiii | α (7) 
where α ≥ 1. Several optimization criteria of this type, called contrasts, have been proposed [START_REF] Comon | Independent Component Analysis, a new concept ?[END_REF] it is generally impossible to exactly null the non diagonal entries of a symmetric tensor of order higher than 2, by just rotating the coordinate axes. In other words, the class of decompositions presented in this section lead to rank-K approximations of K-dimensional symmetric tensors. More will be said in the next section. Numerical ICA algorithms are surveyed in section 5.

Decomposition into a sum of rank-1 arrays

When the number of sources, P , is strictly larger than the observation dimension K, the previous approach does not apply. In fact, the matrix A now has fewer rows than columns, and the noiseless relation y = A x cannot be linearly inverted. In other words, A must be identified without attempting to extract the sources x p . A symmetric tensor of order d can be expressed via a Canonical Decomposition (CAND) of the form:

C y = ω p=1 γ(p) a(p) • a(p) • a(p) • a(p) (8) 
The number of terms, ω, reaches a minimum when it equals the tensor rank. This CAND decomposition allows the identification of matrix A if: (i) it is unique up to ΛP -indeterminations, and (ii) the tensor rank ω is larger than or equal to the number of sources, P .

Generic rank. We report in the tables below the generic value of the tensor rank as a function of the dimension K and the order d [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF] (Comon and Mourrain 1996). We also report the dimension D of the manifold of solutions; when it is zero, it means that there are a finite number of CAND (at most d S ), and there is a chance of identifying matrix A this way.

Example. Fore matrices (d = 2), it is known that a quadratic form cannot be uniquely decomposed into a sum of squares. The manifold of solutions is of dimension D = K(K -1)/2). The first striking fact that appears in table 1 is that the rank can exceed the dimension, which is not true for matrices. For instance, it can be seen that P = 5 sources can be identified in dimension K = 4 with a 3rd order cumulant tensor, whereas this number increases to P = 10 with a 4th order tensor.

ω
One can also deduce from table 2 that 3rd order tensors have a finite number of CAND for even dimensions. For 4th order tensors, this is satisfied for dimension 7, but not for lower ones. This is unfortunate, for 4th order cumulants are very often better conditioned than 3rd order ones. Furthermore, most of the proofs leading to these tables are not constructive. The only known constructive result is given by the Sylvester theorem (section 5.3).

GI-orbit ω(p)

x 3 1 x 3 + y 3 2 (generic) x 2 y 3 Table 3: Equivalence classes of binary cubics: orbits under the action of GI, the group of invertible 2-dimensional changes of coordinates.

Non generic rank. In addition, these results are only valid in generic cases.

And it turns out that, contrary to matrices (i.e., 2nd order tensors), the generic rank is not always maximal. In other words, the rank can exceed its generic value. Unfortunately, the maximal achievable rank is not known for all pairs (P, K). But we can still illustrate this odd fact with particular values.

Example. For instance, for K = 2 and d = 3, the maximal rank is 3. The symmetric tensors having rank 3 are associated with polynomials in the orbit of x 2 y. The tensor associated with the latter homogeneous polynomial is represented in figure 1, where only 3 entries are equal to 1, the others being null. As reported in table 3 there is a single class associated with every value of the tensor rank.

Now to make it more explicit, the polynomial x 2 y can be written as:

6 x 2 y = (x + y) 3 + (-x + y) 3 -2y 3
This relation can be rewritten in tensor form as:

T = 1 1 •3 + -1 1 •3 -2 0 1 •3
which is an explicit irreducible CAND. This decomposition is depicted in figure 2. Also note that in this case, the Reznick bound ( 4) is reached: Example. Now take K = 3 and d = 3. We are thus handling 3 × 3 × 3 symmetric tensors, or equivalently, ternary cubics. The generic rank is 4, but the maximal rank is 5, according to table 4. The class of maximal rank is unique, and a representative is depicted in figure 3; the 6 non-zero entries are all equal. Note that other non generic classes occur with also a rank of 4, as pointed out in table 4.

ω = ( 3 2 ) = 3. + 2 + =
Example. Finally, consider ternary quartics, i.e., (K, d) = [START_REF] Brewer | Kronecker products and matrix calculus in system theory[END_REF][START_REF] Bro | PARAFAC, tutorial and applications[END_REF]. In this case, the number of free parameters in the tensor is S = ( 64 ) = 15. The number of free parameters in CAND exceeds 15 as soon as ω ≥ 5. So we could hope that we are lucky, because the number of free parameters is the same on both sides of CAND. Unfortunately, this is not the case, and Clebsh showed that the generic rank was 6 [START_REF] Ehrenborg | Apolarity and canonical forms for homogeneous polynomials[END_REF] (Ehrenborg and Rota 1993), as reported in table 1.

GI-orbit

ω(p) x 3 1 x 3 + y 3 2 x 2 y 3 x 3 + 3 y 2 z 4 x 3 + y 3 + 6 xyz 4 x 3 + 6 xyz 4 a (x 3 + y 3 + z 3 ) + 6b xyz 4 (generic) x 2 y + xz 2 5
Table 4: Equivalence classes for ternary cubics: orbits under the action of GI, the group of invertible 3-dimensional changes of coordinates. 

Rank-1 approximation

Approximating a tensor by another of rank 1 has at least two applications in the present context. The first one is encountered when when P ≤ K and when the source extraction is performed one source at a time in model ( 5), contrary to section 4.1; this is referred to as a deflation procedure. The maximization of the contrast [START_REF] Cardoso | A tetradic decomposition of fourth order tensors: application to the source separation problem[END_REF] then reduces to that of a single output standardized cumulant (here the kurtosis), because a single unit-norm vector is sought, instead of a whole orthogonal matrix:

w = Arg Max ||w||=1 ijkℓ w i w j w k w ℓ C y ijkℓ (9) 
Yet, it has been shown [START_REF] Lathauwer | Higher-order power method, application in Independent Component Analysis[END_REF] The second application is found in analytical BSS when sources are discrete [START_REF] Grellier | Analytical blind discrete source separation[END_REF] [START_REF] Grellier | Analytical blind discrete source separation[END_REF] or of constant modulus [START_REF] Van Der | An analytical constant modulus algorithm[END_REF] (Van der Veen 1996).

In this problem, we have to solve a system of N equations of the form (f T y n ) d = 1, 1 ≤ n ≤ N . This is equivalent to solving a larger linear system Y f ⊘d = 1, under the constraint of Unvecs{f ⊘d } being a rank-1 tensor. Denote {u ⊘d q , 1 ≤ q ≤ P } a basis of Ker{Y }. The solution to this system takes the form

f ⊘d = f ⊘d min + P p=1 λ p u ⊘d p
where f ⊘d min is the minimum norm solution. Unfolding these vectors in tensor form leads to the relation

F = F min + P p=1 λ p U p ( 10 
)
This problem can be shown to be related to the rank-1 combination problem that we describe below.

Rank-1 combination

The rank-1 combination problem consists of finding the numbers λ p so that, given matrices U p , matrix p λ p U p has a rank of 1. Up to now, this problem has spawned solutions that are not entirely satisfactory. As a consequence, so are the solutions to [START_REF] Caroll | Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters[END_REF].

Incidentally, we can restate the Joint Approximate Diagonalization (JAD) problem addressed in [START_REF] Cardoso | Blind beamforming for non-Gaussian signals[END_REF] [START_REF] Cardoso | Blind beamforming for non-Gaussian signals[END_REF] for the BSS into rank-1 combinations.

The Joint Approximate Diagonalization of P matrices N p consists of finding a square matrix T such that N p ≈ T Λ p T T , for all p, where Λ p are diagonal matrices. From a property recalled in section 2.2, this relation can be rewritten in vector form as vecs{N p } def = n p ≈ i λ pi t ⊘2 i , t i denoting the ith column of T . If the matrix [λ pi ] is full rank and has more columns than rows, then there exists a matrix B such that t ⊘2 j ≈ p B pj n p . Thus, given matrices N p , the problem is to find for every j, scalar coefficients β p such that p β p N p is a rank-1 matrix, and hence the link with the rank-1 combination problem. However, the two problems are not equivalent, for matrix B is not necessarily square.

Numerical algorithms 5.1 Contrast maximization

The ICA diagonalization of section 4.1 (as well as the JAD briefly mentioned in section 4.4) can be solved entirely analytically in dimension K = 2, in a number of instances. In order to exploit this property, Comon [START_REF] Comon | Independent Component Analysis[END_REF] [16] (1991) proposed a sweeping of the pairs of indices, in a similar manner as in the Jacobi diagonalization algorithm for Hermitian matrices [START_REF] Golub | Matrix computations[END_REF] [START_REF] Golub | Matrix computations[END_REF]. This idea has been later applied to JAD by Cardoso [START_REF] Cardoso | Blind beamforming for non-Gaussian signals[END_REF] (Cardoso and Souloumiac 1993). To see this more in detail, consider the Givens rotation

Q = cos φ sin φ exp(θ) -sin φ exp(-θ) cos φ
where the angle φ is imposed to lie in the interval (-π/2, π/2], because of inherent ΛP -indeterminacies. Thus this matrix is entirely defined by the vector u = [cos 2φ, sin 2φ cos θ, sin 2φ sin θ]. Now, as in [START_REF] Cardoso | A tetradic decomposition of fourth order tensors: application to the source separation problem[END_REF], define the contrast Υ α,d as the sum of the d-th order tensor diagonal entries raised to the power α. Then it can be shown that Υ 1,3 and Υ 1,4 are real quadratic forms in u, and can thus be easily maximized with respect to u, and hence to (θ, φ) (by convention, if α = 1, the absolute value is dropped in ( 7)). On the other hand, this holds true for Υ 2,3 but not for Υ 2,4 , which can be shown to be a quartic [START_REF] Comon | Independent Component Analysis, a new concept ?[END_REF] [20] (Comon 1994;[START_REF] Comon | From source separation to blind equalization, contrast-based approaches[END_REF]). Nevertheless, polynomials of degree 4 can still be rooted analytically.

The procedure originally proposed by [START_REF] Comon | Separation of stochastic processes[END_REF] consisting of sweeping all the pairs, like in some numerical algorithms dedicated to matrices, has never been proved to always lead to one of the ΛP -equivalent absolute maxima, even if this is always observed in practice. Counter-examples have never been found either. So we consider this convergence issue as an open problem, belonging to the general class of optimization problems over multiplicative groups. However, some elements of convergence are now reported below.

Convergence. For compactness, denote G the cumulant tensor of the standardized observation, ȳ, which has been denoted C ȳ up to now. Also denote Z = C z the cumulant tensor obtained after an orthogonal transformation Q. According to the multi-linearity property, we have that:

Z pq..r = ij..ℓ Q pi Q qj . . . Q rℓ G ij..ℓ (11) 
Consider first the matrix case (order 2) in order to fix the ideas. The contrast [START_REF] Cardoso | A tetradic decomposition of fourth order tensors: application to the source separation problem[END_REF] can then be written as:

Υ 2,2 = p |Z pp | 2 (12) 
Because Q is orthogonal, its differential can be written as

dQ = dS Q (13) 
where matrix S is skew-symmetric. This yields the relation characterizing stationary points, Z: 1 2 dΥ 2,2 = 2 p,t Z pp S pt Z tp = 0. Yet, this is true for any skew-symmetric matrix S, and hence for every skew-symmetric matrix having only two non zero entries (one +1 and one -1); based on this argument, one concludes that: (Z qq -Z rr )Z qr = 0, for q = r (

Next, the local convexity can be examined with the help of the same tools, observing that:

1 4 d 2 Υ 2,2 = 4Z 2 qr -(Z qq -Z rr ) 2 (15) 
Thus, there are three kinds of stationary points: (i) those for which all diagonal entries are equal, which correspond to minima of Υ 2,2 , (ii) those for which all nondiagonal entries are null, which correspond to maxima, and (iii) saddle points, for which some diagonal entries are equal and some non-diagonal entries vanish. This result is well known, and proves that the only maxima are diagonal matrices, which can be deduced from each other by mere permutation within the diagonal. Now let us develop the same calculations for tensors of order 3 and 4. Stationary values are given by the relations:

1 2 dΥ 2,3 = 3 p,t Z ppp dS pt Z tpp = 0, 1 2 dΥ 2,4 = 4 p,t
Z pppp dS pt Z tppp = 0 or, on the basis of skew-symmetric matrices, for q = r:

Z qqq Z qqr -Z rrr Z qrr = 0, (16) Z qqqq Z qqqr -Z rrrr Z qrrr = 0, [START_REF] Comon | Tensor diagonalization, a useful tool in signal processing[END_REF] whereas local convexity conditions are governed by (Comon 1994):

1 6 d 2 Υ 3 = 4Z 2 qqr +4Z 2 qrr -(Z qqq -Z qrr ) 2 -(Z rrr -Z qqr ) 2 (18) 1 8 d 2 Υ 4 = 9 2 Z 2 qqrr + 4Z 2 qqqr + 4Z 2 qrrr -(Z qqqq - 3 2 Z qqrr ) 2 -(Z rrrr - 3 2 Z qqrr ) 2 (19) 
The comparison of these results with ( 14) and ( 15) lead to two conclusions: (a) non-diagonal terms do not factorize anymore in ( 16) and [START_REF] Comon | Tensor diagonalization, a useful tool in signal processing[END_REF], so that stationary values are more difficult to characterize, and (b) diagonal tensors are still local maxima, but there are a priori others. This is another problem, linked to optimization in groups, that this author considers as open.

Sweeping strategies. We have presented several numerical algorithms aiming at separating P = 2 sources from K = 2 sensors in the presence of noise of unknown statistics. Inspired from the Jacobi cyclic-by rows sweeping strategy proposed for matrices, we can process all the K(K -1)/2 pairs one by one sequentially [START_REF] Comon | Separation of stochastic processes[END_REF]Comon 1994). However, as in the matrix case, the noise part (constituted by the actual background noise and all the other K -2 sources) changes at every step, so that a single sweeping is not sufficient. In practice, an order of √ K sweeps have been shown to be sufficient. Other strategies have been analyzed, and consist of processing first the pair of sensors that yields the maximal increase in the contrast criterion. This strategy has also been implemented successfully, but is not always numerically efficient.

When processing one pair (i, j), one can either recompute all the entries of the cumulant tensor that have been affected (i.e., those whose indices contain i or j), or compute the rotated data instead. The two possibilities do not have the same numerical complexity, and the best choice depends on the number of sensors, K, and on the number of samples, N .

Parafac algorithm

In [START_REF] Leurgans | A decomposition for three-way arrays[END_REF] (Leurgans et alterae 1993), SVD-based algorithms are proposed to compute CAND of 3rd order tensors in larger dimensions. However, these algorithms, called Parafac, need the number of sources, P , to be smaller than or equal to 3 2 K -1, in the symmetric case we are interested in. See also [50] [4] [START_REF] Kruskal | Three-way arrays: Rank and uniqueness of trilinear decompositions[END_REF][START_REF] Bro | PARAFAC, tutorial and applications[END_REF]) for more details. In view of table 1 reported above, this value of P is strictly smaller than the generic rank, ω, except for (d, K) = (3, 2) or (d, K) = [START_REF] Brewer | Kronecker products and matrix calculus in system theory[END_REF][START_REF] Bro | PARAFAC, tutorial and applications[END_REF]. As a consequence, Parafac algorithms can only approximate d-way arrays, in general.

In the unsymmetric problem, the goal is to find three matrices, A, B, and C, such that G ijk = p A ip B jp C kp . One possible numerical algorithm is based on alternating least squares, as explained below for 3-way arrays [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition[END_REF] (Carroll and Chang 1970):

• Start with (A(0), B(0), C(0))

• Define matrices G (1) , G (2) , G (3) :

G ijk = G (1) ip = G (2) jq = G (3) 
kr ; p = (jk), q = (ik), r = (ij) • Estimate stage t + 1 from stage t by pseudo-inversion:

-Update mode 1:

A(t + 1) = G (1) [B(t) T C(t) T ] - -Update mode 2: B(t + 1) = G (2) [A(t + 1) T C(t) T ] - -Update mode 3: C(t + 1) = G (3) [A(t + 1) T B(t + 1) T ] -
where M -denotes the Moore-Penrose pseudo inverse of M . See also [START_REF] Bro | PARAFAC, tutorial and applications[END_REF] [26]

[50] [START_REF] Bro | PARAFAC, tutorial and applications[END_REF]DeLathauwer 1997;[START_REF] Kruskal | Three-way arrays: Rank and uniqueness of trilinear decompositions[END_REF]) for more details on Parafac algorithms.

Sylvester theorem

As already pointed out earlier, a rank-one tensor is associated with a linear form raised to the dth power. In terms of polynomials, the CAND decomposition can thus be rephrased: how can one decompose a quantic into a sum of dth powers of linear forms [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF] (Comon and Mourrain 1996) ? This is this topic that addresses this theorem, restricted to the binary case however (i.e., two variables).

Theorem 5.1 A binary quantic p(x, y) = d i=0 γ i c(i) x i y d-i can be written as a sum of dth powers of ω distinct linear forms:

p(x, y) = ω j=1 λ j (α j x + β j y) d , if and only if (i) there exists a vector g of dimension ω + 1, with components g ℓ , such that    γ 0 γ 1 • • • γ ω . . . . . . γ d-ω • • • γ d-1 γ d    g = 0. ( 20 
)
and (ii) the polynomial q(x, y) def = ω ℓ=0 g ℓ x ℓ y ω-ℓ admits ω distinct roots. Sylvester's theorem not only proves the existence of the ω forms (second column in the tables), but also gives a means to compute them [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF] [24] [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF][START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF]. For odd values of d, we have thus a generic rank of ω = d+1 2 , whereas for even values of d, ω = d 2 + 1. So when d is odd, there is generically a unique vector g satisfying ( 20), but there are two of them when d is even. This theorem shows that in column K = 2 of table 2, we have D = 0 when d is odd, and D = 1 when d is even.

In [START_REF] Lathauwer | ICA algorithms for 3 sources and 2 sensors[END_REF] (DeLathauwer Comon and DeMoor 1999), several extensions to this theorem are proposed in the complex case. The basic idea remains the same, but the result becomes more complicated.

The disappointing fact is that Sylvester's theorem cannot be extended to dimensions higher than 2. In fact, a key step in the proof [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF] [18] (Comon and Mourrain 1996; Comon 1998) is that for any polynomial p of degree d, and any monomial m of degree d -ω, there exists a polynomial q of degree ω such that qm is orthogonal to p. Equation [START_REF] Comon | From source separation to blind equalization, contrast-based approaches[END_REF] expresses that orthogonality in terms of polynomial coefficients. It is clear that this holds true only when d ≥ ω, which is unfortunately satisfied only in the binary case, according to table 1. Possibilities of extension to more than 2 variables is discussed in [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF] [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF].

Simultaneous CAND. Let us go back to table 2. Among others, this table reports that there are infinitely many CAND for even orders, d. In order to fix this indeterminacy in the case (d, K, P ) = (4, 2, 3) (the manifold of solutions is of dimension 1 in that situation), it is proposed in [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF] [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF]) to simultaneously diagonalize a second cumulant tensor of order 4.

The help of virtual sources. In [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF] [21] [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF][START_REF] Comon | Non linear inversion of underdetermined mixtures[END_REF] an algorithm dedicated to discrete sources is proposed, and performs both the identification of A and the extraction of sources x i , in the case (d, K, P ) = (2, 2, 3).

In a few words, assume three sources x i are mixed and received on two sensors, and assume these sources are all distributed in {-1, +1} (they are called BPSK in digital communications). One can prove, if sources x i are statistically independent, that the "virtual" source x 1 x 2 x 3 is also BPSK-distributed, but obviously statistically dependent of the three former ones. However, one can still prove that all its fourth-order pairwise cross-cumulants vanish. Yet, only pairwise cumulants are utilized in the sweeping strategies maximizing contrasts such as Υ 2,4 in [START_REF] Cardoso | A tetradic decomposition of fourth order tensors: application to the source separation problem[END_REF]. As a consequence, viewed by the algorithm, sources are independent; one can thus build from y T = [y 1 , y 2 ] virtual measurements y 3 1 , y 2 1 y 2 , y 1 y 2 2 , and y 3 2 , that can be modeled as linear mixtures of 4th order pairwise independent unknown sources. This allows the separation of the four sources (three actual and one virtual) from six sensors (two actual and four virtual).

Rank-one approximation

The rank-1 approximation problem (section 4.3) has been partly solved by algorithms inspired from the matrix power method and devised for arrays of higher orders [START_REF] Lathauwer | Higher-order power method, application in Independent Component Analysis[END_REF] Criteria. Given tensor C y , the goal is to find a vector w minimizing:

Ω o = ||C y -σ w • w • w • w|| (21) 
for some scalar number σ. One can prove that minimizing ( 21) is equivalent to maximizing [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF] [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF]:

Ω d = ||C y • w • w • . . . • w|| (22) 
or to minimizing:

Ω d-1 = ||C y • w • . . . • w -λ w|| (23) 
However, the other criteria Ω r , 0 < r < d -1, are generally not equivalent.

Stationary uplets (v, λ) of Ω o , Ω d-1 or Ω d are the same and satisfy:

C y • v • . . . • v d-1 times = λ v
this suggests a Rayleigh-like iteration, tat we can call the Tensor Rayleigh symmetric iteration:

w ← C y • w • . . . • w d-1 times w ← w/||w||
In [START_REF] Lathauwer | Higher-order power method, application in Independent Component Analysis[END_REF] (Delathauwer [START_REF] Lathauwer | Higher-order power method, application in Independent Component Analysis[END_REF], it is suggested to run a non symmetric iteration, and to initialize the algorithm with the HOSVD.

The rank-1 combination problem (section 4.4) has been solved in a suboptimal way up to now in [START_REF] Van Der | An analytical constant modulus algorithm[END_REF] [39] (Van der Veen and Paulraj 1996; Grellier and Comon 2000) by solving a large unconstrained linear system, and trying to restore the structure afterwards. The optimal one-stage solving still remains to be devised.

Concluding remarks

In this chapter, we have partly surveyed the tools dedicated to tensor decompositions, mainly through the problem of source separation. Thus, this presentation has been restrictive, but hopefully still informative. Many other source separation algorithms do not resort to tensor tools, and have not been reported here. It is worth noting that some of them do not need the sources to be statistically independent, so that the output cumulant tensor is not even aimed at being diagonal. Instead, other properties of the sources can be exploited, such as their discrete character, or their constant modulus [START_REF] Van Der | An analytical constant modulus algorithm[END_REF] [66] [START_REF] Grellier | Analytical blind discrete source separation[END_REF] (Van der Veen and Paulraj 1996; Talwar Viberg and Paulraj 1996; [START_REF] Grellier | Analytical blind discrete source separation[END_REF]. When more sources than sensors are present, general results state that it is sometimes possible to identify the mixture, but source extraction requires more knowledge about the sources (e.g., their distribution). These issues have been tackled herein. Let us now turn to research perspectives.

In the area of source separation, current hot research topics include (i) blind identification of under-determined mixtures, (ii) blind equalization of convolutive mixtures, (iii) the theoretical proof of convergence of pair-sweeping algorithms, and, in the context of telecommunications, (iv) handling properly carrier residuals when present in the measurements. In all cases, analytical block-algorithms are suitable when computer power is available and when the stationarity duration is short.

As far as tensors are concerned, open research directions include: (i) the determination of the maximal achievable rank for arbitrary order and dimensions, (ii) the actual calculation of general Canonical Decompositions for K > 2, (iii) efficient numerical algorithms for computing an approximate of given rank.

  d-way arrays can be written in two different manners, as pointed out by several authors [59] (McCullagh 1987), related to each other by a bijective mapping, f . Assume the notations x j def = K k=1 x j k k and |j| def = k j k . Then for homogeneous monomials of degree d, x j , we have |j| = d.

  For binary quantics, K = 2 and c(j) = ( d j1 ) = ( d j2 ); for instance, for d = 4, c([3, 1]) = 4 and c([2, 2]) = 6. Coefficients γ(j, p) of a polynomial p in basis B are chosen so as satisfy the relation: p(x) = |j|=d γ(j, p) c(j) x j

Figure 1 :

 1 Figure 1: Non generic example of a binary cubic of maximal rank: position of non-zero entries in the 2 × 2 × 2 associated symmetric tensor.

Figure 2 :

 2 Figure 2: Explicit decomposition of the non generic example of binary cubic of maximal rank. Black bullets represent +1's and white bullets -1's.

Figure 3 :

 3 Figure 3: Non generic example of ternary cubic, proved to be of maximal rank: position of non-zero entries

  [START_REF] De Lathauwer | Signal Processing based on Multilinear Algebra[END_REF] [START_REF] Kofidis | Tensor approximation and signal processing applications[END_REF] (DeLathauwer Comon and others 1995; DeLathauwer 1997;[START_REF] Kofidis | Tensor approximation and signal processing applications[END_REF].

Table 1 :

 1 Generic rank ω of symmetric tensors as a function of the dimension K

	K 2 3 4	5	6	7	8
	3 d 4		2 4 5 3 6 10 15 22 30 42 8 10 12 15
	and the order d				
	D K 2 3 4 5 6 7 8
	d	3 4	0 2 0 5 4 0 0 1 3 5 5 6 0 6

Table 2 :

 2 Generic dimension D of the manifold of solutions

  [START_REF] Comon | Blind channel identification and extraction of more sources than sensors[END_REF] [49] (DeLathauwer Comon and others 1995; Comon 1998; Kofidis and regalia 2000) that this maximization problem is equivalent to minimizing ||C y -σ w • w • w • w||, which is simply finding the best rank-1 approximate of tensor C y .