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Abstract

We study the two-boundary extension of a loop model—corresponding to the
dense phase of the O(n) model, or to the Q = n2 state Potts model—in the critical
regime −2 < n ≤ 2. This model is defined on an annulus of aspect ratio τ . Loops
touching the left, right, or both rims of the annulus are distinguished by arbitrary
(real) weights which moreover depend on whether they wrap the periodic direction.
Any value of these weights corresponds to a conformally invariant boundary condi-
tion. We obtain the exact seven-parameter partition function in the continuum limit,
as a function of τ , by a combination of algebraic and field theoretical arguments. As
a specific application we derive some new crossing formulae for percolation clusters.

1 Introduction

The study of conformal boundary conditions (CBC) and boundary operators is one of
the most fruitful aspects of the vast problem of solving two dimensional field theories
and string theories. There are many reasons for this. In the equivalent 1+1 dimensional
systems, CBC describe possible fixed points in quantum impurity problems, such as
the multichannel Kondo problem [1], while boundary operators decide the stability of
these fixed points as well as RG flows. In string theory, CBC describe possible branes,
while RG flows in this language decide issues of (open string) tachyon decay [2]. In
statistical mechanics, boundaries are roughly where couplings to the outside take place—
for instance couplings to electrodes in quantum Hall effect type problems and their
Chalker-Coddington type lattice formulations [3, 4].

From a more formal point of view, conformal field theories (CFTs) with bound-
aries are easier to tackle than their bulk counterparts when complicated features such
as indecomposability or non-unitarity are present. Most of the recent progress in our
understanding of logarithmic CFTs for instance has come from the consideration of their
boundary analogues [5, 6, 7].

Taking a slightly different point of view, one of the basic objects in our understanding
of CFTs has been the O(n) loop model, which led, in particular, to the development
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of deep links with the powerful SLE approach [8]. It is therefore no surprise that the
issue of CBC for loop models should be a major problem. This issue has however been
slow to evolve, in part for technical reasons: the Coulomb gas formalism, which is so
successful in the bulk case, is very difficult to carry out in the presence of boundaries,
for not entirely clear reasons [9, 4]. It took progress on the algebraic side—through
the study of boundary algebras and spin models with general boundary fields—for the
simplest families of CBC to even be identified properly. The works [10, 11] finally showed
that CBC were obtained in the dense loop model by simply giving to loops touching
the boundary a fugacity n1 different from the one in the bulk. Associated conformal
weights and spectra of conformal descendents were identified, and deep connections with
the blob algebra [12, 13] (also called the One-Boundary Temperley-Lieb algebra) made.
Subsequently, beautiful calculations in 2D gravity [14, 15] recovered the results of [10, 11].
This will all be summarized in later sections.

Our purpose in this paper is to continue the study of [10, 11] and discuss situations
with several boundaries and boundary conditions. In the case of calculations on an
annulus for instance, this means giving different weights to loops touching the left, the
right or both boundaries. We will end up in these cases with generating functions de-
pending on seven parameters, and of course numerous potential applications to counting
problems.

Technically, the geometrical situation on the annulus has to do with understanding
representations of Two-Boundary Temperley-Lieb algebras. We will devote a fair amount
of time to this issue, which is essential in obtaining some of our results and conjectures.
For early work and results in this direction see [16, 17].

The problem on the annulus is also deeply related with determining the spectra of
XXZ hamiltonians with the most general boundary fields: this has been a very active
question in the Bethe ansatz community lately [18]. We will in particular provide a
complete answer for the spectrum of these hamiltonians in the scaling limit.

More formally, the key question behind the calculations we will present is the deter-
mination of fusion rules (and thus spectra of boundary conditions changing operators)
in loop models. There are deep aspects to this, some of which will be discussed here but
mostly in subsequent work.

The paper is organized as follows. At the end of this introduction, we provide
a summary of our results. Section 2 contains crucial algebraic preliminaries, where
we define and study in particular the Two-Boundary Temperley-Lieb algebra. Section
3 contains Coulomb gas calculations where, thanks to a realization of the boundary
algebras involving injection of charge on the boundaries, we are able to calculate a
subset of all the critical exponents of interest. This is deeply related with the version
of the problem involving XXZ chains with boundary fields that we also discuss briefly.
Section 4 is the main section. Combining exact knowledge about hidden degeneracies
(that come in part from the algebraic analysis in Section 2—see also [19]), Coulomb
gas arguments, and an educated guess on the structure of boundary states, we are
able to propose a formula for the most general, seven parameters dependent partition
function. Section 5 contains various combinatorial applications, and a review of the few
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cases previsouly known, which our formulas all recover. In Section 6 we present a new
combinatorial application, in the form of certain refined crossing formulae for critical
percolation. Finally, Section 7 gives our conclusions

Summary of the results: In this article we study a dense loop model on the annulus.
Because of the boundaries and the non-trivial topology of the annulus, there are several
types of loops, depending both on its homotopy (contractible or not) and which bound-
aries (none, only left, only right, or both) it touches. We distinguish all these kinds of
loops by giving them different Boltzmann weights. For convenience we always ask the
number of non-contractible lines to be even. This restriction will appear more clearly
by defining the model on a lattice in the following section.

a. b.

Figure 1: The conformal loop model on the annulus. Different Boltzmann weights are
given to the loops, depending on their topology (contractible or not) and if they touch
a boundary. There can be a loop touching both boundariers if and only if there is no
non-contractible loop (a). There is always an even number of non-contractible loops,
and they are allowed to touch the boundaries (b).

This model is endowed with conformal invariance, so we expect its partition function
to be invariant under any conformal mapping. In particular we can study the model
on a periodic strip of size L × N (L in the periodic direction), related to the annulus
A = {z : R1 ≤ |z| ≤ R2} by

z′ → z = R2 exp

(

i2π
z′

L

)

(1)

The geometry is characterized by the modular parameter

q = e−πτ (2)

where τ = L/N = 2π/ log R2
R1

. As a consequence of conformal invariance, the partition
function must depend on the Boltzmann weights of the loops and on the modular pa-
rameter q only. It is a well-known result that the central charge of the dense loop gas
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is

c = 1 − 6

m(m + 1)
(3)

where m is related to the Boltzmann weight of the bulk loops n through

n = 2cos γ , γ =
π

m + 1
, m > 0. (4)

Note that m is not restricted to be an integer. Let us also recall the Kac formula

hr,s =
[(m + 1)r − ms]2 − 1

4m(m + 1)
. (5)

Contractible Type Weight Parametrization

Yes Bulk n n = 2cos γ

Yes Boundary 1 n1 n1 =
sin(r1 + 1)γ

sin r1γ
, r1 ∈ (0,m + 1)

Yes Boundary 2 n2 n2 =
sin(r2 + 1)γ

sin r2γ
, r2 ∈ (0,m + 1)

Yes Both Boundaries n12 n12 =
sin(r1 + r2 + 1 − r12)

γ
2 sin(r1 + r2 + 1 + r12)

γ
2

sin r1γ sin r2γ

No Bulk l l = 2cos χ

No Boundary 1 l1 l1 =
sin(u1 + 1)χ

sin u1χ

No Boundary 2 l2 l2 =
sin(u2 + 1)χ

sin u2χ

Table 1: Loop weights and their parametrizations.

Now we are ready to present the main result of this article. In full generality, the
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partition function of the boundary loop model is given by

Z =
q−c/24

P (q)

∑

n∈Z

qhr12−2n,r12

+
q−c/24

P (q)

∑

j≥1

∑

n≥0

sin(u1 + u2 − 1 + 2j)χ sin χ

sinu1χ sin u2χ
qhr1+r2−1−2n,r1+r2−1+2j

+
q−c/24

P (q)

∑

j≥1

∑

n≥0

sin(−u1 + u2 − 1 + 2j)χ sin χ

sin−u1χ sin u2χ
qh−r1+r2−1−2n,−r1+r2−1+2j

+
q−c/24

P (q)

∑

j≥1

∑

n≥0

sin(u1 − u2 − 1 + 2j)χ sin χ

sin u1χ sin−u2χ
qhr1−r2−1−2n,r1−r2−1+2j

+
q−c/24

P (q)

∑

j≥1

∑

n≥0

sin(−u1 − u2 − 1 + 2j)χ sin χ

sin−u1χ sin−u2χ
qh−r1−r2−1−2n,−r1−r2−1+2j (6)

where the seven parameters appearing are fixed by the seven different loop weights.
The relations between all these parameters are given in Table 1. Note that P (q) is our
notation for

∏

k≥1

(
1 − qk

)
.

2 Some algebraic preliminaries

Let us begin by introducing a few algebraic concepts that we will need throughout our
discussion. Our model is the densely packed loop model on the tilted square lattice. A
very convenient way to think about it is to view it as a face model (see Fig. 2). Each
face can be of two different kinds, corresponding to a horizontal or a vertical splitting
of the loops. Each closed loop is given a Boltzmann weight n. The loops touching the
boundaries are distinguished from the bulk ones in our model, and they are given different
Boltzmann weights n1, n2 or n12 if they touch the first boundary, the second one, or both
of them. The total weight of a particular configuration is then nNnN1

1 nN2
2 nN12

12 where
the Ni’s are the numbers of loops of each kind. We shall later refine these weights to
include information about the homotopy class (contractible or not) of each loop.

2.1 The Temperley-Lieb algebra

To begin with, we just drop the distinction of the boundary loops. Then partition
function of such a loop model can be reformulated in terms of local operators satisfying
some commutation relations that will correctly count the closed loops. The trick is done
by the celebrated Temperley-Lieb algebra [20], defined as follows. The Temperley-Lieb
algebra TLN defined on N strands consists of all the words written with the N − 1
generators ei (1 ≤ i ≤ N − 1), subject to the relations

|i − j| ≥ 2 ⇒ eiej = eiej (7a)

e2
i = nei (7b)

eiei±1ei = ei (7c)
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Figure 2: A configuration of dense loops on the tilted square lattice. Loops touching at
least once the first (resp. second) boundary are marked with a black (resp. white) blob.

The point of this definition originates in its graphic representation. Represent ei as an
operator acting on N strands

. . .

i i+1

. . .
︸ ︷︷ ︸

N

then (7b)–(7c) read respectively
i i+1

= n
i i+1

and i i+1

=
i i+1

.

Each configuration of loops on a lattice of width N can be written as a particular
word of the algebra TLN (for example the configuration in Fig. 2, dropping the blobs
coming from the boundaries, would be written e1e3e7e6e2e1e5e7e6e3e7). In fact all the
configurations can be generated by taking powers of the transfer matrix of the model,
which reads

T ′
N =






N∏

i=1
i odd

1 + ei











N∏

i=1
i even

1 + ei




 . (8)
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2.2 Boundary conditions and blob operators

In the model we have just introduced, the loops touching the left or right boundaries
of the lattice are not different from the other ones. We will refer to this particularly
simple case as “free” boundary conditions. In this paper we deal with much more general
boundary conditions. They consist in giving a different Boltzmann weight n1 (resp. n2)
to the loops which have touched at least once the boundary 1 (resp. 2). This is encoded in
the transfer matrix by the addition of so-called “blob” operators b1 and b2 to the algebra
TLN . Their graphical representation consists of a black (resp. white) blob which marks
the first (resp. last) strand. b1 acts as

. . .
︸ ︷︷ ︸

N

and b2 as

. . .
︸ ︷︷ ︸

N

.

They satisfy the defining relations

i ≥ 2 ⇒ b1ei = eib1 (9a)

b2
1 = b1 (9b)

e1b1e1 = n1e1 (9c)

and

i ≤ N − 2 ⇒ b2ei = eib2 (10a)

b2
2 = b2 (10b)

eN−1b2eN−1 = n2eN−1 (10c)

In what follows, we will assume that N is always even. In that case it is possible to
have closed loops touching both boundaries. In order to count each of these loops with
a weight n12, we impose the relation






N∏

i=1
i even

ei




 b1b2






N∏

i=1
i odd

ei











N∏

i=1
i even

ei




 = n12






N∏

i=1
i even

ei




 (11)

which can be drawn as

. . . = n12 . . . .
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The generators ei, b1 and b2, subject to the relations (7), (9)–(10) and the quotient (11),
thus form the Two-Boundary Temperley-Lieb algebra on N strands, denoted 2BTLN .
A simpler case to which we shall sometimes refer is the One-Boundary Temperley-Lieb
algebra 1BTLN , generated only by the ei’s and b1. The transfer matrix of the two-
boundary loop model is then a generalization of Eq. (8)

TN = b1b2






N∏

i=1
i odd

1 + ei











N∏

i=1
i even

1 + ei




 . (12)

It generates all the boundary loop configurations on a strip (see Fig. 2) and gives the
correct weights n to the closed loops in the bulk, and n1, n2 or n12 to the ones touching
the boundaries.

2.3 Generic irreducible representations of 2BTL

Irreducible representations of the Temperley-Lieb algebra are well known, and are closely
related to those of the quantum group SU(2)q. When q is not a root of unity1, the
representation theory of SU(2)q is essentially the same as the one of SU(2). In that
case, the corresponding irreducible representations of the Temperley-Lieb algebra are
said to be generic. The generic representations have a simple graphical interpretation,
as the Temperley-Lieb algebra itself. The different modules (representation spaces) Vs

are given by configurations of (N − s)/2 half-loops and s strings. For example, consider
the Temperley-Lieb algebra on 4 strands TL4, for which there are only three generic
modules.

V0 =













V2 =













V4 =
{ }

The vertical lines are the strings, and the action of ei on two strings on the sites i, i + 1
is defined to be zero.

Now if we work with the Two-Boundary Temperley-Lieb algebra 2BTLN (or with
1BTLN ), the generic representation theory is quite similar and has been studied in
[12, 11, 16]. The modules consist of the all states formed with half-loops and strings,
but the half-loops can be marked with black or white blobs. Note that every black blob is
necessarily on the left of every white blob. One can show [11, 16, 19] that the dimension

1Of course here q is not the modular parameter defined by (2).
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of V0 for 2BTLN is 2N . For example, the module V0 is of dimension 16 for 2BTL4:

V0 =







, , ,

, , ,

, , ,

, , ,







This result will play an important role in the sequel, when we will have to deal with
Coulomb gas arguments.

Now consider the modules with strings. Half-loops between strings cannot be blobbed,
since they are always separated from the boundary by at least one string, so b1 or b2

cannot act on them. The leftmost (resp. rightmost) string can carry a black (resp. white)
blob. They can also be orthogonal to the blob, in the sense that they are not eigenstates
of the projector b1, but of the orthogonal projector (“unblob”) 1− b1. Let us thus mark
with a black (resp. white) square the action of 1 − b1 (resp. 1 − b2). Then there is not
only one module with s strings, but four, depending on the blob status (blobbed or
unblobbed) of the leftmost and rightmost strings. For 2BTL4 the modules with two
strings are

Vbb
2 =













Vbu
2 =













Vub
2 =













Vuu
2 =













.

Obviously these modules are related to each other by the blobbed/unblobbed transfor-
mations

b1,2 → 1 − b1,2 (13)

and this symmetry between the projectors b1 and b2 and their orthogonals 1 − b1 and
1 − b2 will indeed play some role in our analysis of the loop model.

2.4 Markov trace on 2BTL and the boundary loop model on the an-

nulus

Let us begin by dropping the blobs and the particular boundary weights, and start with
the free/free partition function. Then the transfer matrix is given by (8) in terms of the
Temperley-Lieb generators ei’s. There is an algebraic tool closely linked with the study
of the Temperley-Lieb algebra, namely the Markov trace, which is useful for our problem.
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We give only a naive definition of that tool here. The Markov trace of an element M
of the Temperley-Lieb algebra is the number which is obtained by identifying the top
and the bottom of the diagramatic representation of M , upon counting each closed loop
with a weight n. For example, consider M = e1e2 on N = 4 strands:

Tr {e1e2} = Tr

{ }

= n2.

Although this object clearly depends on the number of strands N , we do not mention it
explicitly. Given this naive definition, the Markov trace is associated with the Temperley-
Lieb algebra itself, and does not require to know anything about its representations.
Note that the Markov trace is not a trace in the common sense: it is not a sum over
a basis of states of the diagonal action of M . However, there is a well-known relation
between the Markov trace and the usual traces over the different generic modules of the
Temperley-Lieb algebra. Using n = 2cos γ, we have

TrM =
∑

s≥0

sin(s + 1)γ

sin γ
trVsM. (14)

This relation calls for a few remarks. First, we use the convention that Vs is empty if
s > N or if s 6= N mod 2. In particular, the sum is finite, and the terms depend on N .
Then, note that sin(s+1)γ

sinγ is a polynomial in the variable n : sin 2γ
sinγ = n, sin 3γ

sin γ = n2 − 1,
sin 4γ
sinγ = n3 − 2n, etc. They are actually Chebyshev polynomials of the second kind,
Us(n/2).

We consider now a modification of the Markov trace, which will be useful for our
loop model. We can decide that we draw all the Temperley-Lieb diagrams in R − {0}
instead of R and that when we compute the Markov trace, we give a weight n only to the
contractible loops, and another weight l = 2cos χ to the non-contractible ones. Again it
is convenient to consider an example:

Trχ

{ }

=
0

= l2n.

The modified Markov trace has quite the same structure as the previous one. In partic-
ular, it can be decomposed on the usual traces over the generic modules exactly in the
same way.

TrχM =
∑

s≥0

sin(s + 1)χ

sin χ
trVsM. (15)
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This time the coefficient of each trace is a polynomial in l, and it is a remarkable fact
that it does not depend on n at all.

It turns out that we can define the Markov trace (or the modified Markov trace)
in the same way for the Two-Boundary Temperley-Lieb algebra 2BTL, counting the
blobbed loops with the appropriate weight n1, n2 or n12 (or l1, l2 for non-contractible
loops in the case of the modified Markov trace). Recall that contractible loops touching
both boundaries appear only if we work with an even number of strands N , so the
number of strings must always be even, and we write s = 2j. Again, this object admits
a decomposition on the usual traces over the different generic modules

TrχM = trV0M +
∑

j≥1
α,β=b,u

Dαβ
2j tr

V
αβ
2j

M. (16)

where the Dαβ
2j are some polynomials in n1, n2 and n (or l1, l2, l only if we are dealing with

the modified Markov trace). The computation of the coefficients Dαβ
2j can be achieved by

various methods, see [11] for a combinatorial proof or [19] for a more algebraic approach.
The results are as follows. Let u1 and u2 be such that

l1 =
sin(u1 + 1)χ

sinu1χ
(17)

and

l2 =
sin(u2 + 1)χ

sinu2χ
(18)

then

Dbb
2j =

sin(u1 + u2 − 1 + 2j)χ sin χ

sin u1χ sin u2χ
(19a)

Dbu
2j =

sin(u1 − u2 − 1 + 2j)χ sin χ

sin u1χ sin−u2χ
(19b)

Dub
2j =

sin(−u1 + u2 − 1 + 2j)χ sin χ

sin−u1χ sin u2χ
(19c)

Duu
2j =

sin(−u1 − u2 − 1 + 2j)χ sin χ

sin−u1χ sin−u2χ
. (19d)

These equations are related by the blobbed/unblobbed transformation (13). To see
this, note that the weight of a non-contractible loop marked with a black square (recall

the black square stands for the action of 1 − b1) is simply l − l1 = sin(−u1+1)γ
sin−u1γ . The

transformation (13) has thus the effect of changing u1 into −u1, or u2 into −u2. These
are indeed the transformations needed to pass from Dbb

2j to Dub
2j , or Dbu

2j , or Duu
2j .

The physical interest of the Markov trace, or of the modified Markov trace, is that it
counts automatically with the correct weight all the loops of a Temperley-Lieb element
when the top and the bottom of the diagram are identified. This is exactly what we
need to write down the partition function of our loop model. The transfer matrix on N
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strands is an element of the algebra 2BTLN , see (12). We want to work on an annulus
of size L × N , so taking periodic boundary conditions in the L direction, the partition
function of our loop model is just the modified Markov trace of a power of the transfer
matrix.

Z = TrχTL
N (20)

Eq. (16) gives the natural decomposition over the different modules

Z = trV0T
L
N +

∑

j≥1
α,β=b,u

Dαβ
2j tr

V
αβ
2j

TL
N . (21)

This relation holds for every N and L. In particular, it must remain true in the limit
L,N → ∞ with L/N fixed. Then if we introduce the (properly renormalized) characters

Kαβ
2j =

{

lim
L,N→∞

tr
V

αβ
2j

TL
N

}

renorm.

(22)

the conformal partition function will have the following structure

Z = K0 +
∑

j≥1
α,β=b,u

Dαβ
2j Kαβ

2j . (23)

Hence, the computation of the conformal partition function has been reduced to the
determination of the characters Kαβ

2j .

3 Coulomb gas for the sector without strings

In the previous section we explained why the partition function should have an algebraic
structure coming from the Two-Boundary Temperley-Lieb algebra that we have just
presented, and hence can be decomposed on different sectors corresponding to the generic
irreducible representations of 2BTL. Hence we are allowed to deal with each sector
independently. This section is devoted to the computation by Coulomb gas arguments
of the character K0, defined in the previous section as the trace over the module V0

of 2BTLN . First we detail how to obtain the parametrizations given in Table 1 in the
Coulomb gas framework. These parametrizations have also a deeper algebraic origin
associated with the Temperley-Lieb algebra [12, 11, 16, 19], but the detailed discussion
of this aspect will be deferred to [19].

3.1 A reminder: Coulomb gas on an infinite cylinder

We now want to map our boundary loop model on a height model for which it is simpler
to compute some quantities such as correlation functions or partition functions. We
recall some classical arguments here. For the loop model on an infinite cylinder, the
mapping is well-known. This must correspond to the limit N ≫ L (recall L is the
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periodic direction). First begin by giving each loop an orientation, then interpret the
oriented loops as level lines for a height field h defined on the cylinder. The height varies
by ∆h = ±π when upon crossing an oriented line. Each loop is counted with a weight
e±iγ , depending on its orientation. The sum over the two orientations then gives the
correct initial weight n = eiγ + e−iγ to the original loop. Then it is generally argued
that this model renormalizes to a free gaussian model with action

S =
g

4π

∫

(∂h)2 d2x. (24)

This is however not sufficient to count correctly the loops which wrap around the cylin-
der. To do this, one has to add two charges e±i(γ/π)h at the ends of the cylinder. This
modifies the scaling dimension of the vertex operator eiαh to

∆α =
g

4

{

(α + γ/π)2 − (γ/π)2
}

. (25)

The value of g can then be fixed by the following argument. We started from a model
in which the height difference when passing through a loop is ∆h = ±π, so the operator
cos 2h should be marginal. This recquires ∆2 = 2 or ∆−2 = 2, so

g = 1 ± γ

π
. (26)

The choice of the sign can actually lead to two different phases of the loop model, dense
or dilute. We are working with a dense loop model, so we have to choose the solution
g < 1. To finish, let us determine the central charge of this conformal field theory. The
addition of charges at the ends of the cylinder has changed the behaviour of the partition
function on the very long cylinder (N ≫ L) by a factor eπN(γ/π)2/g. This is sufficient
to identify the central charge, since we expect Z ∼ e−πcN/6L in that limit, instead of
e−πN/6L without the addition of charges. Then we have

c = 1 − 6
(γ/π)2

g
. (27)

Defining m such that γ = π
m+1 , this is nothing but the well-known formula (3).

3.2 Boundaries in the height model

Now we turn to the finite geometry of the annulus, and deal with the boundaries. Begin
again by giving an orientation to each loop. The bulk loops are counted with a weight
e−iγ if they are clockwise oriented, and eiγ in the other case. The Temperley-Lieb
generators ei’s hence can be defined as acting on the orientations as shown in Fig. 3.
It is not difficult to check that the e′is satisfy the relations (7) also in the oriented loop
language.

We must find out how the blob operator b1 acts on the loop orientation. There are
four different faces (triangles) with half oriented loops which can be combined to create
b1 (see Fig. 4). Two of them conserve the orientation of the loop, which means that there
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=

= +

+++

+eiγ +e−iγ

Figure 3: Faces for the oriented loop model used for the Coulomb gas construction. The
first line is just the identity in the Temperley-Lieb algebra, while the second line is a
generator ei satisfying (7).

is one arrow coming from the left side of the triangle, and one arrow entering it. The
two others do not conserve it: both arrows point in the same direction. It is clear that
the two faces which do not conserve the orientation cannot contribute to the weight of a
loop touching only this boundary, because the orientation will be conserved everywhere
else, so when we close the loop this contribution just vanishes. Now assume that the
blob just adds some arbitrary phase factor e±ir1γ to a closed loop. Then requiring (9c),
the loop gets a weight n1 ∝ sin(rr +1)γ instead of n = 2cos γ. The correct normalization
is fixed by (9b). There remains one free parameter: the phase of the coefficients of the
faces which do not conserve the orientation. We end up with the expression of the blob
b1 given in Fig. 4, where eir12γ is our free parameter.

=
1

2i sin r1γ







−e−ir1γ +ie−ir12γ +eir1γ +ieir12γ







=
1

2i sin r2γ







eir2γ + i −e−ir2γ + i







Figure 4: Action of the blobs on the oriented loops. The orientation of the loops is not
conserved by the blobs.

The same can be done for the second blob b2, so we actually have two free parameters
coming from the boundary faces which do not conserve the orientation. Our problem
has a global phase invariance, so one of them can be fixed, to give the expression of
b2 shown in Fig. 4. All the different loop weights can then be computed in terms of
the parameters r1, r2 and r12. The weights n1 and n2 are given by the sum over both
orientations

n1 =
sin(r1 + 1)γ

sin r1γ
(28)
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and

n2 =
sin(r2 + 1)γ

sin r2γ
. (29)

The weight of a loop touching both boundaries is a sum over four possible configurations
of the orientations (see Fig. 5), giving the parametrization

n12 =

sin

(
r1 + r2 + 1 + r12

2
γ

)

sin

(
r1 + r2 + 1 − r12

2
γ

)

sin r1γ sin r2γ
(30)

as claimed in the introduction (see Table 1).

=
−1

4 sin r1γ sin r2γ

e−i(r1+r2+1)γ −e−ir12γ

+ei(r1+r2+1)γ − eir12γ













Figure 5: The four terms giving the parametrization (30) for the weight of a loop touching
both boundaries.

3.3 Spectrum in the sector without strings

In the sector without strings, we can compute the conformal character K0 using Coulomb
gas arguments. The previous prescription for the operators b1 and b2 gives us a height
model with the action (24), with Neumann boundary conditions ∂yh(x, y = 0) =
∂yh(x, y = N) = 0. Because of the boundary vertices which introduce some mag-
netic charge in the system, we see that there can be a difference of height if we turn once
around the annulus:

h(x + L, y) = 2pπ + h(x, y), p ∈ Z.

Clearly, p is the number of boundary vertices which inject charge in the system minus
the number of those which take charge from it (see Fig. 4). Such a configuration must
be counted with a weight eipr12γ .

In addition, we must treat the non-contractible loops. Note that a non-contractible
loop which touch the boundary is no longer a loop in our prescription for the Coulomb
gas, because it is broken in several half-loops on the boundary. However, the non-
contractible loops which remain in the bulk must be counted correctly (see Fig. 7).
Remember that we do not want to compute the full partition function here, but only the
character K0 corresponding to the representation of 2BTL without string V0. Consider
the following instructive example: we want to compute the trace over the module V0 of
the following element of 2BTL

e1b1 =
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x = 0 x = L
y = 0

y = N

Figure 6: Coulomb gas on the annulus. The boundaries x = 0 and x = L are identified,
but there can be a difference of height h(x + L, y) = 2pπ + h(x, y), p ∈ Z because the
charge is not conserved along a boundary (see also figure 4). Here p = 3.

Only 4 states in V0 contribute to this trace

.

It should be clear why there are exactly 4 = 22 states contributing to the trace. The
top of the diagram corresponding to our element e1b1 puts strong constraints on these
states. More precisely, it gives all the information about the part which is disconnected
from the bottom of the diagram [21]. Then if there are 2j lines (not blobbed, as in our
example) going from the bottom to the top of the diagram, the states that contribute
to the trace are exactly those we can form with half-loops, wathever their blob status
is. In other words, the number of these states is the dimension of the module V0 on 2j
strands, that is 22j . A more complete study of this is given in [11]. This conclusion is
sufficient for our discussion: each non-contractible loop in the bulk contributes with a
weight 2 to the character K0.

This has an important consequence for our Coulomb gas construction : since each
non-contractible loop that we cross when we go from one boundary to another is weighted
by 2, we do not have to put some additional electric charge to correct their weight (unlike
the case of the infinite cylinder that we discussed above).

y = 0

y = N

Figure 7: The non-contractible loops in the Coulomb gas framework. Those touching
the boundaries become an ensemble of half-loops between points on the boundary. Each
non-contractible loop in the bulk contributes to the character K0 with a weight 2.

Then, so far, we are able to count correctly the lines going from one boundary to
another, and the non-contractible loops in the bulk. The next question is of course: what
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do we do with the vertices which conserve the charge, which should be given weights
proportional to eir1γ , eir2γ , etc.? Our guess here is that they do not contribute to the
universal part of the character, so K0 does not depend at all on r1 and r2. The reason
for this is that the part involving r1 (resp. r2) in b1 (resp. b2) is diagonal, so it can be
viewed equivalently as a field living on the boundary. We expect any such boundary field
to flow towards a fixed boundary condition under RG, which should not depend on r1

(or r2). We have checked that conjecture numerically, by transfer-matrix diagonalization
and extraction of the finite-size corrections. On the infinite strip of width N , the leading
exponent h is related to finite-size corrections to the free energy per area unit through
the well-known relation

fN = fbulk +
fboundary

N
+

πh − πc/24

N2
+ O

(
1

N3

)

. (31)

We have computed fN for sizes up to N = 18, then extracted the leading exponent h
using (31) up to order N−4. Although we do not reach a very satisfying precision, our
numerical results are compatible with the conjecture that h does only depend on r12 (see
Fig. 8).

a. b.

Figure 8: Numerical results: we compute the largest eigenvalue of the transfer matrix,
then exctract the leading exponent h from the finite-size corrections. Here we plot the
quantity Φ related to the exponent by h = Φ2−1

4m(m+1) versus r1 (a) and r12 (b). Although

the precision obtained here is not very satisfying, our conclusion is that Φ (and hence
h) does not depend at all on r1 and r2 (a), but we rather have Φ = r12 (b).

Now we are ready to compute the character K0 itself. Let us decompose h(x, y) as

h(x, y) = 2pπ + h̃(x, y)

where h̃(x + L, y) = h̃(x, y) and ∂yh(x, y = 0) = ∂yh(x, y = N) = 0. The integration
over h̃ gives the usual Z0 = q−1/24/P (q). Then we are left with the contribution of the
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height difference 2pπ, counted with a weight eipr12γ as explained above

K0 ∝ Z0

∑

p∈Z

eipr12γe−(g/4π)p2(2π/l)2(NL) = Z0

∑

p∈Z

eipr12γe−(πg/τ)p2

where τ = L/N . Now we want the expression of some Virasoro character, so we have to
work with q = e−πτ , not e−2π/τ . We perform the Fourier transform using the Poisson
formula

∑

p → ∑

n

∫
dpe−2πinp. The sum becomes

∑

=
∑

n

∫

dpe−(πg/τ)p2+ip(r12γ−2πn)

= (τ/g)1/2
∑

n

e−(πτ/4g)(r12γ/π−2n)2

= (τ/g)1/2
∑

n

qhr12−2n,r12−(c−1)/24. (32)

Normalizing the final expression such that the contribution of the identity operator
(r12 = 1) without its descendents is just q−c/24, we end up with

K0 =
q−c/24

P (q)

∑

n∈Z

qhr12−2n,r12 . (33)

Note that, although this character depends only on r12, it is not true that it does not
depend on the loop weights n1 and n2, because all these parameters are linked by (30).
Thus the character K0 is a function of n, n1, n2 and n12 as expected. Note also that,
because of the parametrization (30), we expect that K0 is invariant under

r12 → −r12 (34)

and
r12 → r12 + 2π/γ = r12 + 2(m + 1) (35)

which is indeed the case for (33), because of the symmetries of Kac’s formula (5).

3.4 Relation with the open XXZ spin chain2

The fact that the representation V0 of 2BTLN is exactly of size 2N and the oriented loop
framework we developed above both suggest that there is some link with the celebrated
spin 1/2 XXZ chain, with appropriate boundary conditions. We would like to develop
a bit this subject in the following section. In fact, the equivalence between the repre-
sentation V0 presented above and the so-called spin chain representation of 2BTLN was
proved in [16].

2This digression can be skipped at the first lecture.
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It is well-known that the Temperley-Lieb generators ei can be interpreted as a local
Hamiltonian density, that is we can construct a simple Hamiltonian (here with the blob
operators)

H = −λ1b1 − λ2b2 −
N−1∑

i=1

ei (36)

where λ1 and λ2 are two (so far unknown) constants.

ei = −1

2
(σx

i σx
i + σy

i σy
i + cos γ σz

i σ
z
i ) + i

sin γ

2

(
σz

i − σz
i+1

)
+

cos γ

2

b1 = − 1

2 sin r1γ
(sin s1γ σz

1 + cos s1γ σz
1 + i cos r1γ σz

1) +
1

2

b2 =
1

2 sin r2γ
(sin s2γ σz

1 + cos s2γ σz
1 + i cos r2γ σz

1) +
1

2

with
r12 = s2 − s1. (37)

If we parametrize

λ1 =
sin γ sin r1γ

sin φ1 sin(r1γ + φ1)
λ2 =

sin γ sin r2γ

sin φ2 sin(r2γ + φ2)
. (38)

then our Hamiltonian is, up to an irrelevant additive constant

H =
1

2

{
N−1∑

i=1

(σx
i σx

i + σy
i σy

i + cos γ σz
i σ

z
i ) (39)

+ sin γ

[
1

sin φ1 sin(r1γ + φ1)
(sin s1γ σx

1 + cos s1γ σy
1) + icotanφ1 cotan(r1γ + φ1) σz

1

]

− sin γ

[
1

sin φ2 sin(r2γ + φ2)

(
sin s2γ σx

N + cos s2γ σy
N

)
+ icotanφ2 cotan(r2γ + φ2) σz

N

]}

Note that this is a Hamiltonian for the XXZ chain with non-diagonal boundary terms.
This kind of Hamiltonian has been studied in great detail over the recent years [22, 18,
23]. Note also that this Hamiltonian is not hermitian, which was already the case for
closed boundaries with an SU(2)q symmetry [24].

Our derivation of the character K0 (33) applies directly to the Hamiltonian (39), so
we make the following conjecture about the spectrum of this spin chain. The universal
part of the spectrum of H does not depend on λ1 and λ2 when these are positive real
numbers. This has been discussed in some detail in [10] in the case of one boundary, and
we expect this to be true also in the present case. Then the spectrum should depend
neither on the parameters φ1, φ2, nor on r1 and r2. The only relevant parameter is the
difference s2 − s1, which is related to the weights of the loops touching both boundaries
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in the loop model via (37) and (30). The spectrum of the XXZ Hamiltonian (39) is then
given by

En =
πvF

N

(
hr12−2n,r12

− c/24
)
. (40)

where vF = π sinγ
γ is the ”Fermi velocity”.

4 The two-boundary partition function

4.1 One-boundary case

In [10], it has been conjectured that the partition function on the annulus with one free
boundary condition and one blob is

Z1B =
q−c/24

P (q)







∑

j≥0

sin(u1 + 2j)χ

sin u1χ
qhr1,r1+2j +

∑

j≥1

sin(−u1 + 2j)

sin−u1γ
qh−r1,−r1+2j






(41)

where we recognize again some polynomials in l = 2cos χ and l1 = sin(u1+1)χ
sin u1χ . This

partition function hence has the structure we have detailed in the previous section, but
on the One-Boundary Temperley-Lieb algebra 1BTL. So far, we have failed to provide
some Coulomb gas arguments to derive the exponents hr,r. Strong numerical evidence
has been given in [10] for general r1, and exact results have been obtained from Bethe
ansatz when r1 is an integer [17]. Many of these results have been rederived since
by Kostov using 2d quantum gravity techniques [14, 15]. Note the consistency with our
computation of K0 from the previous section : the leading exponent we expect from (33)
is hr12,r12. The one-boundary case should be recovered from n2 = n and n12 = n1, that is
r2 = 1 and r12 = r1. We see that hr1,r1 is indeed the leading exponent appearing in (41).
A more precise analysis of the relation between the character K0 for two boundaries and
the character qhr1,r1/P (q) in (41) also exists, although it recquires more representation
theory for the algebra 2BTL. We will report on this in [19].

4.2 Boundary states and the partition function

Now we turn to the computation which is the core of this paper, and we determine
completely the partition function of our two-boundary loop model in the most gen-
eral case. The main idea of this computation follows the work of Cardy on minimal
theories [25]. We start from the one-boundary partition function Z1B , and compute
its modular transform. The result is then interpreted as a scalar product between
an initial boundary state |B1〉 and the final state |free〉, with an evolution operator
q̃L0+L̄0−c/12 = e−2πN/L(L0+L̄0−c/12) inserted (see Fig. 9). Then we argue that this result
together with the knowledge of the sector without strings is sufficient to guess the parti-
tion function of the form 〈B2| q̃L0+L̄0−c/12 |B1〉. We conclude by computing the modular
transform back, and get the general partition function in the form (23).
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q → q̃

L0 − c
24

L0 + L̄0 − c
12

Modular
transform

|B1〉

|B2〉

B1 B2

Figure 9: Modular transform of the partition function. This corresponds to the “open”
or “closed string channel” respectively. We have ZB1B2 = 〈B1| q̃L0+L̄0−c/12 |B2〉 .

Modular transform of the one-boundary partition function: We start from
(41) and use again the Poisson formula

∑

j →
∑

p

∫
djei2πjp, exactly as in (32).

Z1B = (2g)−1/2 q̃−c/12

P (q̃2)

∑

p∈Z

sin (u1χ + r1(γ/g)(p + χ/π))

sin u1χ
q̃2(1/4g)[(χ/π+p)2−(γ/π)2]. (42)

What with loops touching both boundaries? Something special must happen in
the sector without strings, because of the loops touching both boundaries. The one-
boundary partition function may be seen as a very special case of the two-boundary one,
when n2 = n and n12 = n1. Thus, in the one-boundary partition function, the character
K0 given by (33) is present, with the special value r12 = r1. However, for a generic
value of r12, the exponents hr12−2n,r12 have no such special value. On the other hand, we
expect all the exponents in the string sectors to be completely independent of r12, since
they cannot depend on the weight of loops touching both boundaries. Hence, in this
respect, the sector without strings decouples from all the other sectors. In particular,
the formalism shown in Fig. 9 should apply if we simply cancel the contribution K0

coming from the sector without strings. At the end of the computation, because of the
form of the partition function (23), it will be sufficient to add K0 with r12 giving the
correct weight n12 to the loops touching both boundaries, see (30). We have then

Z1B − K0(r12 = r1) = (2g)−1/2 q̃−c/12

P (q̃2)

∑

p∈Z

sin (u1χ + r1(γ/πg)(pπ + χ))

sin u1χ
q̃2(1/4g)[(χ/π+p)2−(γ/π)2]

−(2g)−1/2 q̃−c/12

P (q̃2)

∑

p∈Z

cos (r1pγ) q̃2(g/4)[p2−(γ/πg)2]

≡ 〈free| q̃L0+L̄0−c/12 |B(u1, r1)〉 . (43)
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Boundary states: Recall that the free boundary condition on the boundary 2 actually
corresponds to u2 = r2 = 1. What we want to do now is to identify the terms of

〈B(u2, r2)| q̃L0+L̄0−c/12 |B(u1, r1)〉 =
q̃−c/12

P (q̃2)

∑

hα

〈B(u2, r2)|hα〉 〈hα|B(u1, r1)〉 q̃2hα (44)

where the sum runs over all the primary exponents appearing in (43), and the states |hα〉
satisfy L0 |hα〉 = L̄0 |hα〉 = hα |hα〉. We have to distinguish the two sets of exponents
appearing in (43).

• hα = 1/4g
[
(χ/π + p)2 − (γ/π)2

]
: Eq. (43) gives

〈B(1, 1)|hα〉 〈hα|B(u1, r1)〉 = (2g)−1/2 sin (u1χ + r1(γ/πg)(pπ + χ))

sin u1χ
,

so we can guess that the straightforward generalization holds

〈B(u2, r2)|hα〉 〈hα|B(u1, r1)〉

= (2g)−1/2 sin χ

sin u1χ sin u2χ

sin (u1χ + r1(γ/πg)(pπ + χ)) sin (u2χ + r2(γ/πg)(pπ + χ))

sin (χ + (γ/πg)(pπ + χ))
(45)

• hα = g/4
[
p2 − (γ/πg)2

]
: This time Eq. (43) seems to give simply

〈B(1, 1)|hα〉 〈hα|B(u1, r1)〉 = − (2g)−1/2 cos (r1pγ) ,

a result which is independent of u1. This actually would lead to absurd conclusions.
Indeed, we work in the string sectors, which all give non-contractible loops, so we
expect all the terms to be affected somehow by the weights l, l1 and l2. The
only terms which are completely independent of these weights appear in the sector
without string, and we have cancelled this contribution. This contradiction comes
from the fact that hα is even in p, so when we take the sum over all the exponents,
only the even part of 〈B(1, 1)|hα〉 〈hα|B(u1, r1)〉 remains. Inspired by the form of
the coefficients we have already encountered, we can try the simple but non-trivial
inclusion of the following odd term in p

〈B(1, 1)|hα〉 〈hα|B(u1, r1)〉 = − (2g)−1/2 sin(u1χ) cos (r1pγ) + cos(u1χ) sin (r1pγ)

sin u1χ
,

leading to the generalization

〈B(u2, r2)|hα〉 〈hα|B(u1, r1)〉

= − (2g)−1/2 sinχ

sin u1χ sin u2χ

sin (u1χ + pr1γ) sin (u2χ + pr2γ)

sin (χ + pγ)
(46)
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Modular transform: Although the (partly guessed) relations (45) and (46) seem
quite complicated, they lead to quite a nice formula when we go back to the “open
string channel” (see Fig. 9). To see this, we need once again to perform a modular
transform. The two sums appearing in (44) are now

Z+ = −(2g)−1/2 q̃−c/12

P (q̃2)

∑

p∈Z

sin χ

sinu1χ sin u2χ

sin (u1χ + pr1γ) sin (u2χ + pr2γ)

sin (χ + pγ)
q̃2(g/4)[p2−(γ/πg)2](47)

and

Z− = (2g)−1/2 q̃−c/12

P (q̃2)

∑

p∈Z

sin χ

sin u1χ sinu2χ

× sin (u1χ + r1(γ/πg)(pπ + χ)) sin (u2χ + r2(γ/πg)(pπ + χ))

sin (χ + (γ/πg)(pπ + χ))
q̃2(1/4g)[(χ/π+p)2−(γ/π)2]

2

.(48)

We can compute the modular transform of each part independently, and add the contri-
butions in the end. Let us begin with Z+. The product can be decomposed as

− sin (u1χ + pr1γ) sin (u2 + pr2γ)

sin (χ + pγ)

=
1

2
Im

∑

ǫ1,2=±1

∑

j≥1

ǫ1ǫ2e
i[(ǫ1u1+ǫ2u2−1+2j)χ+pπg((ǫ1r1+ǫ2r2−1)(γ/πg)−2j)].

Z+ is then of the form

Z+ =
∑

ǫ1,2=±1

∑

j≥1

Z+(j, ǫ1,2)

and Z+(j, ǫ1,2) is a sum over p ∈ Z. Let us write R = ǫ1r1 + ǫ2r2 − 1 and U = ǫ1u1 +
ǫ2u2−1. We use the Poisson formula

∑

p∈Z
→ ∑

n∈Z

∫
dpei2πpn to compute the modular

transform of Z+(j, ǫ1,2). Note that we also use q̃−1/12/P (q̃2) = (τ/2)−1/2q−1/24/P (q) as
usual. The sum appearing in the computation is

∑

p∈Z

e−(π/τ)gp2
eipπg(Rγ/πg−2j)

=
∑

n∈Z

∫

dp ei2πpne−(π/τ)gp2
eipπg(Rγ/πg−2j)

= (τg)1/2
∑

n∈Z

qhR−2n,R+2j−(c−1)/24

Putting all things together, we get

Z+ =
1

2

q−c/24

P (q)

∑

ǫ1,2=±1

∑

j≥1

∑

n∈Z

sin(ǫ1u1 + ǫ2u2 − 1 + 2j)χ sin χ

sin ǫ1u1χ sin ǫ2u2χ
qhǫ1r1+ǫ2r2−1−2n,ǫ1r1+ǫ2r2−1+2j .

(49)
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Now consider the case of Z−. The computation is quite similar. First we have to
decompose the sinus product. Let x = (γ/g)(p + χ/π), then

sin(r1x + u1) sin(r2x + u2χ)

sin(x + χ)

=
1

2
Im

∑

ǫ1,2=±1

∑

n≥0

ǫ1ǫ2e
i[(ǫ1r1+ǫ2r2−1−2n)x+(ǫ1u1+ǫ2u2−1−2n)χ]

Then we use Poisson’s formula
∑

p∈Z
→ ∑

j∈Z

∫
dpei2πjp to get in the end

Z− =
1

2

q−c/24

P (q)

∑

ǫ1,2=±1

∑

j∈Z

∑

n≥0

sin(ǫ1u1 + ǫ2u2 − 1 + 2j)χ sin χ

sin ǫ1u1χ sin ǫ2u2χ
qhǫ1r1+ǫ2r2−1−2n,ǫ1r1+ǫ2r2−1+2j

and after some relabelling of the indices, we have

Z− =
1

2

q−c/24

P (q)

∑

ǫ1,2=±1

∑

j≥1

sin(ǫ1u1 + ǫ2u2 − 1 + 2j)χ sin χ

sin ǫ1u1χ sin ǫ2u2χ

×







∑

n≥0

qhǫ1r1+ǫ2r2−1−2n,ǫ1r1+ǫ2r2−1+2j −
∑

n<0

qhǫ1r1+ǫ2r2−1−2n,ǫ1r1+ǫ2r2−1+2j






.(50)

The two-boundary partition function: Adding the terms (49) and (50), we find
that the total contribution of all the string sectors is

q−c/24

P (q)

∑

ǫ1,2=±1

∑

j≥1

∑

n≥0

sin(ǫ1u1 + ǫ2u2 − 1 + 2j)χ sin χ

sin ǫ1u1χ sin ǫ2u2χ
qhǫ1r1+ǫ2r2−1−2n,ǫ1r1+ǫ2r2−1+2j . (51)

If we now take into account the sector without strings and add its conformal character
K0, we obtain the partition function (6) of our loop model, as claimed in the introduction
of this paper. This partition function has the form (23) as expected. We are now able
to identify all the conformal characters corresponding to the different sectors.

Kbb
2j =

q−c/24

P (q)

∑

n≥0

qhr1+r2−1−2n,r1+r2−1+2j (52a)

Kbu
2j =

q−c/24

P (q)

∑

n≥0

qhr1−r2−1−2n,r1−r2−1+2j (52b)

Kub
2j =

q−c/24

P (q)

∑

n≥0

qh−r1+r2−1−2n,−r1+r2−1+2j (52c)

Kuu
2j =

q−c/24

P (q)

∑

n≥0

qh−r1−r2−1−2n,−r1−r2−1+2j (52d)

Note that these characters are all related by the blobbed/unblobbed transformation (13).
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5 Comparison with known results

We would like to check our partition function against some known results from [25, 26, 9].

5.1 Critical percolation on the annulus

As a first simple application of our result, we can turn to the critical percolation problem
on an annulus. Critical percolation corresponds to l = l1 = l2 = n = n1 = n2 = n12 = 1,
and in that case the partition function (6) is simply

Z = 1. (53)

To see this, it is sufficient to note that our partition function reduces to the one-boundary
partition function (41) when l2 = n2 = n and n12 = n1. The one-boundary case itself
reduces to the free/free case when l1 = n1 = n. Then for l = n = 1, it is easy to see that
Z = 1 using Euler’s pentagonal identity. Now if we want to compute, for example, the
probability Pcrossing that there is at least one contractible percolation cluster going from
one boundary to the other, we have to vary the weight of loops touching both boundaries
n12. Indeed, each percolation cluster is encircled by exactly one loop, and each cluster
touches a boundary if and only if its surrounding loop touches it. Since we know that
n12 does only appear through r12 in the conformal character K0, we have

Z(n12) = 1 + K0(r12) − K0(r12 = 1) (54)

and then

Pcrossing = 1 − Z(n12 = 0)

= K0(r12 = 1) − K0(r12 = 3)

=

∑

k∈Z

(

q6k2+k + q6k2+5k+1 − 2q6k2+3k+ 1
3

)

∏

k≥1 (1 − qk)
(55)

which agrees with [26].

5.2 Relation with Q-state Potts models

It is a well-known result that the Q-state Potts model can be reformulated as a dense
loop gas with the loop fugacity n =

√
Q. Let us recall here how this can be achieved.

The Potts model can be defined on the square lattice, with a spin σx ∈ {1, . . . , Q} living
on each site. Only the neighbouring sites interact, and the partition function is the sum
over all the Potts spin configurations

ZPotts =
∑

Potts

∏

<xx′>

exp {Kδ(σx, σx′)} (56)

and this is rewritten as
ZPotts =

∑

Potts

∏

<xx′>

(
1 + δx,x′v

)
(57)
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with v = eK − 1. Then the most important step is to interpret (57) as a random-cluster
(Fortuin-Kasteleyn) partition function. For a given Potts configuration, the FK clusters
live inside the Potts clusters.

ZPotts =
∑

Potts

∑

FK⊂Potts

v#FK bonds (58)

Taking the trace over the Potts configurations gives the Potts partition function in its
Fortuin-Kasteleyn representation

ZPotts =
∑

FK

v#FK bondsQ#FK clusters. (59)

In the FK representation, the mapping to the loop model is obvious: one has to draw
all the loops which encircle the FK clusters or the clusters on the dual lattice (see
Fig. 10). Now let N be the number of loops, C the number of clusters and C∗ the
number of dual clusters. Clearly, N = C + C∗. Moreover, Euler’s formula gives C =
C∗ − #FK bonds + #lattice vertices. Then, up to an unimportant global factor, (59)
becomes

ZPotts =
∑

Loop

(
v√
Q

)#FK bonds √

Q
N

. (60)

It is well-known that the Potts model is critical when it is satisfies the self-duality relation
v/

√
Q = 1. In that case, (60) is exactly the partition function of a loop gas with fugacity√

Q.

It is not difficult to generalize the previous discussion to the boundary case. Let us
assume that the Potts spins living on the boundaries are restricted to some subsets S1

and S2 ⊂ {1, . . . , Q}. Let

Q1 = |S1| Q2 = |S2| Q12 = |S1 ∩ S2| (61)

then taking again the trace over Potts configurations we get the following relation instead
of (59)

ZPotts =
∑

FK

v#FK bondsQCQC1
1 QC2

2 QC12
12 (62)

where C is the number of bulk clusters, and C1, C2, C12 are the number of FK clusters
touching the boundary 1, 2, or both of them. Introducing the number of loops of the
same type N1, N2, N12, it is clear that N1 = C1, N2 = C2 and N12 = C12 since each
boundary cluster is encircled by exactly one boundary loop. For the bulk loops, this is
different because each one can encircle either a FK cluster or a dual cluster, so we still
have N = C + C∗. Now Euler’s relation gives C + C1 + C2 + C12 = C∗ −#FK bonds +
#lattice vertices. Up to a global factor, (62) becomes

ZPotts =
∑

Loop

(
v√
Q

)#FK bonds √

Q
N

(
Q1√
Q

)N1
(

Q2√
Q

)N2
(

Q12√
Q

)N12

(63)
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Figure 10: Mapping from the Potts model to the loop model. The black structures are
the FK clusters, while dual clusters are in grey.

Again, we can impose the self-duality relation v =
√

Q and then the identification of the
loop weights is straightforward:

n =
√

Q n1 =
Q1√
Q

n2 =
Q2√
Q

n12 =
Q12√

Q
(64)

At this point we have given the correct weight to all contractible loops. In this article
we are interested in a loop model on an annulus, so we have to take care about the
non-contractible loops. This turns out to be non-trivial, and rather crucial if we want to
recover some known partition functions of the Potts model on the annulus. The subtlety
comes from the non-contractible FK clusters which touch both boundaries, which must
be restricted to the set S1 ∩ S2. However, in the loop model these configurations are
those with exactly two non-contractible loop, each one touching one boundary. Such
configurations are counted with a weight l1l2 6= Q12. To solve this problem, we must
identify the term coming with the coefficient l1l2 in the loop partition function (6), and
give it the correct weight Q12 to get the Potts partition function.

Let Zl1l2 be this term in the loop partition function. To identify this term, it is
necessary to analyse carefully the polynomials (19). These can actually be written in
terms of the Chebyshev polynomials of the second kind Un(x), as [11]

Dbb
2j = l1l2U2j−2(l/2) − (l1 + l2)U2j−3(l/2) + U2j−4(l/2) (65)
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with similar expressions for the other polynomials Dαβ
2j , obtained by using the blobbed/unblobbed

transformation (13), which maps l1 on l − l1 and/or l2 on l − l2. With those relations
the identification of Zl1l2 is straightforward, noting that the constant coefficient of the
polynomial U2n is (−1)n.

Zl1l2 =
q−c/24

P (q)

∑

j≥1

(−1)j−1
{

Kbb
2j − Kub

2j − Kbu
2j + Kuu

2j

}

(66)

Thus we have found the precise relation between our loop partition function and the
Potts one

ZPotts = Zloop + (Q12 − l1l2) Zl1l2 (67)

where all the loop weights are given by (64) for the contractible loops, and l = n,
l1 = n1, l2 = n2 for non-contractible ones. Of course we could have improved slightly
the mapping by distinguishing Potts clusters according to homotopy. However, this will
not be necessary to recover the known results about the Potts model.

5.2.1 Ising model

We would like to use (67) to recover some results about the Ising model on an annulus,
which appeared in [25, 9]. Assume for example that the Ising spins are fixed to + on
the first boundary and to − on the second one. This corresponds in our formalism to
Q = 2, Q1 = Q2 = 1 and Q12 = 0. Then all the parameters (see Table 1 for the
parametrizations) of the loop model are fixed: we have γ = χ = π/4, u1 = r1 = u2 =
r2 = 2, r12 = 3. Eq. (6) then gives

Zloop =
q−c/24

P (q)

∑

n∈Z

qh3−2n,3 +
q−c/24

P (q)

∑

j≥1

√
2

2






sin (3 + 2j)

π

4

∑

n≥0

qh3−2n,3+2j

−2 sin (−1 + 2j)
π

4

∑

n≥0

qh−1−2n,−1+2j + sin (−5 + 2j)
π

4

∑

n≥0

qh−5−2n,−5+2j






(68)

and adding the term (66) as in (67), we get the Ising partition function

Z+/− =
q−c/24

P (q)

∑

n∈Z

qh3−2n,3 +
q−c/24

P (q)

∑

j≥1

1

2







(√
2 sin (3 + 2j)

π

4
+ (−1)j

) ∑

n≥0

qh3−2n,3+2j

−2
(√

2 sin (−1 + 2j)
π

4
+ (−1)j

) ∑

n≥0

qh−1−2n,−1+2j

+
(√

2 sin (−5 + 2j)
π

4
+ (−1)j

) ∑

n≥0

qh−5−2n,−5+2j






(69)

Consider the second term between the brackets, which comes with a factor −2. Consider
this term twice, and once make the reindexation j → j + 2, n → n − 2, and the second
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time j → j − 2, n → n + 2. The first term thus obtained cancels almost all the terms
in the first sum between brackets, and the second one almost all those of the third sum.
Collecting what remains after these cancellations, we have

Z+/− =
q−c/24

P (q)

∑

n∈Z

qh3−2n,3

+
1

2

q−c/24

P (q)







∑

j≥1

(√
2 sin (3 + 2j)

π

4
+ (−1)j

)(

qh3,3+2j + qh1,3+2j

)

−
∑

j≥3

(√
2 sin (−5 + 2j)

π

4
+ (−1)j

)(

qh−1,−5+2j + qh−3,−5+2j

)

−2
∑

n≥0

(

qh−5−2n,−3 + qh−1−2n,3

)






(70)

Now we write 2j = 8k + 2, 8k + 4, . . . and then

Z+/− =
q−c/24

P (q)

∑

n∈Z

qh3−2n,3

+
q−c/24

P (q)

∑

k≥0

{

qh3,3+8(k+1) + qh1,3+8(k+1) − qh3,3+2+8k − qh1,3+2+8k

− qh
−1,−5+8(k+1) − qh

−3,−5+8(k+1) + qh
−1,−5+2+8(k+1) + qh

−3,−5+2+8(k+1)

}

−q−c/24

P (q)

∑

n≥0

(

qh−5−2n,−3 + qh−1−2n,3

)

(71)

Recall the Kac formula (5) to see that h−r,−s = hr,s, so all the terms combine to form
the sums

Z+/− =
q−c/24

P (q)

∑

k∈Z

{

qh3,3+8k + qh1,3+8k − qh3,5+8k − qh1,5+8k

}

(72)

Again use the Kac formula and m = 3 (recalling that γ = π
m+1 ) to see that h3,3+8k =

h3,5−8k and then

Z+/− =
q−c/24

P (q)

∑

k∈Z

(

qh1,3+8k − qh1,5+8k

)

. (73)

Here we recognize the Rocha-Caridi formula, and we conclude that

Z+/− = χ1,3 (74)

as expected from [25]. We could have done the same calculation for the spins fixed to
+ on both boundaries. The computation is exactly as the previous one, except that
Q12 = 1 so r12 = 1 this time. This would have led to

Z+/+ = χ1,1 (75)
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which is again a result of Cardy [25]. The other boundary conditions, such as free/+ for
example, reduce to a computation with the one-boundary partition function, which has
been studied in [10]. Again all the results agree with those of [25].

5.2.2 Three-states Potts model

When Q = 3 the Potts spins have three colours A,B,C. For example, we can compute
the partition function with all spins fixed to A or B with equal probability on the first
boundary, and to B or C on the second one. We have then Q1 = Q2 = 2, Q12 = 1, so
the parameters (see Table 1) of the loop model are γ = π/6, u1 = r1 = u2 = r2 = 2,
r12 = 3. The computation is exactly as in the Ising case. Eq. (67) gives

ZAB/BC =
q−c/24

P (q)

∑

n∈Z

qh3−2n,3

+
1

3

q−c/24

P (q)

∑

j≥1







(

2 sin(3 + 2j)
π

6
+ (−1)j

) ∑

n≥0

qh3−2n,3+2j

−2
(

2 sin(−1 + 2j)
π

6
+ (−1)j

) ∑

n≥0

qh−1−2n,−1+2j

+
(

2 sin(−5 + 2j)
π

6
+ (−1)j

) ∑

n≥0

qh−5−2n,−5+2j






(76)

Once again we see that the double sums actually collapse to give

ZAB/BC =
q−c/24

P (q)

∑

n∈Z

qh3−2n,3

+
1

3

q−c/24

P (q)







∑

j≥1

(

2 sin(3 + 2j)
π

6
+ (−1)j

) (

qh3,3+2j + qh1,3+2j

)

−
∑

j≥3

(

2 sin(−5 + 2j)
π

6
+ (−1)j

)(

qh−1,−5+2j + qh−3,−5+2j

)

−3
∑

n≥0

(

qh−1−2n,3 + qh−5−2n,−3

)







=
q−c/24

P (q)

∑

k∈Z

{

qh1,3+12k − qh1,−3+12k + qh3,3+12k − qh3,−3+12k

}

(77)

Using the Rocha-Caridi formula, we finally obtain

ZAB/BC = χ1,3 + χ3,3 (78)

which agrees with [25]. All the results from this reference concerning the Potts model
can be deduced from our loop partition function (6), with the relation (67).
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6 Refined crossing formulae for percolation on the annulus

It should be obvious that the seven-parameter partition function (6) harbours many
more geometrical applications than the known ones presented in the preceding section.
As an illustration we present here just one simple example.

Consider the continuum limit of critical percolation on an annulus of aspect ratio
τ = L/N , and recall that q = e−πτ . Let P0 be the probability that no cluster wraps the

periodic direction, and let Pαβ
j be the probability that there are precisely j ≥ 1 wrapping

clusters which are moreover constrained by the values of the indices α, β. When α = b
(resp. α = u) the leftmost cluster is constrained to touching (resp. to not touching) the
left rim; β similarly constrains the behaviour of the rightmost cluster.

Since Z = 1 we have obviously

P0 = Z
(

χ =
π

2
, u1 = 1, u2 = 1

)

∑

α,β

Pαβ
j =

1

(2j)!

(
∂χ

∂lχ

)2j

Z(u1 = 1, u2 = 1)

∣
∣
∣
∣
∣
χ= π

2

P bb
j =

1

(2j − 2)!

(
∂χ

∂lχ

)2j−2 ∂u1∂u2Z(u1 = 1, u2 = 1)

(∂u1 l1) (∂u2 l2)

∣
∣
∣
∣
∣
χ= π

2

P uu
j =

1

(2j)!

(
∂χ

∂lχ

)2j

Z(u1 = −1, u2 = −1)

∣
∣
∣
∣
∣
χ= π

2

(79)

and since P bu
j = P ub

j by symmetry, this suffices determine all Pαβ
j . Note also that by an

easy duality argument we have P bb
j+1 = P uu

j for j ≥ 1.

We find the following explicit results for j ≤ 3, here given to order ∼ q8:

P0 = 1 − q
1
3 − q

4
3 + 2q2 − 2q

7
3 + 2q3 − 2q

10
3 + 4q4 − 4q

13
3 + 4q5 − 5q

16
3 + 8q6

−8q
19
3 + 8q7 − 10q

22
3 + 14q8 + · · ·

P bb
1 = q

1
3 − 2q + q

4
3 − 2q2 + 2q

7
3 − 4q3 + 6q

10
3 − 6q4 + 8q

13
3 − 12q5 + 13q

16
3 − 16q6

+20q
19
3 − 28q7 + 30q

22
3 − 38q8 + · · ·

P ub
1 = q − q2 − q

10
3 − q4 − q

13
3 + 4q5 − 2q

16
3 + 2q6 − 3q

19
3 + 6q7 − 5q

22
3 + 7q8 + · · ·

P uu
1 = q2 + q3 − 2q

10
3 + 2q4 − 2q

13
3 + q5 − 4q

16
3 + 3q6 − 6q

19
3 + 10q7 − 10q

22
3 + 12q8 + · · ·

P ub
2 = q

10
3 + q

13
3 − 2q5 + 2q

16
3 − 2q6 + 3q

19
3 − 7q7 + 5q

22
3 − 9q8 + · · ·

P uu
2 = q5 + q6 + q8 + · · ·

P ub
3 = q7 + q8 + · · · (80)

and P uu
3 = q

28
3 + · · · . The evaluation of the complete series for aspect ratio τ = 1 leads

to the following numerical values:
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j
∑

α,β Pαβ
j P bb

j P ub
j = P bu

j P uu
j

0 0.6364540018880
1 0.3615910259567 0.2770671481561 0.0413139498152 0.0018959781702
2 0.0019548143402 0.0018959781702 0.0000293394720 0.0000001572261
3 0.0000001578149 0.0000001572261 0.0000000002943 0.0000000000002

These values could presumably be verified by numerical simulations in a square geometry.

7 Conclusion

In this article we have studied a densely packed loop model on the annulus, with general
loop weights that distinguish the two boundaries and the homotopy class of the loops.
The main result is the exact seven-parameter continuum limit partition function (6).
We have verified that a range of special cases of this expression agree with existing
results in the literature, and used it to derive new refined crossing probabilities in critical
percolation.

The directions for future work are quite numerous [19]. Let us discuss briefly a few
of them:

• Distinguishing both rims of the annulus by non-trivial boundary conditions is re-
lated with properties of 1BTL boundary condition changing operators. Resulting
fusion rules are encoded in the result (6). An intriguing—and to our knowledge
novel—feature is that the fusion here depends on a parameter n12 which is unre-
lated to those characterizing the two individual 1BTL operators.

• Specializing the two-boundary model to simpler cases gives rise to a rich hier-
archy of restrictions. For instance, the two-boundary model with n12 = n1 and
n2 = n becomes the one-boundary model, and with n1 = n this in turn becomes
the standard (“zero-boundary”) Temperley-Lieb model. Moreover, in each case
there are “magical” values of the weights, typically corresponding to one of the
r-type parameters taking an integer value. Each of these restrictions corresponds
to the disappearence of some of the states in the transfer matrix, the vanishing
of certain eigenvalue amplitudes, and the reorganization of the Hilbert space into
new modules. There is a rich algebraic meaning of this truncation hierarchy.

• The present work pertains to the dense phase of the O(n) model. In the dilute case
the possibilities are richer: in addition to the boundary-specific n-type weights, one
can weigh differently the boundary monomers depending on the type of loop to
which they belong. This gives rise to several surface transitions. Some of those
will be insensitive to the values of the r-type parameters, others will correspond to
the usual swapping of indices (i.e., hr,s → hs,r in the Kac formula), and yet others
lead to genuinely new behaviour.
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