
HAL Id: hal-00346845
https://hal.science/hal-00346845v1

Submitted on 30 Jan 2013 (v1), last revised 9 Sep 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boltzmann Oracle for Combinatorial Systems
Carine Pivoteau, Bruno Salvy, Michèle Soria

To cite this version:
Carine Pivoteau, Bruno Salvy, Michèle Soria. Boltzmann Oracle for Combinatorial Systems. Fifth
Colloquium on Mathematics and Computer Science, Sep 2008, Blaubeuren, Germany. pp.475-488.
�hal-00346845v1�

https://hal.science/hal-00346845v1
https://hal.archives-ouvertes.fr

Discrete Mathematics and Theoretical Computer ScienceDMTCS vol. (subm.), by the authors, 1–1

Boltzmann Oracle for Combinatorial Systems

Carine Pivoteau1 and Bruno Salvy2†and Michèle Soria1‡

1LIP6 – UPMC, 104 avenue du président Kennedy, F-75016 Paris, France,
2Algorithms Project, Inria Paris-Rocquencourt, France

received 24 April 2008, accepted 13 June 2008.

Boltzmann random generation applies to well-defined systems of recursive combinatorial equations. It

relies on oracles giving values of the enumeration generating series inside their disk of convergence. We

show that the combinatorial systems translate into numerical iteration schemes that provide such oracles.

In particular, we give a fast oracle based on Newton iteration.

Keywords: Random generation, Boltzmann generation, combinatorics, Newton iteration

1 Introduction

The recent discovery of Boltzmann samplers by Duchon, Flajolet, Louchard and Schaeffer [5]
brought a considerable progress to the area of random generation of combinatorial structures. For
wide families of classes of structures defined recursively, it is possible to construct automatically
efficient random generators (samplers). These generators can produce large structures with the
property that a structure of size n is drawn uniformly at random among the cn structures of
size n in its class. They rely on so-called oracles, that return numerical values of the generating
series of the sequence (cn)n≥0 and related series inside their disk of convergence.

In this work, we provide such oracles for numerical values, thus making Boltzmann sampling
effective, for all structures specified by well-founded systems of combinatorial equations. The
precise setting is given in §2. In the same way that the Boltzmann sampler is constructed
automatically from a recursive combinatorial specification, we give automatic constructions of
numerical iteration schemes for the oracles. The key point of the treatment is that these numerical
schemes are based on combinatorics: each value computed during the numerical iteration is the
evaluation of a convergent power series whose coefficients enumerate combinatorial structures.

A straightforward translation of combinatorial systems yields a first family of oracles. For
instance, the class of rooted labeled trees is described by the combinatorial equation T = Z ×
Set(T). This equation can be interpreted as a fixed point equation on combinatorial classes for
an appropriate notion of distance (the contact). Then the iteration T [n+1] = Z × Set(T [n]) can

†This work is supported in part by the French Research Agency (ANR Gecko).
‡This work is supported in part by the French Research Agency (ANR Gamma), noBLAN07-2 195422.

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/volumes/
http://www.dmtcs.org/volumes/dm(subm.)ind.html

2 Carine Pivoteau and Bruno Salvy and Michèle Soria

be seen to converge to the class of rooted labeled trees, starting with T [0] the empty set. For
any complex α with |α| < e−1, the corresponding numerical iteration t[0] = 0, t[n+1] = α exp(t[n])
converges to the value T (α) = −W (−α) of the generating series of rooted labeled trees (W is the
Lambert W function). Indeed, each iterate t[n] is equal to the value T [n](α) of the generating
series of the class T [n] at α. That these series are convergent at α also follows from combinatorics.

Thus our method decomposes into three steps. Starting with a fixed point combinatorial
specification (a system of combinatorial equations), we first provide an iteration scheme that
converges to the combinatorial solution; then propagate this iteration scheme at the level of
generating series and finally at the numerical level, showing that convergence at each stage is a
consequence of convergence at the previous one. This is described in §3.

In §4, we design faster oracles based on Newton iteration. For instance, in order to solve the
equation t = α exp(t), Newton’s iteration is t[n+1] = t[n] + (α exp(t[n]) − t[n])/(1 − α exp(t[n])).
Classically, this iteration converges to one of the roots of the equation, provided the starting
point is chosen correctly. We show that with t[0] = 0, the iteration converges to the root T (α).
Moreover, the sequence of iterates is positive increasing so that each iterate is closer to the solution
than the previous one. Again, this numerical scheme is based on a combinatorial Newton iteration
that converges quadratically to the solution. This iteration originates in work by Décoste, Labelle
and Leroux [4] (see also [1, ch. 3]), for the computation of species of structures solution to a
univariate functional equation Y = H(Z,Y). For systems, we have to give a combinatorial
meaning to the inverse of the Jacobian matrix. This is handled by the combinatorial “bloomings”
introduced by Labelle in his study of the combinatorial Lagrange inversion [10]. Then, as above,
this combinatorial iteration transfers to generating series, and quadratic convergence is preserved
at the level of valuations. Finally, the numerical version of the iteration yields an oracle in the
form of an unconditionally convergent iteration, whose convergence is asymptotically quadratic.
Thus, instead of a blind resolution of a system of equations, the iterates directly find their way
to the solution that is combinatorially meaningful.

This phenomenon is illustrated in the figure below. A combinatorial structure C0 is defined
by a recursive combinatorial specification. Next, for each value of z in an interval, we plot the
solutions (z, C0) of the system of generating function equations. Only the curve marked in red
corresponds to the actual generating function. To the right, we zoom on the black rectangle. The
crosses indicate the successive values of the Newton iteration starting from C0 = 0.

C0 = ZC1C2C3(C1 + C2)

C1 = Z + ZSeq(C2
1C

2
3)

C2 = Z + Z
2
Seq(ZC

2
2Seq(Z))Seq(C2)

C3 = Z + Z(3Z + Z
2 + Z

2
C1C3)Seq(C2

1)

Z

our x =

C0(x)

Further experiments are described in §5.

In a forthcoming article [13], several extensions are presented: the unlabeled case [8]; specifi-
cations defining nonempty structures of size 0; a faster Newton iteration computing much fewer
intermediate structures; and a fast algorithm for enumeration sequences.

Boltzmann Oracle for Combinatorial Systems 3

2 Combinatorial structures

This work uses the combinatorial framework described in detail in the recent book by Flajolet and
Sedgewick [6], of which we use the notations and definitions. In this section we recall the basic
vocabulary on admissible constructions and specifications that let us express those combinatorial
systems we are dealing with. Since not all specifications are combinatorially meaningful, we isolate
precisely the class of well-founded specifications. These specifications have been considered in
the framework of combinatorial classes in [7], and here we show how a combinatorial condition
due to Joyal [9] gives an algorithmic characterisation. Finally, we recall what we need from the
symbolic method leading to generating series equations.

2.1 Combinatorial specifications

The admissible constructions we consider are given in Table 1 (column 1). They form the vocabu-
lary used to express combinatorial specifications. Columns 3 and 4 show how these constructions
act on two important special classes: the empty set (∅) that does not contain any structure and
the neutral class E consisting of a single structure of size 0.

Definition A combinatorial specification for an m-tuple Y = (Y1, . . . ,Ym) of classes is a system























Y1 = H1(Z,Y1,Y2, . . . ,Ym),

Y2 = H2(Z,Y1,Y2, . . . ,Ym),
...

Ym = Hm(Z,Y1,Y2, . . . ,Ym),

each Hi denoting a term built from the Yi’s and the initial class Z (atomic) using the constructions
of Table 1. We refer to this system as Y = H(Z,Y); boldfaced letters denote vectors. Each
non-terminal Yi stands for a combinatorial class and the objects derived by this generalized
grammar, starting with axiom Yi, are called Yi-structures. The size of a structure is the number
of its terminals Z. The number of elements of size n in a vector of classes Y is denoted |Y |n.

construction notation B = ∅ B = E derivative generating function

Disjoint union A + B A A + E A′ + B′ A(z) + B(z)

Cartesian product A× B ∅ A A′ × B + A× B′ A(z) · B(z)

Sequence Seq(B) E − Seq(B) × B′ × Seq(B) 1/(1 − B(z))

Sequence of card k > 0 Seqk(B) ∅ −
P

k−1
i=0 Seqi(B) × B′ × Seqk−1−i(B) Bk(z)

Cycle Cyc(B) ∅ − Seq(B) × B′ log(1/(1 − B(z)))

Cycle of card k > 0 Cyck(B) ∅ − Seqk−1(B) × B′ 1
k
Bk(z)

Set Set(B) E − Set(B) × B′ exp(B(z))

Set of card k > 0 Setk(B) ∅ − Setk−1(B) × B′ 1
k!

Bk(z)

Tab. 1: Admissible constructions, their derivatives and generating functions. The character “−” stands
for “undefined”. The translation to generating functions of Cycle and Set applies only in the labeled
universe, whereas Union, Product and Sequence can be seen in both labeled and unlabeled universes.

4 Carine Pivoteau and Bruno Salvy and Michèle Soria

2.2 Well-founded combinatorial systems

2.2.1 Definition

We construct oracles for all combinatorial specifications that make sense in the following way.

Definition The combinatorial specification Y = H(Z,Y) is well founded if and only if, for all
n ≥ 0, it derives only finitely many structures of size n. This is denoted by |Y |n < ∞.

2.2.2 Derivative

We now introduce an additional admissible construction, which is classical in species theory [1].

Derivative The derivative of a term H(Z,Y1, . . . ,Ym) with respect to the non-terminal Yj

is denoted by ∂H/∂Yj , or H′ when m = 1. It is defined recursively, using the rules given in
Table 1. The recursion stops at terminals and non-terminals of the term: if A is either E , Z
or Yk with k 6= j, then ∂A/∂Yj = ∅, while ∂Yj/∂Yj is a new terminal of size 0, denoted by Y⋆

j .
The only difference with the pointing operation considered in [6] is at the end of the recursion,

where instead of a new terminal of size 0, the pointing operation is equal to the cartesian product
of Yi with such a terminal of size 0.
Example. The derivative of the term H(Z,Y) := Z × Seq(Y) with respect to Y is

∂H
∂Y =

∂Z
∂Y × Seq(Y) + Z × Seq(Y) × ∂Y

∂Y × Seq(Y) = Z × Seq(Y) × Y⋆ × Seq(Y). (1)

Cartesian product This terminal Y⋆
j is called a bud by Labelle [10]. An induction shows that

each non-empty structure of the class ∂H/∂Yj(Z,Y1, . . . ,Ym) contains exactly one bud. This
gives a combinatorial interpretation of the cartesian product with a derivative: for any class C,
we have the isomorphism

∂H
∂Yj

× C ∼ ∂H
∂Yj

∣

∣

∣

∣

Y⋆
j
=C

, (2)

where on the right-hand side, we use the substitution of the one bud by C. From now on, we always
use this version of the cartesian product with a derivative of one of the Hi’s. The interpretation
is that the structures of the cartesian product are obtained by grafting a structure of class C in
the place of a former Yj in a structure of H, in all possible ways.
Example. The class C can be a derivative itself. Thus, the square of the derivative from (1) is

(

∂H
∂Y

)2

= Z × Seq(Y) × (Z × Seq(Y) × Y⋆ × Seq(Y)) × Seq(Y).

A typical structure of this class is depicted below: black dots correspond to locations of a Z, blue
dots to the Y’s, the bud Y⋆ is marked in red.

(()) ≃

More generally, a sequence Seq(∂H
∂Y

) consists of trees built up by iterating the previous process.
Example. For any term H, the following inclusion holds:

H(Y + C) ⊃ H(Y) + H′(Y) × C. (3)

Boltzmann Oracle for Combinatorial Systems 5

The interpretation is as follows: the structures on the right-hand side are either in H(Y), made
up only of Y-structures; or in H′(Y)×C, structures of H(Y) with one of the Y-structures replaced
by a C-structure. These are clearly disjoint sets, both included in H(Y + C). These are the first
terms of a complete Taylor formula that has been developed by Labelle [11].

Jacobian matrix As in the classical case, the Jacobian matrix of H(Z,Y) with respect to Y ,
denoted by ∂H/∂Y is the matrix whose entries are ∂Hi(Z,Y)/∂Yj . The product of a matrix
by a vector or by a matrix is obtained by the classical formulas in sums of products forms, sums
being interpreted as disjoint unions and products as cartesian products, themselves obtained by
grafting at a bud following Eq. (2).
Example. Series-parallel graphs are specified by (Y1,Y2) = SP(Z,Y1,Y2), with

SP(Z,Y1,Y2) =

(

Seq≥2(Z + Y2)
Set≥2(Z + Y1)

)

,

where Seq≥k is the disjoint union of Seqi for i ≥ k, and similarly for Set≥k. Linearity of
derivative implies that

∂Seq≥k(Y)

∂Y = Seq≥k−1(Y)×Y⋆×Seq(Y)+Y⋆×Seq≥k−1(Y),
∂Set≥k(Y)

∂Y = Set≥k−1(Y)×Y⋆.

The Jacobian matrix of our example is therefore

∂SP

∂Y
=

(

∅ Seq≥1(Z + Y2) × Y⋆
2 × Seq(Z + Y2) + Y⋆

2 × Seq≥1(Z + Y2)
Set≥1(Z + Y1) × Y⋆

1 ∅

)

.

The Jacobian matrix ∂H/∂Y , or any of its powers, is a function of the variables Z and
Y . In particular, evaluating it at (Z,Y) = (∅,∅∅∅) can be interpreted combinatorially as the
matrix whose entry (i, j) is the class of structures obtained by replacing one of the Yj ’s in Hi by
a Y⋆

j , replacing all the other terminals and non-terminals by the empty set and performing the
simplifications indicated in Column 3 of Table 1.
Example. The evaluation of the previous matrix at (Z,Y1,Y2) = (∅, ∅, ∅) gives

(

∅ ∅

∅ ∅

)

.

Nilpotence As in classical linear algebra, a matrix of combinatorial classes is nilpotent if one
of its powers is empty (all its entries are the empty set). The order of nilpotence (the minimal
power such that emptyness is reached) is bounded by the dimension of the matrix.
Example. For series-parallel graphs, the Jacobian matrix is nilpotent of order 1. An extended
system with a third equation Y3 = Y1 +Y2 to define graphs that are either series or parallel has a
Jacobian at (Z,Y1,Y2,Y3) = (∅, ∅, ∅, ∅) with third row (Y⋆

1 Y⋆
2 ∅). This is nilpotent of order 3.

2.2.3 Characterization of well-founded systems

We can now state an effective criterion for a system to be well founded.

Proposition 1 A combinatorial specification Y = H(Z,Y) such that H(∅,∅∅∅) = ∅∅∅ is well
founded if and only if the Jocabian matrix ∂H/∂Y(∅,∅∅∅) is nilpotent.

Proof: First, we prove by contradiction that nilpotence implies that there is a finite number of
Y-structures of any size. Let n be the smallest size for which there is an infinite number of Y-
structures. By definition, an arbitrary Y-structure γ of size n decomposes as H(Z, γ1, . . . , γm),

6 Carine Pivoteau and Bruno Salvy and Michèle Soria

where each γi is a Yi-structure of size at most n. If none of the γi has size equal to n, there is a
finite number of such decompositions. Otherwise, only one of the γi has size n and all the other
ones have size 0. The condition H(∅,∅∅∅) = ∅∅∅ implies that the only Y-structure of size 0 is ∅∅∅,
thus γ is a structure of ∂H/∂Y(∅,∅∅∅)× β, with β a vector of Y-structures of size n. If p is the
order of nilpotence of ∂H/∂Y(∅,∅∅∅), this reasoning cannot be iterated more than p times. Thus
there is only a finite number of Y-structures of size n.

Conversely, let γ be a Y-structure of size n, with n = min{k, |Y |k 6= 0}. Suppose that the
matrix ∂H/∂Y(∅,∅∅∅) is not nilpotent. Then, for all q ∈ N, there exists a nonempty structure
βq ∈ (∂H/∂Y(∅,∅∅∅))q of size 0 so that all βq · γ are Y-structures of size n, a contradiction. 2

2.3 Generating functions

The symbolic method gives a systematic translation of combinatorial constructions into generating
functions [6, Thm. II.2]. The basic dictionary is given in Table 1. If a calligraphic letter denotes
a class, we use the corresponding roman letter for its generating function.

Test for well-founded specifications To check whether the system is well founded, it is suffi-
cient to: (i) translate the combinatorial system into a system over generating series; (ii) compute
the Jacobian matrix J ; (iii) compute J(0, 0)m, with m the dimension. The system is well founded
if and only if this matrix is 0. This improves in simplicity over Zimmermann’s algorithm [14].

Definition A combinatorial specification H(Z,Y) is called analytic when the generating se-
ries H(z,Y) is analytic in (z,Y) in the neighborhood of (0,0), with nonnegative coefficients.

This restriction on combinatorial specifications is necessary for our method. We note that all
combinatorial specifications based on the constructions of Table 1 are analytic, by virtue of the
analyticity at the origin of +,×, exp, 1/(1 − z), log(1/(1 − z)) and their compositions. Positivity
of the coefficients at the origin also follows by induction. Examples of specifications that are not
analytic in this sense are the constructions of unlabeled multiset, powerset or cycles.

3 Iteration and oracle computation

Given a well-founded specification Y = Φ(Z,Y) with the condition Φ(∅,∅∅∅) = ∅∅∅, the natural

iteration Y [n+1] = Φ(Z,Y [n]) converges to the solution Y , starting from the vector Y [0] with
empty coordinates (see Theorem 1). In this section, we show that this iteration translates at the
level of generating functions, and then at the numerical level when the specification is analytic.

3.1 Example

We first illustrate the processing chain on the simple example of general trees, with specification
Y = Z × Seq(Y), so that Φ(Z,Y) = Z × Seq(Y).

Check well-founded specification In view of (1), Φ(∅, ∅) = ∅×E = ∅ and ∂Φ
∂Y

(∅, ∅) = ∅.

Combinatorial iteration The following picture shows the structures produced in the first six
iterations of Y [n+1] = Z × Seq(Y [n]).

Boltzmann Oracle for Combinatorial Systems 7

Y [0] = ∅ Y [1] = Y [2] = . . .

Y [3] = . . .

Y [4] = . . .

Y [5] = . . .

Rectangles enclose structures when for this size, all structures of the limit Y have been pro-
duced: for example iteration Y [4] contains all structures of the solution up to size 4; and iteration
Y [5] contains all structures of the solution up to size 5.

Generating series The specification translates into Y (z) = z/(1 − Y (z)), while the iteration
translates into Y [n+1](z) = z/(1 − Y [n](z)). The following series are produced by this iteration.
By construction, they are the generating series of the classes Y [0], . . . ,Y [5] from above. Boldfaced
numbers show the coefficients that coincide with those of the series solution Y (z).

Y [0](z) = 0 Y [1](z) = z

Y [2](z) = z + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + · · ·
Y [3](z) = z + z2 + 2z3 + 4z4 + 8z5 + 16z6 + 32z7 + 64z8 + 128z9 + · · ·
Y [4](z) = z + z2 + 2z3 + 5z4 + 13z5 + 34z6 + 89z7 + 233z8 + 610z9 + · · ·
Y [5](z) = z + z2 + 2z3 + 5z4 + 14z5 + 41z6 + 122z7 + 365z8 + · · ·

Numerical values The last step is numerical iteration. In the case of general plane trees, the
radius of convergence of the series is 1/4, so that an evaluation at α = 0.1 is possible. The
iteration translates into y[n+1] = 0.1/(1− y[n]) and leads to the following values y[i], which again
by construction, are the values of the convergent series Y [i](z), when evaluated at z = α, and
have for limit Y (α) = 0.11270166537925831148207346002176

y[0] = 0 y[1] = 0.1

y[2] = 0.11111111111111111111111111111111 . . .

y[3] = 0.11250000000000000000000000000000 . . .

y[4] = 0.11267605633802816901408450704225 . . .

y[5] = 0.11269841269841269841269841269841 . . .

Thus the translation of the combinatorial specification into a numerical iteration provides an ora-
cle for general plane trees. The generating series are not used but their existence and convergence
properties play a role in the proof that the numerical iteration converges to the desired value.

8 Carine Pivoteau and Bruno Salvy and Michèle Soria

3.2 Transfer of Convergence

We now turn to the general case and provide a first oracle based on iterating the specification
numerically. We first define the notions of convergence that are needed.

Convergences The notion of contact is classical in species theory [1]. We define its counterpart
in the framework of combinatorial classes of [6]. Two combinatorial classes F and G have contact
of order k, denoted by F =k G, when their structures of size up to k are identical. A sequence of
classes (Y [n])n∈N converges to a class Y if for all k ≥ 0, there exists N ≥ 0 such that for all n ≥ N ,
Y [n] =k Y. This is denoted by limn→∞ Y [n] = Y. Convergence of vectors of combinatorial classes
is defined as componentwise convergence.

Recall that the valuation of a power series S(z), denoted by val(S(z)), is the exponent of the
first nonzero coefficient of the series. A metric is classically deduced by defining the distance
between two power series by d(F (z), G(z)) = 2− val(F (z)−G(z)); convergence follows.

Theorem 1 (Transfer of Convergence) Let Y = F(Z,Y) be well founded and F(∅,∅∅∅) = ∅∅∅.

1. The iteration Y [n+1] = F(Z,Y [n]), with Y [0] = ∅∅∅, converges to the combinatorial class Y,
solution of Y = F(Z,Y).

2. The iteration Y [n+1](z) = F (z,Y [n](z)), with Y [0](z) = 0, converges to the generating
series Y (z) of the class Y.

3. If F is an analytic specification, then Y has positive radius of convergence ρ and for all α
such that |α| < ρ, the iteration y[n+1] = F (α, y[n]), with y[0] = 0, converges to Y (α).

Proof: 1. Combinatorics The first statement is a consequence of Joyal’s proof of his implicit
species theorem [9, Thm. 6].

It is useful to note that the sequence Y [n] is monotonic, in the sense that Y [n] ⊂ Y [n+1] for
all n. This is proved by induction. For n = 0, this comes from the definition of the class ∅∅∅. Then
the inclusion Y [n] ⊂ Y [n+1] is preserved by F since the structures of F(Z,Y [n]) are naturally

structures of F(Z,Y [n+1]). By definition of the iteration, this means Y [n+1] ⊂ Y [n+2].

2. Power series By the symbolic method, the power series Y [n](z) are the generating series of

the classes Y [n]. Convergence of combinatorial classes translates at the level of generating series
into val(Y [n](z) − Y (z)) → ∞, which gives the convergence of generating series.

3. Numerical values Since F is analytic and the Jacobian matrix (I − ∂F /∂Y)(0, 0) is
invertible, the implicit function theorem asserts that Y is analytic at 0 (see e.g., [2, Ch. IV]).

The point is to show that for all α such that 0 ≤ |α| < ρ, Y [n](α) converges to Y (α), and

Y [n](α) = y[n] (the evaluation of Y [n] at α is equal to the value obtained by numerical iteration).

The monotonicity of the combinatorial sequence implies the inequality [zk]Y [n](z) ≤ [zk]Y (z)

for all n and k. Consequently, the Y [n]’s are analytic for |z| < ρ, by absolute convergence,

and also the tails are bounded by the tail of Y . Thus Y [n](α) converges to Y (α). Let r be
such that |α| ≤ r < ρ. Assuming F (z,Y) to be analytic in a polydisc |(z,Y)| ≤ (r, Y (r))

Boltzmann Oracle for Combinatorial Systems 9

with componentwise inequality, the vector F (α, Y [n](α)) is well defined, and thus by induction

y[n+1] = F (α,y[n]) = F (α,Y [n](α)) = Y [n+1](α).
We now prove the required analyticity of F (z, Y). Let F (z,Y) =

∑

f i,jz
iY j1

1 · · ·Y jm
m and

Y (z) =
∑

ckzk. For each coordinate h ∈ {1, . . . ,m}, extracting the coefficient of zk (k =
0, . . . , N) in the identity F (z, Y (z)) = Y (z) leads to an inequality of the form

∑

i+j1ℓ1+···+jmℓm≤N

fh,i,j ri(

ℓ1
∑

k1=0

c1,krk1)j1 · · · (
ℓm
∑

km=0

cm,krkm)jm =
∑

k≤N

ch,krk ≤ Yh(r), N ∈ N,

where first indices denote coordinates. The coefficients being positive, the first sum converges to
Yh(r) as N → ∞. This proves the convergence of Fh(z,Y) for |(z,Y)| ≤ (r, Y (r)) and therefore
that of F (z,Y) which concludes the proof. 2

4 Newton iteration

As the computation for general plane trees in §3.1 exemplifies, the numerical convergence of
the previous iteration is typically linear. It is therefore very tempting to use a faster iteration,
provided we can show that it converges to the desired solution. The aim of this section is to show
that Newton’s iteration is appropriate. The proof is based on a combinatorial lifting of Newton’s
iteration. We first show how this works on the same example.

4.1 Newton Iteration for General Plane Trees

Our oracle for general plane trees is simply the Newton numerical iteration for the equation y =
α/(1 − y), with initial point 0, i.e.,

y[n+1] = y[n] +
α/(1 − y[n]) − y[n]

1 − α/(1 − y[n])2
, y[0] = 0. (4)

For α = 0.1, the iterates are

y[0] = 0

y[1] = 0.11111111111111111111111111111111 . . .

y[2] = 0.11270125223613595706618962432916 . . .

y[3] = 0.11270166537923032259476392887392 . . .

y[4] = 0.11270166537925831148207345989331 . . .

showing very fast (quadratic) convergence. Note that the equation y = 0.1/(1 − y) has another
real positive solution, namely y = 0.88729833462074168852 We show below that starting
with y[0] = 0 ensures convergence to the desired solution.

As in the direct iteration, the proof is based on showing that the values yi are the evaluations
of generating series at 0.1, these generating series enumerating combinatorial classes that are
defined by a combinatorial lifting of the Newton iteration.

10 Carine Pivoteau and Bruno Salvy and Michèle Soria

For the case of one equation, such a combinatorial Newton iteration has been introduced by
Décoste, Labelle and Leroux [4], who showed that the equation Y = F(Z,Y) is solved by

Y [n+1] = Y [n] + Seq

(

∂F
∂Y (Y [n])

)

× (F(Z,Y [n]) − Y [n]), Y [0] = ∅.

In the case of general plane trees, F(Z,Y) = Z × Seq(Y), so that the iteration becomes

Y [n+1] = Y [n] + Seq(Z × Seq(Y [n])2) × (Z × Seq(Y [n]) − Y [n]),

which should be compared with Eq. (4). The first classes are as follows:

Y [0] = ∅ Y [1] = . . .

Y[2] = . . .

The fast convergence can also be seen at the level of generating series:

Y [0](z) = 0 Y [1](z) = z + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + · · ·
Y [2](z) = z + z2 + 2z3 + 5z4 + 14z5 + 42z6 + 131z7 + 417z8 + · · ·
Y [3](z) = z + z2 + 2z3 + 5z4 + 14z5 + 42z6 + · · · + 742900z14 + · · ·
Y [4](z) = z + z2 + 2z3 + 5z4 + 14z5 + 42z6 + · · · + 1002242216651368z30 + · · ·

4.2 General Case

Our main result is the following.

Theorem 2 (Newton Oracle) Let Y = H(Z,Y) be a well-founded analytic specification with
H(∅,∅∅∅) = ∅∅∅. Let α be inside the disk of convergence of the generating series Y (z) of Y. Then
the following iteration converges to Y (α):

y[n+1] = y[n] +

(

I − ∂H

∂Y
(α, y[n])

)−1

· (H(α,y[n]) − y[n]), y[0] = 0.

This is the classical Newton iteration for systems. The main point here is that given the initial
point 0, not only does the iteration converge, but the limit is the desired value. Our proof relies
on an extension of the Newton combinatorial iteration [4] to the case of systems.

Proposition 2 Let Y = H(Z,Y) be a well-founded specification with H(∅,∅∅∅) = ∅∅∅. Let N H

be the operator defined by

N H(Z,Y) = Y +

(

I − ∂H

∂Y
(Z,Y)

)−1

× (H(Z,Y) − Y).

Then the sequence defined by Y [0] = ∅∅∅, Y [n+1] = N H(Z,Y [n]) (n ≥ 0) converges to Y. Moreover

this convergence is quadratic: Y [n] =k Y ⇒ Y [n+1] =2k+1 Y.

Boltzmann Oracle for Combinatorial Systems 11

Concerning the combinatorial meaning of the iteration, a few words of explanation are in order.
Following Labelle [10], the inverse of the Jacobian matrix is given by:

(

I − ∂H

∂Y
(Z,Y)

)−1

=
∑

k≥0

(

∂H

∂Y
(Z,Y)

)k

.

The subtraction H(Z,Y) − Y is defined when Y ⊂ H(Z,Y) as the set difference of the classes.

Example. For series-parallel graphs, starting with Y [0] = (∅, ∅), the first step of the combinatorial
Newton iteration produces the combinatorial class

Y [1] =
∑

k≥0

(

∅ Seq≥1(Z) × Y⋆
2 × Seq(Z) + Y⋆

2 × Seq≥1(Z)
Set≥1(Z) × Y⋆

1 ∅

)k

·
(

Seq≥2(Z)
Set≥2(Z)

)

.

For arbitrary n, the numerical Newton iteration is

y[n+1] = y[n] +

(

1 1 − 1

(1−α−y
[n]
2)2

1 − eα+y
[n]
1 1

)−1

·





(α+y
[n]
2)2

1−α−y
[n]
2

− y
[n]
1

eα+y
[n]
1 − 1 − α − y

[n]
1 − y

[n]
2



 .

The singularity is at 2 −
√

5 + ln((1 +
√

5)/2) ≈ 0.245. With α = 0.24, the first few iterates are

y[1] = (0.1230510663209943063722 . . . , 0.06462664750711721439535 . . .)

y[2] = (0.1627000389319615796926 . . . , 0.09201293266034877734970 . . .)

y[3] = (0.1724333307003245710686 . . . , 0.09798441803578338336038 . . .)

y[4] = (0.1730460965507535353574 . . . , 0.09836831514307466499845 . . .)

y[5] = (0.1730486392973095133433 . . . , 0.09836989917963665326450 . . .)

y[6] = (0.1730486393408452105149 . . . , 0.09836989920678769126015 . . .)

Proof of Proposition 2: The proof is based on the same three steps as that of the combinatorial
Newton iteration in the univariate case [4].

1. The iteration is well defined The subtraction is possible only if Y [n] ⊂ H(Z,Y [n]). The

proof of this inclusion is by induction. For n = 0 this is a consequence of Y [0] being the empty
set. If the property is satisfied for n, then we use Eq. (3) with A = Y [n] and B = Y [n+1] − Y [n].

This latter subtraction is justified since the first summand of N H(Z,Y [n]) is Y [n]. Thus we get

H(Z,Y [n+1]) ⊃ H(Z,Y [n]) +
∂H

∂Y
(Z,Y [n]) × (Y [n+1] − Y [n]),

⊃ Y [n] + (H(Z,Y [n]) − Y [n])

+
∂H

∂Y
(Z,Y [n]) ×

∑

k≥0

(

∂H

∂Y
(Z,Y [n])

)k

× (H(Z,Y [n]) − Y [n]),

⊃ Y [n] +
∑

k≥0

(

∂H

∂Y
(Z,Y [n])

)k

× (H(Z,Y [n]) − Y [n]) = Y [n+1],

12 Carine Pivoteau and Bruno Salvy and Michèle Soria

where in the second line we use the induction hypothesis to rewrite H(Z,Y [n]) and the definition

of the iteration to rewrite Y [n+1].

2. The iteration is not ambiguous All the structures of N H(Z,Y [n]) are distinct: this

comes from an induction using the fact that the final grafting of an element of H(Z,Y [n])−Y [n]

cannot occur anywhere else in a structure built on Y [n]’s only.

3. Convergence and its quadratic behaviour Assume that Y [n−1] =k Y [n] and consider an
element γ of size at most 2k+1 in the class Y [n+1]−Y [n]. Thus γ belongs to (∂H/∂Y(Z,Y [n]))ℓ×
(H(Z,Y [n]) − Y [n]) for some ℓ ∈ N. Exactly one of the elements of Y [n] composing γ has size
larger than k: two of them would give γ a size larger than 2k + 1 and none of them would
make all these elements of Y [n] elements of Y [n−1] and therefore γ would belong to Y [n]. More-
over, this element, say β, belongs to the final H(Z,Y [n]) since otherwise this final element, say δ,

would belong to H(Z,Y [n−1]) ⊂ Y [n]. By definition, β itself belongs to (∂H/∂Y(Z,Y [n−1]))ℓ′ ×
(H(Z,Y [n−1])−Y [n−1]) for some ℓ′ ∈ N. Thus δ belongs to (∂H/∂Y(Z,Y [n−1]))ℓ′+1(H(Z,Y [n−1])−
Y [n−1]) which is part of Y [n], and that is not possible. Thus there is no γ of size at most 2k + 1

in Y [n+1] − Y [n], or equivalently Y [n+1] =2k+1 Y [n].
The proof is concluded by showing that the limit is the solution of Y = H(Z,Y). This follows

from rewriting the iteration in the form

H(Z,Y [n]) − Y [n] +
∂H

∂Y
(Z,Y [n]) · (Y [n+1] − Y [n]) = Y [n+1] − Y [n]

and observing that since Y [n+1] − Y [n] converges to ∅∅∅, so does H(Z,Y [n]) − Y [n]. 2

Proof of Theorem 2: Since the limit of Y [n+1] = N H(Z,Y [n]) is the solution of Y = H(Z,Y),

which is well founded, there are only finitely many elements in Y [n] of any size in Y and this
makes the specification Y = N H(Z,Y) well founded too. It is analytic by the analyticity of H.
The proof is completed by application of part (3) of Theorem 1 with F = N H. 2

5 Applications

Figure 1 displays the timings of a straightforward Maple implementation of the Newton oracle
for our example of series-parallel graphs. Each point corresponds to a computation of the oracle
at a specified α and precision(i). The curves display jumps corresponding to precisions where the
number of Newton iterations is increased by one.

We have also implemented a prototype of an optimized Newton iteration [13]. Our prototype
first decomposes the grammar into strongly connected components and each Newton iteration is
run on these components separately. Indications on the performance are given in Table 2. In
these tests, we generated random grammars for different values of the number of equations and
the number of constructions per equation. The average size of the largest strongly connected
component of the system is given in the third row, since it has a significant impact on the
performance. Timings are given in seconds. In applications to Boltzmann generation, the location

(i) The program was run using Maple 11 on an Intel processor at 3.2 GHz with 2 GB of memory.

Boltzmann Oracle for Combinatorial Systems 13

Fig. 1: Evaluation of the Newton Oracle for series-parallel graphs (time vs precision). Expected sizes
10, 100, 1,000, 10,000 (corresponding to α ≃ 0.2290606680; 0.2450366213; 0.2451428138; 0.2451438373).

of the point α at which the oracle is invoked is related to the expected size of the objects produced
by the random generator, which increases with the closeness to the dominant singularity. Thus,
we give our timings at points on a scale given by the dominant singularity ρ. In the last row, we
give the average value of the expected size of the objects produced by the Boltzmann generators
at 0.999999ρ, where the average is taken over 100 grammars in each column.

equations 4 10 50 100 500
constructions/eqn 10 10 10 50 10 50 50
avg size largest scc 2.47 3.42 7.95 18.62 10.93 67.18 339.1
time (0.99ρ) 0.05 0.11 0.17 0.47 0.23 7.29 61.73
time (0.999999ρ) 0.08 0.16 0.19 0.56 0.25 8.11 61.86
avg expected size 4.1 1014 1.4 107 2.2 105 1.0 105 1.2 106 5.0 104 3.3 104

Tab. 2: Experimental Results

Besides these random examples, our prototype has also been used to compute oracles and
generate random structures for systems appearing in real applications. Darrasse has applied
the method to generate XML documents [3]: he developed a program that takes any RELAX
NG grammar and produces huge uniform random trees that are valid XML documents. These
documents can be used, for instance, for testing vulnerability of web services. With context-
free grammars such as MathML or DocBook, leading to combinatorial systems of hundreds of
equations, he could compute the oracles in a few seconds, and produce random documents of
10,000 nodes in less than one minute on a standard PC.

In a preliminary work with Oudinet, concerned with paths in large graphs modeling concurrent
systems [12], we could deal with a first example comprising 1,183 equations in a few seconds, at
a point which leads to an expected size of approximately 100,000 nodes.

14 Carine Pivoteau and Bruno Salvy and Michèle Soria

References

[1] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like structures,
volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1998. ISBN 0-521-57323-8. Translated from the 1994 French original.

[2] H. Cartan. Elementary theory of analytic functions of one or several complex variables.
Dover Publications, 1995. ISBN 0486685438 (pbk.). URL http://www.loc.gov/catdir/

description/dover031/95013507.html. Reprint of the 1973 ed, translated from the 1961
French original.

[3] A. Darrasse. Random XML sampling the Boltzmann way. Technical Report 0807.0992,
arXiv, 2008. URL http://arxiv.org/abs/0807.0992.

[4] H. Décoste, G. Labelle, and P. Leroux. Une approche combinatoire pour l’itération de
Newton-Raphson. Advances in Applied Mathematics, 3:407–416, 1982.

[5] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann samplers for the random
generation of combinatorial structures. Combinatorics, Probability and Computing, 13(4–5):
577–625, 2004. Special issue on Analysis of Algorithms.

[6] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2008.
To be published, available from P. Flajolet’s web page.

[7] P. Flajolet, B. Salvy, and P. Zimmermann. Automatic average-case analysis of algorithms.
Theoretical Computer Science Series A, 79(1):37–109, Feb. 1991.

[8] P. Flajolet, É. Fusy, and C. Pivoteau. Boltzmann sampling of unlabelled structures. In
D. Applegate, G. S. Brodal, D. Panario, and R. Sedgewick, editors, Proceedings of the Ninth
Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic
Algorithmics and Combinatorics, volume 126 of SIAM Proceedings in Applied Mathematics,
pages 201–211. SIAM, 2007. Workshops held in New Orleans, LA, January 2007.

[9] A. Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics, 42(1):
1–82, 1981.

[10] G. Labelle. Éclosions combinatoires appliquées à l’inversion multidimensionnelle des séries
formelles. Journal of Combinatorial Theory. Series A, 39(1):52–82, 1985. ISSN 0097-3165.

[11] G. Labelle. Dérivées directionnelles et développements de Taylor combinatoires. Discrete
Mathematics, 79(3):279–297, 1990. ISSN 0012-365X.

[12] J. Oudinet. Uniform random walks in very large models. In M.-C. Gaudel, J. Mayer, and
R. Merkel, editors, Proceedings of the Second International Workshop on Random Testing
(RT 2007), pages 26–29, Atlanta, GA, USA, November 2007. ACM Press.

[13] C. Pivoteau, B. Salvy, and M. Soria. Newton iteration for combinatorial systems with
applications to enumeration and random generation. In preparation, 2008.

[14] P. Zimmermann. Séries génératrices et analyse automatique d’algorithmes. PhD thesis,
École polytechnique, Palaiseau, France, 1991.

http://www.loc.gov/catdir/description/dover031/95013507.html
http://www.loc.gov/catdir/description/dover031/95013507.html
http://arxiv.org/abs/0807.0992

	Introduction
	Combinatorial structures
	Combinatorial specifications
	Well-founded combinatorial systems
	Definition
	Derivative
	Characterization of well-founded systems

	Generating functions

	Iteration and oracle computation
	Example
	Transfer of Convergence

	Newton iteration
	Newton Iteration for General Plane Trees
	General Case

	Applications

