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Abstract

Following Frénod and Sonnendriicker ([[L]]), we consider the finite Larmor radius
regime for a plasma submitted to a large magnetic field and take into account the
quasineutrality of the plasma. We then rigorously establish the asymptotic limit of
the rescaled Vlasov-Poisson system in a 3D setting with the help of an averaging
lemma.

1 Introduction and main results

1.1 Physical motivation

We are interested in the behaviour of a plasma (id est a gaz made of ions with individual
charge Ze and mass m; and electrons with individual charge —e and mass m., with
m; >> m,) which is submitted to a large external magnetic field. It is “well-known” that
such a field induces fast small oscillations for the particles and consequently introduces a
new small time scale which is very restrictive and inconvenient from the numerical point
of view. The simulation of such plasmas appears to be primordial since the model can
be applied to plasmas in tokamaks from magnetic confinement fusion (like for the ITER
project).

1.1.1 Heuristic study

Let us give some heuristic formal arguments to investigate the behaviour of the plasma: if
we consider the motion of one particle (of charge ¢ > 0, mass m, position = and velocity
v) submitted to an external constant field B, the fundamental principle of mechanics gives
that: p p

d—f:v, d—::%(v/\B) (1.1)
Straightforward calculations show first of all that the parallel velocity, denoted by v) (that
is to say the component of the velocity in the direction of the magnetic field) is conserved
and so is the norm of the perpendicular velocity v, (the component of the velocity in the
perpendicular plane). Then, we can see that the particle moves on a helix whose axis is
the direction of the magnetic field. The rotation period around the axis is the inverse of
the cyclotron frequency 2:

_ lallB]
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and the radius is the so-called Larmor radius:

A
Q
In the case where the magnetic field is very strong, €2 tends to infinity whereas r, tends
to zero. More precisely, if we take |B| ~ 1 (with € — 0) we have:

1
QNE
rp ~ €

The approximation which consists in taking r; = 0 is the classical guiding center
approximation ([[[f]). This means that each particle is assimilated to its “guiding center”
(in other words its “instantaneous rotation center”), which is equivalent to neglect the
very fast rotation of the particle around the axis.

If one also applies some external constant electric field F, an easy computation shows
that there appears:

(1.3)

1. an acceleration % in the direction of B. If we consider E ~ 1, then:
E.B
— ~1 (1.4)
| Bl
2. a drift ﬁg‘f in the orthogonal plane. We have:
EANB
~ 1.5
‘3’2 € ( )

This drift, usually called the electric drift is problematic as regards to the problem of
plasma confinement. It is negligible compared to the acceleration in the direction of B,
but in the time scale for plasma fusion which is expected to be very long, one can not
neglect this small drift, since it creates a displacement of order et (¢ represents the time).

At last, note also that if the fields are not constant, various other drifts may appear,
whose order in € is higher than those of the electric drift.

Actually, the fields considered are neither constant, nor external, but self-induced by
the plasma itself. The effects we would like to describe are non linear interaction between
the particles and the electromagnetic field.

1.1.2 The mathematical model

In all the sequel, we assume that the magnetic field is external and constant and we
suppose that the speed of particles in small compared to the speed of light, so that we can
use the electrostatic approximation which consists in reducing the Maxwell equations to
the Poisson equation. Finally, we decide to choose a kinetic description for the plasma.
The basic model usually considered for the ions is the following Vlasov-Poisson system:

hf+oNV.f+(E+vAB)V,f=0
E=-V,V

ALV = [ fdv

Jt=0=Jo

where f(t,z,v) is the density of ions, with ¢t € R,z € R? or RY/Z v € RY (usually
d = 2 or 3), meaning that f(t,z,v)drdv gives the number of ions in the infinitesimal
volume [z, + dx] X [v,v 4 dv] at time ¢ (note that in this model, electrons are for the
moment neglected).



1.1.3 The gyrokinetic approximation

It is important from a numerical point of view to establish the asymptotic equation when
| B| tends to infinity. Indeed, we expect the asymptotic equation to be “easier” to handle:
only one time and space scale, perhaps less variables in the phase space to deal with...
The derivation of such equations is usually referred to in the mathematic literature as
“gyrokinetic approximation”.

Rigorous justifications of these derivations with various time and space observation
scales have only appearead at the end of the nineties. We refer for instance to the works of
Brenier ([H]), Frénod and Sonnendriicker ([[[d], [L1]), Frénod, Raviart and Sonnendriicker
([B), Golse and Saint-Raymond ([[[4],[[{]), Saint-Raymond ([[§],[Id]).

The classical “guiding center approximation” corresponds to the following scaling for
the Vlasov-Poisson system (for now on and until the end of the paper, B is a constant
vector, say for instance B = e,):

hfe+v.Vofet+ (Be+ LBV, fe=0

E.=-V,V.
“ALV = [ fudv (1.6)
Jet=0=Jo

The articles [L] and [[4] show that when e — 0, this leads to a monokinetic equation
in the direction of B:

Of +u.Vof + E|.Vyf =0
E=-V,V

CALV = [ fdv

fi=0 = fo

Notice that the electric drift does not appear; this was expected since we have seen in
the formal analysis that this drift was of higher order in ¢ than the other effects. This
shows in particular that this approximation is not sufficient for the numerical simulation
of tokamaks. In order to make this drift appear, there exists to our knowledge two main
possibilities:

(1.7)

1. one consists in restricting to a 2D problem in the plane orthogonal to B ([4]),

2. the other consists in rescaling the orthogonal scales in order to get both transport
and electric drift to the same order ([[1])).

This work directly follows the articles [[Ll]] and [[] where the authors considered the
“finite Larmor radius approximation”. This corresponds to say that the spatial observation
scale in the plane orthogonal to B is chosen smaller than the one in the parallel direction,
more precisely with the same order as the Larmor radius ry, so that one can expect
the electric drift to appear in the asymptotic equation. In some sense, having such a
scaling allows the electric field to significantly vary across a Larmor radius. Moreover, in
that case, the positions of the particles are no longer assimilated to the position of their
“guiding center” and we will have to perform an average over one fast oscillation period
(the so-called gyroaverage) in order to get a sort of averaged number density.

1.2 Scaling and existing results

The system we are going to study is based on the “finite Larmor radius scaling” and takes
into account the quasineutrality of the plasma.



1.2.1 The (refined) mathematical model

We refer to [[L] for a complete discussion on the scaling. Let us recall briefly how it
works: let L) be the characteristic length in the direction of the magnetic field and L
be the characteristic length in the perpendicular plane. We consider that L ~ 1 and
L, ~ € and define the dimensionless variables mh = L”x” and x'l = L,z . In the same
fashion we also define the dimensionless variables ¢ and v" with characteristic time and
velocities with the same order as L and introduce the new number density f" defined
by ff/(t',2',v") = f(t,z,v) (and we define likewise the new electric field and potential
EE'(t',2',v') = f(t,x,v) and VV'(t',2',v") = V(t,z,v)). We consider the scaling f, £ ~ 1
and V ~ e. At last, we introduce the Debye length of the plasma Ap, which appears in
the Poisson equation. In order to take into account the quasineutrality of the plasma, we
take from now on A% ~ e. The dimensionless system ([.d) becomes:

O fLA = Vot [L 40 Vo fL+ (BL+ 22B) W fL = 0
Bl = =V V., =V V)

—EA% VZ - %Al‘l‘/e/ = %2 ffe,dv
fslt’ZO = fé

with the notation Ax/H = 811' and Aml =A— Amil' Frow now on, for the sake of simplicity,

(1.8)

we forget the primes. Since we want to take into account the electrons, we will rather
consider the following Poisson equation:

1 1

— Ny Ve — EAMVE =5 (nk —nf) (1.9)

where n! = [ fedv the density of ions and n¢ the density of electrons. We make the
assumption that we deal with a fixed background of electrons, so that, because of global
neutrality,

néz/fodvdm

The Poisson equation can now be written:

€0y Ve = Ay Ve = /fedv — /fodvdm (1.10)

the problem being posed for (x,v) € T3 x R? (with T3 = R3/Z3 equipped with the
restriction of the Lebesgue measure to [0, 1]3).

1.2.2 State of the art about the Finite Larmor Radius Approximation

Using homogenization arguments, Frénod and Sonnendriicker established the convergence
in some weak sense of sequences of solutions ( f¢)¢>o of similar systems, in two cases, namely
in some pseudo 2D case (assuming that nothing depends on x| and v)) and in a 3D case
when the electric field is external. The main tool used to establish the convergence is the
“2-scale convergence” introduced by Nguetseng [[[7] and Allaire [B] that we will recall later
on.

1. The 3D case:



Assume that we deal with an external electric field £, = E € CY(R x R?):

Jit=0 = fo

Frénod and Sonnendriicker proved the following theorem:

{ Ofe+v) Vafe+ L Vofet (E+L2) Vofe=0

Theorem 1.1. For each € let f. be the unique solution of the scaled Vlasov equation
mn L?O(Lglc’v N wa). Then the following convergence holds as € tends to 0:

fe— [ weak-* L?(L;U) (1.11)

where f € L°(L3 ) is the unique solution to:

21
Of + vy Vaf + % < [ ReE + R(—T)U)dT) V. f

+% (/027T R(T)E(t,z + R(—T)v)d7> Vyuf=0

2T
Jit=0 = % < ; fo(z +R(’7')U,R(T)’U)d7'>

denoting by R and R the linear operators defined by:

cost —sinT 0
R(r) = |sinT cosTt O ,R(1)=(—R(—7/2)+ R(—7/2+ 1))
0 0 1

2. The pseudo 2D case:

The Vlasov-Poisson system considered for this case is the following 2D system:

(% UJ‘
Ofe + ;-fog + <Ee + ?> NVufe=0 (1.12)
Jejt=0 = Jo (1.13)
E.=-VV.,—A,V. = p. (1.14)
Pe = /fedv (115)

Ifv= (’Um,vy), ,UL is defined by (’Uy, _U:v)-

From now on, we will deal with global weak solutions of Vlasov-Poisson systems in
the sense of Arsenev ([[]).

Assuming here that fo > 0, fo € Li,v N LL, (for some p > 2) and that the initial
kinetic energy is bounded:

0< /f0(1 +o2)dv < 0o

Frénod and Sonnendriicker proved the following theorem (we voluntarily write an
unprecise meta-version of the result)



Theorem 1.2. For each €, let (fe, E.) be a solution in the sense of Arsenev to
(C.19)-([L.13).

Then, up to a subsequence, in a certain sense, f. 2-scale converges to F and E.
2-scale converges to £. Moreover, there exists a function G such that :

F(t,7,z,v) = G(t,z + R(T)v, R(T)v) (1.16)

and (G, E) satisfies :

2m
0:G + 2i ( R(T)E(t, T,z + R(—T)U)dT) V.G
™ \Jo

1 2m
+— </ R(T)E(t, T,z + R(—T)U)dT) V,G =0

2T 0

1
Gl = %fo

E=-Vo, —AD= /G(t,a: + R(7)v, R(T)v)dv

Note that the authors actually developped a generic framework that allows them to deal
with different scalings and to give a precise approximation at any order. We do not wish
to do so in our study.

1.3 A bit of homogenization theory and some useful definitions

Let us now precisely state the “2-scale” convergence tools used in this paper.

Definition 1.1. Let X be a separable Banach space, X' be its topological dual space and
(.,.) the duality bracket between X' and X. For all a > 0, denote by Co(R, X) (respectively

Lg(R; X)) the space of a-periodic continuous (respectively LY ) functions on R with values
in X. Let q € [1;00].

Given a sequence (u.) of functions belonging to the space Lq/(O,t;X') and a function
UY(t,0) € LY(0,T; Lg(R; X)) we say that

ue 2-scale converges to U°

if for any function ¥ € L9(0,T;Co(R, X)) we have:

lim OT (ug(t),\ll (t, §> dt> = é/OT /Oa (U°(t,0),¥(t,0)) dodt (1.17)

Theorem 1.3. Given a sequence (u) bounded in Lq/(O, t; X'), there exists for alla >0 a
function US € L9(0,T; L% (R; X') such that up to a subsequence,

ue 2-scale converges to Ug

The profile U? is called the a-periodic two scale limit of ue and the link between U2 and
the weak-* limit u of u. is given by:

1 (0%
—/ U%df = u (1.18)
@ Jo



We also introduce some notations:

Definition 1.2. We define for all p € [1;00] the space Lk ,:=L5(T? (LH(R?))).
In the same fashion, we define the spaces LY ., LY, ...
Let Lng be the space of 2m-periodic functions of T which are in LY.

Let Lgloc be the space of functions f such that for all infinitely differentiable cut-off

functions ¢ € C°, of belongs to LL. We will say that a sequence (fe) is uniformly bounded

mn Lgloc if for each compact set K, the sequence of the restrictions to K is uniformly

bounded in L% with respect to € (but this bound can depend on K ).
We will also use the same notations for Sobolev spaces W*P (s € R).

1.4 Statement of the result

In this paper we prove that the 2-scale convergence established in the previous 2D case
is also true in the real 3D framework. The difficulty comes from the fact that there is no
uniform full elliptic regularity for the electric field because of the factor € in front of Am”
in the Poisson equation:

_62A$”‘/€ - AxLV’e = /fEdv

In particular there is no a priori regularity on x| and therefore no strong compactness.
Nevertheless, we actually prove that due to the particular form of the asymptotic equation,
the moments of the solution with respect to v are more regular in z| than the solution
itself. We can then easily pass to the weak limit.

Notice that this result is in the same spirit as the proof of the weak stability of the
Vlasov-Maxwell system by DiPerna and Lions ([f]]), where the authors have regularity on
moments, by opposition to the proof of the weak stability of the Vlasov-Poisson system
by Arsenev ([B]), where the author has compactness on the electric field. Actually our
result is a sort of an hybrid one, since we get on one hand regularity with respect to x|
by elliptic regularity and in the other hand regularity with respect to x| by averaging.

We assume here that the initial data fy satisfies the following conditions: fy > 0, fo €
L}, N LE, (for some p > 7/2) and the initial kinetic energy is bounded:

0< /folv]2dv < o0
7
Proposition 1.1. For cach ¢, let (fo, E.) in L(LL, N Ih,) x L(L°(Wal®)) be a

solution in the sense of Arsenev to (I.§)-([.10). Then up to a subsequence we have the
following convergence as € tends to 0:

fe  2-scale converges to  F € L°( gjr,T(L;,U NLL,)) (1.19)
7
E. 2-scale converges to € € L{°( wa(LWE’(W;,}f))) (1.20)

ol
Moreover, there exists a function G € LY°(Ly, , N L% ,) such that:
F(t,m,2,0) = G(t,z + R(r)v, R(r)v) (1.21)

and (G, €) is solution to:
2m
OG +v). VG + zi < R(T)E(t, T,z + R(—T)U)dT) V.G
T \Jo
1

e ( /0 T RME( Tt R(—T)U)dT) V.G =0

7



1

Gli—o = %fo

E=(-V,.V,0), —A V= /G(t,x + R(1)v, R(T)v)dv — /fodvdm

denoting by R and R the linear operators defined by:

cosTt —sinT 0
R(r)= [sinT cosT7 0| ,R(r)=(R(—7/2) — R(—7/2+ 7))
0 0 1

As it has been said, for the proof of this proposition, we will first prove a lemma which
gives the regularity of moments in v)| of the solution. For this, we use an averaging lemma.
Then the proof is very similar to the proof in the 2D case, but we will give it again for
the sake of completeness.

Remark: This proposition implies that for a given non-negative initial data G|,y =
Gy in L;v N LE, (with p > %) and satisfying the energy bound, the asymptotic system
admits at least one global weak solution G € Lg® (Lglw N L%,). With the additional
assumptions on the inital data:

Gy € WQ},’;,

(1 + o) Goll e, < o0,
(1 + [o|) DGo |l ge, < oo

we are able to prove the uniqueness of the solution, using the same ideas than Degond in

[ (and also used afterwards by Saint-Raymond in a gyrokinetic context ([[§])).

2 A priori uniform estimates for the scaled Vlasov-Poisson
system

2.1 Conservation of I” norms and energy for the scaled system

In this section we give a priori estimates which are very classical for the Vlasov-Poisson
system. (see for example [[[0], [T, [I4] for recent references in the gyrokinetic literature).
In order to recall how one can get them, we will give some formal computations. In order
to have rigorous proofs we should deal with smooth and compactly supported functions,
especially with a sequence (f),>0 of solutions of regularized Vlasov-Poisson equations
(that is the way one can clasically build a global weak solution in the sense of Arsenev
(). Then one can justify the estimations by passing to the limit.

First, as usual for such Vlasov equations, LP norms are conserved:

Lemma 2.1. For all 1 < p < o0,

vt =0, 1 f @z, = [1£O)llze, (2.1)
Moreover, f(0) > 0 if and only if Vt > 0, f(t) > 0 (referred to as the mazimum principle)

That precisely means that if f(0) € L% ,, then f € L{(LE ).
Let us now compute the energy for the scaled system:



Lemma 2.2. We have:
Ec(t) = (/ felv|*dvdz + e/ |V, Vel?dx + 63/|lelVe|2dac> < &(0) (2.2)

In particular there exists C > 0 independant of € such that:

/f€|v|2dvdx <C (2.3)

Formal proof. We multiply the scaled Vlasov equation by |v|> and integrate with respect

to x and v.

d
/atf€|v|2dvdac+/EE.va6|v|2dvdac = </f€|v|2dvdx> —Q/Ee(x).vfedvdx =0

We then integrate the Vlasov equation with respect to v. We get the so called conser-
vation of charge:

% (/ fdv) +Va,. (/ fv”dv) + V:L. (/ fmdv> —0 (2.4)

Therefore, we have:

/Ee(x).vfedvdx = —/(VMVE,EVMVG).vfedvdm
= /Ve <le.(fevl) + Elel.(fev”)) dvdx
= —e/Ve@tfedvdx
Finally, using the Poisson equation, we get:
—e [Vartduis = —e [Vioy (@80 V - 8,,V.) do
— ([ vavor. v+ [ V.05, Vs )

1d 2 2 2
= g </|v“ve| d + ¢ /|vm“v€| dx)

Thus it comes:

d
g (/ f6|v|2dvdm+e/|VnVE|2dx+e3/|VxVe|2dm> -0 (2.5)

2.2 Regularity of the electric field

Let us recall a classical lemma obtained by a standard real interpolation argument (see
[d] for instance):

Lemma 2.3. Let f(x,v) be a mesurable positive function on R x R3. Then:

7/5 3/5
/(/f(x,v)dv) dr < 0|75 (/ ’U’2fdmdv> (2.6)



Proof. For any R > 0, we can write the following decomposition:

/fsdv = /|v|§Rfdv+/v>Rfdv

1
< CRIfl + 4 [ oPrao

Then we can take R such that R3/2Hf\|L% = # [ |v|? fdv so that we get:

/fedv <C (/ f2dv>2/7 (/\U\Qfdv>3/7 (2.7)

We then raise the quantities to the power 7/5, integrate with respect to = and use Holder’s
inequality which gives the estimate.

O

By conservation of the L? norm and the uniform bound on the kinetic energy, this
entails that:

pe € L*(LY) (2.8)

and the norm is bounded uniformly with respect to e.
We now use the Poisson equation to compute the regularity of the electric field. Let
us recall that:

EBe = (~eVa Ve, ~Va, Vo)
_EQA:L'”‘/e - A:}:L‘/e = Pe — /pedw

Lemma 2.4. With the above notations and assumptions:

E. is uniformly bounded with respect to € in L?O(LZ;ﬁS(W;f/ 5))

Proof. Let € > 0 and t > 0 be fixed. For the sake of simplicity we write V instead of V
and F instead of F..

For any function f(z), 1), define the rescaled function f(z, x1) by

f <%,xl) = e%f(x”,ml)

so that:

If (z,21) 75 = Hf(w”,m)HL;ﬂs (2.9)

/ podx

E=(-V.V,~V,.V)

The Poisson equation becomes:

gl

AV —A, V=p—¢

and the scaled electric field is given by:

Since p(t,.,.) is uniformly bounded in LZ;/ 5, standard results of elliptic regularity on
the torus T? show that there exists C' > 0 independant of € such that:

10



3 5
V < C o — 67 d.fl?
Phyzze <o =< [ o e,
Thanks to (B.9) we get:
IVl 275 < C Hp— /podm < O
Wz,xl L?O(L;/5)

with Cj independant of e.
Consequently, we have:

HEHLZ/S(WJ}’I/S) < ”EAHW;’7/5(WQ}I/5) < CO

Finally from (.9) we get

[Ee| < Co

Ly > we ™)
O

We can see as expected that the regularity of the electric field with respect to the x|
variable is not sufficient to get some strong compactness.

Remark: If we work on the whole space R? instead of T3, we only get homogeneous
estimates for V, and we have not been able to deal with such anisotropic estimates in
the following of the paper. Roughly speaking, if V' is a solution of the Poisson equation
—AV = p with p € L/5(R3), we can only say that V € W27/5(R3) (the homogeneous
Sobolev space) and not W?27/5,

3 Proof of Proposition ]

Proof. The beginning of the proof is identical to the one given in [[[]]. For the sake of
completeness we recall here the main arguments and refer to [[[1] for the details.

Step 1: Deriving the constraint equation
First of all, since (fc) is bounded in L3*(L; ,N L% ,), Theorem [[J shows that for all o > 0:
fe 2-scale converges to I, € L*(0, T L7 (R; LE )

Let ¥(t,7,2,v) be an a-periodic oscillating test function in 7 and define:

We start by writing the weak formulation of the scaled Vlasov equation against W¢. Since

vAe
vJCII'U” =V, v =divy <Ee + c z> =0,

we get the following equation:

v ey

/fe ((atqf)e + %(aTfo)e + 0 (Vo 0)° + %.(kalf)e + (E + ) .(vvw) dtdzdv

€

= —/fo\IJ(m,v0,0)dxdv

11



Multiply then by e and pass to the (2-scale) limit. We get the so called constraint
equation for the a-periodic profile F:

OrFy +v, .V Fy+vAhe, Vy,F, =0, (3.1)

which means that F|, is constant along the characteristics:

av

_ ) 2
I Ve (3.2)
aX

A straightforward calculation therefore shows that there exists FY € L>(0,T, L% .,)
such that:

Fo(t,7,2,v) = Fo(t,x + R(T)v, R(T)v) (3.4)
with:
cost —sint 0
R(r) = |sinTt cost O ,R(1)=(—R(—7/2)+ R(—7/2+ 7))

0 0 1

sin T cosT—1 0

ie. R(t) = |1l—cosT sinTt 0].
0 0 0

Since R and R are 2w-periodic, we will consider the 27 profile: indeed if a and 27w
were incommensurable, F,, could not depend on 7 and consequently we would have no
information on the oscillations.

Step 2: Filtering the essential oscillation

We now look for the equation satisfied by FY := G; we introduce the filtered function g.:

ge(t,z,v) = fe(t,x + R(—t/e)v, R(—t/e)v) (3.5)

(meaning that we have removed the oscillations)
We easily compute the equation satisfied by g.:

Otge +v)-Vage + R(t/€)Ec(t,x + R(—t/€)v).Vige (3.6)
+R(t/e)Ec(t,x + R(—t/e)v).Vyge =0

Remark: Note here that g. 2-scale converges to GG, and since it does not depend on
T, it also weakly converges to G.

Step 3: Getting some regularity on moments

From now on, the goal is to get some compactness for the moments of g. with respect to
vj- The main tool is the following averaging lemma proved by Bézard in [, which is a
refined version of the fundamental result of DiPerna, Lions and Meyer ([f]):

Theorem 3.1. Let 1 < p < 2. Let f,g € LP(dt @ dz ® dv) be solutions of the following
transport equation
atf + vaf = (I - At,x)7/2(1 - Av)m/2g (3'7)

12



with m € RY, 7 € [0,1][. Then V¥ € C*(RY), py(t,x) = [ f(t,z,v)¥(v)dv € Wi SP(R x RY)
where
1—7 (3.9)
§=——— .
(14 m)p'

Moreover,

lpw s < C (Il rasdasin + 1 = Do) 2T = A 2gllyy vy )
(3.9)
(C is a positive constant independant of f and g)

Averaging lemmas are an important feature of transport equations: since the transport
equation (B.7) is hyperbolic, one can obviously not expect the solution f to be more regular
than the right hand side or the inital data. Nevertheless, if one considers the averaged
quantity in velocity py, one can actually notice a gain of regularity. This phenomenon was
first observed independently by Golse, Perthame and Sentis ([LJ]) and Agoshkov ([ll]) then
was formulated in a precise way for the first time by Golse, Lions, Perthame and Sentis (see
[2)); it is referred to as “velocity averaging”. There exists many refined versions of these
results and numerous interesting applications in kinetic theory, but we shall not dwell on
that. We simply point out that this tool has been successfully applied to Vlasov equations,
for instance to prove the existence of global weak solutions to the Vlasov-Maxwell as it
has been done by DiPerna and Lions ([f]).

Remarks :

1. The fundamental averaging lemmas proved by DiPerna, Lions and Meyer ([f]), which
lead to a Besov estimate instead of a Sobolev estimate, would have been sufficient
for our purpose, since we do not need the optimal regularity.

2. These lemmas have been proved for functions with values in R but the proof is the
same with functions with values in more complicated Banach spaces. Indeed one can
consider “abstract” Banach norms instead of the usual norm in R and the proof is
then formally identical.

Equipped with this tool, we can now prove that moments in v| are more regular with
respect to ¢ and x| than the solution itself.

Proposition 3.1. For each ¢ > 0, let g. a uniformly bounded function in Lglw NLE ., (with
p > T7/2) be some solution of:

Otge +v).-Vage + R(t/€)Ec(t, v + R(—t/€)v).Vge
+R(t/e)Ec(t,x + R(—t/e)v).Vyge =0

with Ee uniformly bounded in L7°(L ;f(wl 7/5))
Let W € D(R). Define

ne(t,z,v1) = / ge(t, z,v)¥ (v )dy

Then,
Ne is uniformly bounded in W7 (W57 (W17 ) (3.10)

t,loc z|,loc x| v ,loc

for v €]1; 2] such that, % =3 —i—l—l) and some s €|0;1[ (depending on )
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Proof. e The first step is to localize the equation. Let K be the cartesian product of
compact sets:
K =1[0,T] x Koy X Ky x Ky X Ky

We now consider some positive smooth function ®(t, z, 1, v, v1) which is CZ° and
which satisfies the condition:

® = 0 outside K (3.11)

The equation satisfied by g.® is the following one:

9¢(9e®) + v).Va(9e®) = — R(t/€) Ec(t, v + R(—1t/€)v). V(g D)

1)
— R(t/e)Ec(t,z + R(~t/€e)v).V, (gqu)J—at(@)gE - U||-Vx((b)gs
(2)
—R(t/e)Ec(t, x + R(—t/€)v).Vy(P)ge — R(t/€)Ec(t,x + R(—t/€)v).Vy(P)ge

The idea is now to consider this equation as a kinetic equation with respect to
the variables (¢, z),v)) and with values in an abstract Banach space (which will be

W, fﬁl). We then only study the first two members of the right-hand side (noticing
that the other terms have more regularity than these ones).

From now on, for the sake of simplicity and readability, we will write L and W#%P
norms without always specifying that they are taken on the compact support of ®.

e Estimate on the first term (1)

Since E, does not depend on v, we have:

Ee € L(Ly (W= (W, /%))

Z

In particular if we restrain ourselves to compact supports:

E.eL® <[0,T],L7/5(Kxu,W1’7/5(KUH,ij“(Kvl,Wg}f/‘r’(Kn)))))

z Y
The second point is that the differential operator
R(t/e)Ec(t,z + R(t/e)v).Vy

involves only derivatives with respect to the x, variable and not in the parallel
direction (this remark is fundamental for using an averaging lemma). Product laws
in Sobolev spaces give then:

IR(/OE. (12 + R(~/0).Vo 0Dy . s ) <
| Ee(t, x + R(_t/e)v)HW;j/f (Ko | XKy ) H,R(t/e)-vac(geq))HWI_EQL(KIl XKy )

€
1_5,1
where S=7t5
Remark: The regularity of (1) with respect to v, is not optimal (since it involves

no derivative in v for g.). Nevertheless we are interested in the regularity of the
whole right hand side, and we will see that the term (2) has this regularity in v, .

14



The change of variables (z,v) — (z 4+ R(s)v, R(s)v) has unit Jacobian for all s € R
so that:

| Ee(t,x + R(—t/e)?})le,ws
x| v

v

=B

(Ko | XKy, Wal2 (Ju) xJu,)

where J, and J,, are the compact images of K, and K, by the change of
variables. Moreover, one gets:

IR(t/€)-Val9e®) lyy- 1y < Clige®lle,

Finally we have after integrating in ¢, z|,v:

IR(t/€)Ec(t, x + R(=t/€)v).Va(ge®)| 5 o Wkt

t,xH, TVl

< ClEc(t, )| 75 (W;f(fl)”gEq)“Lp (L2, )

T t’z”’l}”

and C is a constant independant of e.

e Estimate on the second term (2)

By the same method one gets:

|R(t/€)Eelt, @ + R(~/)0)-Vulae®)l 1y awitow-ig,

) T,V

S CHEe(t;x)‘|LZ/x5|I(W;f’/s)ngq)HLP (LZL,U)

b
Finally we see that the right hand side is uniformly bounded in:

v —Lly —Ly
Lt,m” ,loc(Wv” ,loc( ml,vl,loc))

e Regularity of the moments

By theorem B.J] (and the second remark given afterwards), for all ¥ € Cg°, the
moment:

Ne(t,x,v)) :/ge(t,x,v)\lf(v”)dv”

( 7177
x|, ,loc

is then uniformly bounded in the space W, ) with s > 0 given by

t,z),loc
1

SZQ—,Y,.

O

We can now prove that the sequence of moments 7, is compact in a space of distribu-
tions which is the dual of some space where the sequence (E;) is uniformly bounded.

Corollary 3.1. There exists 6 €]0,1[ and n € 1/1/39’7/2(1/1/89’7/2(1/1/79’7/2 )) such that for

t,loc z|,loc x|, ,loc
all £ >0, up to a subsequence:

||77€ - 77HL7/2 (L7/2 (W797§’7/2)) — 0 (312)

t,loc acH,lac x| v ,loc

(the “norm” means that this convergence holds when restricting to any compact set)
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Proof. By the initial assumption on the initial data, there exists ¢ > 7/2 such that fy €
L1 ,; thanks to the a priori L estimate, we get g, € L°(L1 ). Define « by:

1_5+1
vy 7T g

The previous lemma shows that for some s > 0:

ne € W W0 (W, 10 1e)

t,loc z|,loc x|, ,loc

q
t,loc

Since g. € LY, (L%,) and ¥ has compact support, we get by Holder’s inequality:

Me € Lijoo (LY, (LE, ,))

tJoc\Fx \Hx v
Since % > % > % and % < %, there exists 6 €]0, 1] such that
2 1-4

7:q+

=2

By interpolation we deduce that:

Ne € t,loc z|,loc r,) v ,loc

We then used the following refined interpolation result proved by Simon in [R(], which
is, roughly speaking, an anisotropic adaptation of the classical Riesz-Fréchet-Kolmogorov
criterion for compactness in LP:

Theorem 3.2. Let 1 < p < oo and s> 0. Let T > 0 and By, By be two Banach Spaces
with By compactly embedded in By. Let F be a bounded set of W,P([0,T), By).
Then F is relatively compact in LY([0,T], Bz).

This entails, thanks to the Sobolev’s embeddings, that the sequence (7)) is relatively
compact in L2 (L7/2 (W797£’7/2)), for all £ > 0.

t,loc\ ) loc z v, ,loc

O

Remark: By uniqueness of the limit in the sense of distributions, we get:

n = /G\IJ(U”)dU”
From now on, we consider ¢ such that 6 +¢ < 1, which is of course possible since 6 < 1.

Step 4: Passing to the weak limit

We will first need a technical lemma which is obtained directly from the 2-scale convergence
of E..

Lemma 3.1.

2w

R(t/€)Ec(t,x + R(—t/e)v) 2-scale converges to Qi R(T)E(t, T, + R(—7)v)dr(3.13)
T Jo
2
R(t/e)Ec(t,z + R(—t/e)v) 2-scale converges to QL R(T)E(t, T2 + R(—7)v)dr(3.14)
T Jo
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Proof. E. is uniformly bounded in L (L%E’(Wmlf/ 5), so there exists £ € L§° (L7/ 5(Wmlf/ 5)

Z
such that E. 2 scale converge to £.
We take ¥(t,7,x) a 2mr-periodic w.r.t. 7 test function and use the 2 scale convergence

of E.:
/R(t/e)Ee(t, x4+ R(—t/e)v). ¥ (t,t/e,x)dtdx

_ / BL(t2) R(/)U (Lt /e, 2 — R(—t e)v)dida

0 7
// 5( T T ‘?’( 1)U).t;?,(l)\lf(t,J,Cﬂ)dtd]dx
0

The proof is the same for R(t/e)Ec(t,z + R(—t/e)v).
O

Now, we can write the weak formulation of the kinetic equation (B.f) against a smooth
test function of the form ®(¢,z,v, )W(v|)such that the support of this test function is
included in in the cartesian product of compact sets [0,7] x Ky x Ky x Ky x Ky, If
we can pass to the limit for such test functions, then by density it will be also the case for
all test functions.

Noticing that div, v = 0 and that

divy, (R(t/€)Ec(t,x + R(—t/e)v)) + div, (R(t/€)Ec(t,x + R(—t/e)v)) =0

we get:

/ <(9t(<1>(t, z,01 )V(v))) + ).V (PV) + R(t/€) Ec(t,z + R(—t/€)v). Vi (PV)
+R(t/e)E(t,x + R(—t/e)v).vv(@W))gedtdaudx”dvldvv”

= —/uOQ)(O,x,vL)\I’(v”)dxdv

We can easily take the weak limit in the linear part drge + v)|.Vage.
Consider now the “non linear” term:

/R(t/e)EE(t, T+ R(—t/e)v).V (¢, z,v1) gV (v))dtdz  dzydvydv) =
/R(t/e)Ee(t, T+ R(—t/e)v).V, P(t,z,v]) </ gE\I’(v”)de dtdz | dzdv

The convergence of this term can be established by the strong/weak convergence prin-
ciple. Nevertheless, we have to carefully use this technique to get the result so that we

17



wish to explicitly evaluate the difference:
‘ /R(t/e)EE(t,x + R(—t/€)0). Vo ®(t, 0, v, nedtda | daydv,

2T
/2 / R(P)E(, 7,2+ R(~ ))dT.Vxéndtdxdvl‘
s

<| / (t/)EL(t, & + R(—t/e)v )—% R(1)E (1, 7,2+ R(~)o)dr ) V,ndidedv, |

+‘/R t/e)Ee(t,z + R(=t/€)v). Vo ®(t, z,v1) (ne — 1) dtdx ) dx)dv,

The first term of the right hand side converges to zero because of the 2-scale convergence
of E. (lemma B.J). We can control the second term by:

ClEV®| s LI W) 1 — 7| LA E) (3.15)

(these norms are actually taken on the compact support of ® but we do not write it for
the sake of simplicity)

Using the fact that F. is uniformly bounded in L:{SC( %5(W9+§ 7/ 5)) (this is an easy

consequence of lemma P.4) and that thanks to corollary

_ —o— — 0
I ""LZ”([o,TLLZf(Kx”7sz,vi7/2(z<nxK@))

We can deduce that
‘/ R(t/e)Ec(t,r + R(—t/e)v). Vo P(t,z,v1) (ne — n) dtdz drjdv | — 0

The proof is of course the same for the other non linear term:

R(t/€)Ec(t, x +R(—t/€)v).Vuge

To conclude let us compute the asymptotic equation satisfied by the 2 scale limit of
Ve denoted by V. We take ¥(¢,7,x) a 2m-periodic w.r.t. a 7 test function. We write the
weak formulation of the Poisson equation:

eQ/VxVEVm”\II(t,t/e,x)dtdm—{—/VMVEVmL\II(t,t/e,:U)dtdm

:/fe(t,x,v)\lf(t,t/e,x)dtdvdx—/<—/f0dvdm> U(t,t/e, x)dtdvdx

We then pass to the 2 scale limit:

2m 2m
0 + / Vo V(t,1,2)Vy, Y(t, 7, z)drdtde = // F(t,r,z,v)V(t, 7, x)dtdvdx

= / 27TGt (t, 7,2+ R(T)v, R(T)v)¥(t, T, x)drdvdx

— //02” (/ fodvdx> U(t, 7, x)drdvdx
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4

From which we get the “Poisson” equation given in Proposition 1.1:
—A V= /G(t,x + R(T)v, R(T)v)dv — /fgdvdx

Moreover since B, = (=V,  V, —EVJC”V;), we easily get if we pass to the 2 scale limit:

£=(~V,,V,0)

Closing comments

Finallty we can that see as in [[LT]| that the drift involving the electric field in the asymptotic
“kinetic” equation corresponds to the electric drift that we mentioned in the introduction
and which was expected to appear. Nevertheless, we point out that the parallel component
of the electric field disappears in the end, which seems to be quite an unpleasant feature
of this scaling.
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