Sidney Burks 
  
Jérémie Ortalo 
  
Antonino Chiummo 
  
Xiaojun Jia 
  
Fabrizio Villa 
  
Alberto Bramati 
  
Julien Laurat 
  
Elisabeth Giacobino 
  
Vacuum squeezed light for atomic memories at the D2 cesium line

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

During the last two decades, a great effort has been dedicated to the generation of non-classical states of light in the continuous variable regime. Very recently, 10 dB of noise reduction was obtained with the goal of surpassing the standard quantum limit for sensitive measurements such as gravitational wave detection [START_REF] Vahlbruch | Observation of Squeezed Light with 10-dB Quantum-Noise Reduction[END_REF]. Driven by the prospect of interfacing light and matter for quantum networking applications [START_REF] Zoller | Quantum information processing and communication, Strategic report on current status, visions and goals for research in Europe[END_REF][START_REF]Quantum Information with Continuous Variables[END_REF][START_REF] Kimble | The quantum internet[END_REF], ongoing efforts have also focused on the generation of squezeed light at atomic wavelengths and reaching low noise frequencies to be comptatible with bandwidth-limited interfacing protocols. Results have been obtained on the rubidium D 1 line [START_REF] Tanimura | Generation of squeezed vacuum resonant on a rubidium D 1 line with periodically poled KTiOPO4[END_REF][START_REF] Hetet | Squeezed light for bandwith-limited atom optics experiments at the rubidium D1 line[END_REF] and squeezed light has been recently stored [START_REF] Honda | Storage and Retrieval of a Squeezed Vacuum[END_REF][START_REF] Appel | Quantum memory for squeezed light[END_REF]. Squeezing resonant with the cesium D 2 line was demonstrated already a while ago in connection with sub-shot noise spectroscopy experiments [START_REF] Polzik | Spectroscopy with squeezed light[END_REF][START_REF] Marin | Demonstration of high sensitivity spectroscopy with squeezed semiconductor lasers[END_REF] but not at low-frequency sidebands. More recently, low-frequency squeezing was finally reported at this wavelength [START_REF] Neergaard-Nielsen | Generation of a Superposition of Odd Photon Number States for Quantum Information Networks[END_REF], however without giving spectrum behavior in this range. Here, we give detailed measurements of such squeezing, demsontrating a broadband noise reduction in the low-frequency domain. Furthermore, our setup shows the first usage of a PPKTP crystal for creating squeezed light at 852nm. This limits the generally observed losses caused by blue light induced infrared absorption, which are the limiting factor for squeezed light generation.

The experimental setup is sketched in Fig. 1. A continuous-wave Ti:Sapphire laser (Spectra Physics-Matisse) locked on the cesium D 2 line is frequency-doubled in a bow-tie cavity with a type-I 20 mm long periodically-poled KTP crystal (PPKTP, Raicol Crystals Ltd.) [START_REF] Villa | High-efficiency blue-light generation with a ring cavity with periodically poled KTP[END_REF], and locked by tilt-locking [START_REF] Shaddock | Frequency locking a laser to an optical cavity by use of spatial mode interference[END_REF]. By supplying 600 mW of light at 852 nm, we obtain 200 mW of 426 nm cw-light. Higher doubling efficiency can be obtained but with lower stability due to thermal effects. This beam pumps a 550 mm long doubly-resonant (signal and idler) optical parametric oscillator (OPO), based on a 20 mm long PPKTP crystal. The OPO is locked at resonance using the Pound-Drever-Hall technique [START_REF] Drever | Laser phase and frequency stabilization using an optical resonator[END_REF] (20 MHz phase modulation), thanks to a 8 mW additional beam injected through a HR mirror and propagating in the opposite direction of the pump beam. The crystal temperatures are actively controlled, with residual oscillation of the order of few mK. Both cavities have the same folded-ring design. The crystals are placed between highreflecting mirrors with a radius of curvature R=100 mm for the OPO, and R=150 mm for the doubler while the other mirrors are flat. The input mirror for the doubler has a transmission of 12%, and the output mirror for the OPO of 7%. The folding angles are around 10 a cavity length of 55 cm. The waist inside the crystal is around 46 µm. In this configuration, the OPO threshold is measured to be 90 mW, with a degeneracy temperature at 46.3 • C. The homodyne detection is based on a pair of balanced high quantum efficiency Si photodiodes (FND-100, quantum efficiency: 90%) and an Agilent E4411B spectrum analyser. The light from the Ti:Sapphire laser is used after initially being transmitted into a single mode fiber, which improves the matching of the cavities and enables a high contrast for the homodyne detection interference. The fringe visibility reaches 0.96. The shot noise level of all measurements is easily obtained by blocking the output of the OPO. Let us emphasize that the pump is matched to the OPO cavity by temporarily inserting mirrors reflective at 426 nm and thus creating a cavity resonant for the blue pump. This solution turns out to be very efficient.

Figure 2 gives the noise variances of the squeezed and anti-squeezed quadratures for a frequency spectrum from 1 to 5 MHz. The inset shows the noise variance while scanning the local oscillator phase for a fixed noise analysis frequency of 1.5 MHz. For these measurements, the blue pump power was set to 75 mW. 3 dB of squeezing is obtained, with an excess noise on the anti-squeezed quadrature around 9 dB. This noise reduction value has to be compared to the theoretical value V given by [START_REF] Fabre | Fundamental Systems in Quantum Optics[END_REF][START_REF] Kimble | Fundamental Systems in Quantum Optics[END_REF] 

V = 1 - T T + L 4σ (1 + σ ) 2 + 4Ω 2 (1)
where T is the output coupler transmission, L the additional intra-cavity losses due to absorption or scattering, Ω the analysis frequency normalized to the cavity bandwidth (10 MHz) and σ the amplitude pump power normalized to the threshold. By taking σ = 0.9, Ω = 0.1, T = 0.07 and L = 0.03 (determined by measuring the cavity finesse and mirror transmissions) , the expected value before detection produced at the OPO output is -5 dB. Let us note that L is mostly due to absorption in PPKTP at this particular wavelength, as no pump-induced losses were measured.

The detector quantum efficiency is estimated to be 0.90, the fringe visibility is 0.96 and the propagation efficiency is evaluated to be around 0.95. These values give an overall detection efficiency of 0.9 • 0.96 2 • 0.95 ≃ 0.8. After detection, the expected squeezing is thus reduced to -3.5 dB, in good agreement with the experimental values. Figure 3 shows the broadband noise reduction similar to the Fig. 2 insert, but now for a lower frequency range, between 0 and 500 kHz. Squeezing is expected to be higher in this range, but technical noise results in its degradation. The stability of the setup and noise of the laser are important parameters here. In particular, the lock beam power needs to be decreased as much as possible to avoid noise coupling into the device. In our setup, squeezing is finally detected down to 25 kHz, and 3±0.5 dB are observed for the 100-500 kHz frequency range. Measurements are corrected from the electronic dark noise. The presence of low-frequency sideband squeezing is a requisite for future quantum networking applications such as the storage of squeezed light by EIT, where the transparency window width is a limiting factor [START_REF] Honda | Storage and Retrieval of a Squeezed Vacuum[END_REF][START_REF] Appel | Quantum memory for squeezed light[END_REF].

In conclusion, we have demonstrated the generation of squeezed light locked on the D 2 cesium line. More than 3 dB of noise reduction has been obtained and the squeezing is preserved for sideband frequencies down to 25 kHz. This ability opens the way to further investigations of light-matter interface using cesium atomic ensembles, like EIT or Raman storage of nonclassical state of light in the continuous variable regime.
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 1 Fig.1. Experimental Setup. A Ti:sapphire laser locked on resonance with the Cesium D2 line is frequency doubled. The second harmonic is then used to pump a doubly resonant optical parametric oscillator below threshold. The seed beam is used for cavity alignment and blocked during measurements. HWP: Half-wave plate. EOM: electro-optic phase modulator. PZT: piezo-electric transducer. PBS: polarizing beam-splitter.

Fig. 2 .

 2 Fig. 2. Normalized noise variance for the squeezed and anti-squeezed quadratures, from 1 MHz to 5 MHz. The inset gives the noise variance at 1.5 MHz while scanning the phase of the local oscillator. The resolution bandwidth is set to 100 kHz and the video bandwidth to 100 Hz.
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