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NASH APPROXIMATION OF AN ANALYTIC DESINGULARIZATION

GOULWEN FICHOU AND MASAHIRO SHIOTA

ABSTRACT. Approximation of real analytic functions by Nash functions is a classical
topic in real geometry. In this paper, we focus on the Nash approximation of an analytic
desingularization of a Nash function germ obtained by a sequence of blowings-up along
smooth analytic centers. We apply the result to prove that Nash function germs that are
analytically equivalent after analytic desingularizations are Nash equivalent after Nash
desingularizations. Results are based on a precise Euclidean description of a sequence of
blowings-up combined with Néron Desingularization.

The story of Nash manifolds and Nash maps begins with the fundamental paper [[L3] of
J. Nash who realized any compact smooth manifold as a connected component of a real
algebraic set. Nash manifolds, or Nash maps, are simply real analytic manifolds, or maps,
with an additional semi-algebraic structure (i.e. described by finitely many equalities and
inequalities of polynomial functions). In the further development of the theory, a crucial
role has been played by approximation theorems, which state roughly speaking that real
analytic solutions of a system of Nash equations may be approximated by Nash solutions,
in a convenient topology ([, B, [Ld]).

Let f be a Nash function on a Nash manifold M. Then f is in particular a real analytic
function on a real analytic manifold, and by Hironaka Desingularization Theorem [f] there
exists a composition 7 of blowings-up along smooth analytic centers such that f o7 has
only normal crossing singularities. We put our interest in this paper in approximating such
a composition of blowings-up for which we can not apply classical Nash approximation
theorems. Nevertheless, we prove as theorem .4 that each blowing-up along a smooth
analytic center can be approximated by a blowing-up along a smooth Nash center in such
a way that the normal crossing property of the modified function continues to hold.

Moreover we apply theorem .4 to deduce a Nash approximation theorem after desingu-
larization (cf. theorem [[.4). More precisely for f and g Nash function germs on a compact
semialgebraic set in a Nash manifold such that there exists analytic desingularizations ¢
of f and 7y of g such that f o7, and g o, are analytically equivalent, there exist Nash
desingularizations 7y of f and 7, of g such that f o7y and g o 7, are Nash equivalent.
Note that here we do not only approximate the desingularizations but also the analytic
diffeomorphism that realizes the equivalence between the modified germs. In the language
of blow-analytic equivalence (cf. [, [], §] and section [[), this result says that almost
blow-analytically equivalent Nash function germs are almost blow-Nash equivalent. This
question remains open for blow-analytic equivalence, namely if we impose moreover to
the diffeomorphism that realizes the equivalence to induce a homeomorphism between the
germs before desingularization.

The paper is organized as follows. We first recall in section [] some definitions about
blow-analytic equivalence before stating theorem [L.4. Then, in order to approximate a
sequence of blowings-up along smooth centers, we focus in section .9 on a Euclidean real-
ization of such a sequence in order to describe precisely its behavior under a perturbation
of the defining ideal of the centers (cf. lemma R.9). Combine with Néron Desingularization
[L7], this implies theorem R.4. But this is not sufficient to prove theorem [1.4 since we need
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to approximate also the analytic diffeomorphism of the equivalence after the desingular-
ization. To this aim, we need to generalize the Nash Approximation Theorem in [}] to a
more general noncompact situation (cf. proposition B.1l). We obtain as a corollary that
analytically equivalent Nash function germs on a compact semialgebraic set in a Nash
manifold are Nash equivalent (cf. theorem B.9). The last section is devoted to the proof
of theorem [L.4.

In this paper a manifold means a manifold without boundary, analytic manifolds and
maps mean real analytic ones unless otherwise specified, and id stands for the identity
map.

1. ALMOST BLOW-ANALYTIC EQUIVALENCE

Blow-analytic equivalence (cf. [LI, i, B]) can be considered as a real counterpart of
the topological equivalence between complex analytic germs of functions. Almost blow-
analytic equivalence and almost blow-Nash equivalence are released version of the blow-
analytic equivalence, for which cardinality results are known [f].

Definition 1.1. Let M be an analytic manifold and f,g : M — R be analytic functions
on M. Then f and g are said to be almost blow-analytically equivalent if there exist two
compositions of finite sequences of blowings-up along smooth analytic centers 7y : N —
M and 7y : L — M and an analytic diffeomorphism i : N — L so that for; = gomgoh.
In case there exist 7y : N — M and 7y : L — M with the above property and analytic
diffeomorphisms h : N — L and 7 : R — R such that 7o for; = gomgoh, then f and g
are called almost blow-analytically R-L (=right-left) equivalent. We define also the almost
blow-analytic (R-L) equivalence of germs of analytic functions.

In this paper, we only treat the case where the images of the centers of the blowings-up
of 7y and 7, are contained in their singular point sets Sing f and Sing g, respectively,
and the center C of each blowing-up is of codimension > 1 and normal crossing with
the union D of the inverse images of the previous centers, i.e. there exists an analytic
local coordinate system (z1,...,z,) at each point of C' such that C = {z; = -+ = a}
and D = {x; ---x;, = 0} for some 0 < k€ Nand 1 <i; < --- < i <n €N, where
N ={0,1,...}.

Remark 1.2.

(1) Note that the cardinality of the set of classes of analytic functions on a compact
analytic manifold, classified by almost blow-analytic equivalence, is of the contin-
uum even if dim M = 0, whereas that of almost blow-analytic R-L equivalence is
countable [f].

(2) We do not know whether the almost blow-analytical (R-L) equivalence and the
blow-analytical (R-L) equivalence give equivalence relations (see [[]). But this
is the case if we admit blowings-up along non-smooth analytic center. Moreover,
even in the case of germs of functions, almost blow-analytically equivalent function
germs are not necessarily blow-analytically equivalent. We refer to [ for these
results.

Definition 1.3. A semialgebraic set is a subset of a Euclidean space which is described
by finitely many equalities and inequalities of polynomial functions. A Nash manifold
is a C¥ submanifold of a Euclidean space which is semialgebraic. A Nash function on
a Nash manifold is a C¥ function with semialgebraic graph. A Nash subset is the zero
set of a Nash function on a Nash manifold. Let M be a Nash manifold, X C M be a
semialgebraic subset and f, g be Nash function germs on X in M. Then f and g are said to
be almost blow-Nash equivalent if there exist open semialgebraic neighborhoods U and V'
of X in M, two compositions of finite sequences of blowings-up along smooth Nash centers
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7w : N — U and 7y : L — V and a Nash diffeomorphism h from an open semialgebraic
neighborhood of 7T]71(X) in N to one of 7Tg_1(X) in L so that f and g are supposed to
be defined on U and V, respectively, f oy = gomyoh and h(ﬂ';l(X)) =1, (X). We
naturally define also almost blow-Nash R-L equivalence.

The aim of the paper is to prove the next result which is a natural counterpart of the
classical Nash Approximation Theorem (cf. [, [[f]) in the case of almost blow-analytic
equivalence.

Theorem 1.4. Let M be a Nash manifold, X C M be a compact semialgebraic subset
such that X = M or X C Sing f, and f,g be Nash function germs on X in M. If f
and g are almost blow-analytically (R-L) equivalent, then f and g are almost blow-Nash
(respectively R-L) equivalent.

Remark 1.5.

(1) Here the compactness assumption of X is necessary. Indeed, there exist a non-
compact Nash manifold M and Nash functions f and g on M which are C% right
equivalent but not almost blow-Nash equivalent as follows. Let N be a compact
contractible Nash manifold with non-simply connected boundary of dimension n >
3 (e.g., see [[J]). Set M = (Int N) x (0, 1) and let f : M — (0, 1) denote the
projection. Then M and f are of class Nash, and M is Nash diffeomorphic to
R™"! for the following reason. Smooth the corners of N x [0, 1]. Then N x
[0, 1] is a compact contractible Nash manifold with simply connected boundary of
dimension > 4. Hence by the positive answers to Poincaré conjecture and Schonflies
problem (Brown-Mazur Theorem) N x [0, 1] is C*° diffeomorphic to an (n+1)-ball.
Hence by Theorem V1.2.2, [[§] M is Nash diffeomorphic to an open (n+1)-ball. Let
g : M — R be a Nash function which is Nash right equivalent to the projection
R" x(0,1) — (0,1). Then f and g are C¥ right equivalent since Int N is C¥
diffeomorphic to R, but they are not almost blow-Nash equivalent because if
they are so then their levels are Nash diffeomorphic except for a finite number of
values and hence Int N and R' are Nash diffeomorphic, which contradicts Theorem
VI 2.2, [ILg].

(2) The similar result concerning blow-Nash equivalence remains open. Namely we do
not know whether blow-analytically equivalent Nash function germs on X in M
are blow-Nash equivalent.

2. NASH APPROXIMATION OF AN ANALYTIC DESINGULARIZATION

2.1. Preliminaries on real analytic sheaf theory. We recall the statements of the
real analytic case of Cartan Theorems A and B, and Oka Theorem, in the refined version
given in [f].

Let O, N and N(M) denote respectively the sheaves of analytic and Nash function
germs on an analytic and Nash manifold and the ring of Nash functions on a Nash manifold
M. We write Op; and Nj; when we emphasize the domain M. For a function f on an
analytic (Nash) manifold M, a subset X of M, a vector field v on M and for a sheaf of O-
(N-) modules M on M, let f,, X,, v, and M, denote the germs of f and X at a point
x of M, the tangent vector assigned to x by v and the stalk of M at z, respectively. For
a compact semialgebraic subset X of a Nash manifold M, let N (X) denote the germs of
Nash functions on X in M with the topology of the inductive limit space of the topological
spaces N (U) with the compact-open C'*° topology where U runs through the family of
open semialgebraic neighborhoods of X in M.

Theorem 2.1. Let M be a coherent sheaf of O-modules on an analytic manifold M.

(1) (Cartan Theorem A) For any x € M we have M, = H°(M, M)O,..
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(2) Assume moreover that M, is generated by a uniform number of elements for any
x € M. Then H°(M, M) is finitely generated as a HO(M, O)-module.

(3) (Cartan Theorem B) H*(M, M) = 0.

(4) Let X C M be a global analytic set—the zero set of an analytic function. Let T be
a coherent sheaf of O-ideals on M such that any element of T vanishes on X. Then
any f € H'(M,O/T) can be extended to some F € C¥(M), i.e. f is the image of F
under the natural map H°(M,O) — H°(M,O/I). If X is normal crossing, we can
choose T to be the function germs vanishing on X. Then H°(M,O/T) consists of
functions on X whose germs at each point of X are extensible to analytic function
germs on M.

(5) (Oka Theorem) Let My and My be coherent sheaves of O-modules on M, and

h : M1 — Ms be an O-homomorphism. Then Kerh is a coherent sheaf of O-
modules.

2.2. Euclidean realization of a sequence of blowings-up. Let C' be a smooth analytic
subset of an analytic manifold U, and let w : M — U denote the blowing-up of U along
center C'. In this section, we describe M as a smooth analytic subset of U x P (k) for some
k € N.

Let Z denote the sheaf of O-ideals defined by C. Since C is smooth, each stalk Z, is
generated by ¢ = codim C' elements. Hence there exist a finite number of global generators
ho,...,hx € HY(U,Z) of T by theorem R.1.(d]). Define A to be the sheaf of relations of
ho, ey hk:

k
A= User{(po, - ) € OF 2~ pihiz = 0},
i=0

Then A is coherent by theorem P.IJ.(f), and each A, is generated by k —c+ 1+ (¢ — 1)!
elements as follows. If zg ¢ C then h;(xg) # 0 for some i, say 0. On a small neighborhood
of g, the map OF 5 OF 3 (1, ooy i) — (= S0, ptihie/how, i1, - i) € OFFL € OF 1 is
an isomorphism onto 4. Hence A, is generated by k elements. If x¢g € C, let x denote a
point near xg. In this case we can assume that hqg, ..., he—1, are regular function germs and
generate Z,. Then each h;;, ¢ < i < k, is of the form Zf;é ¢;hi; for some ¢; € O,. Hence
the projection image of A, to the last k—c+1 factors of O¥*1is OF=¢*1 and it suffices to
see that A, NOS x {0} x - -+ x {0} is generated by (¢ — 1)! elements. We do this as follows:
Ay NOE x {0} x --- x {0} is generated by (0,...,0,hj_14,0,...., —hi—15,0,...,0) for 1 <i <
J < c. Therefore, A is generated by its global cross-sections g1 = (91,0, s g1,k); -+ G/ =
(Gk' 0y s G k) € C¥(U)FFL for some k' € N. Moreover, it follows from these arguments
that

(1) Yr g gighj =0, i=1,..k,

(2) for each z € U — C, the vectors g (), ..., gi () in R¥*! span a hyperplane and

(ho(x), ..., hi(x)) in RFF! is non-zero and orthogonal to the hyperplane,
(3) for each z € C, the linear subspace {(so, ..., s;) € RF!: Z?:o 5j95,5(x) =0, i =
1,....k'} of R**1 is of dimension c.

Hence we can regard set-theoretically M — 7—1(C) as
{(m,t) S (U - C) X P(k‘) : tihj(x) = tjhi(x), 1,7 =0,..., k‘}
by (2), hence M as

{(x,t) € U x P(k) : tihy(x) = t;hi(w), 1,5 =0,... .k, and Y tjgij(z) =0,i=1,...,k'}



by (3) and by Z?zo tjgij(x) =0,i=1,..,K, for (z,t) € (U—C) x P(k) with t;h;(z) =
tjhi(x), i,j = 0...,k, and 7 as the restriction to M of the projection U x P(k) — U. When
we identify M with the subset of U x P(k), we say M is realized in U x P (k).

Since we treat only finite sequences of blowings-up, we can imbed M into a Euclidean
space. For that we imbed algebraically P (k) in R*+D? asin [ by

tit;
to:...:1t
(0 k)'_>(|t|2)7

where |t|? = Zf:o t2. Tt is known that P(k) is a non-singular algebraic subvariety in
R* D We denote by y;,j the coordinates on R*+D? guch that yij = titj/[t|* on P(k).
Let &1,...,&s be generators of the ideal of Rly; ;] of functions vanishing on P(k). Set
Lijom(z,y) = yi jhm(x) — ym,ihj(x) for i, j,m = 0,..., k. Define

N ={(x,y) e U x REFD? . lijm(z,y) =0, 4,5,m =0,...,k,

Then M = N. Moreover the analytic sets of both sides coincide algebraically, i.e. the
functions I; ., Z?:O Yjmdij, & generate I(M)—the ideal of C*(U x R(k“)Q) of func-
tions vanishing on M. Indeed, by theorem R.I|.() the problem is local. If z € U — C,
the claim locally at z is clear. Assume that z € C, and let (z1,...,z,) denote a lo-
cal coordinate system of U around z. As the claim does not depend on the choice of
{9i}, we can assume that h; = zj11,j =0,..,c — 1, h; = Zf;é ijhis j = ¢, ..., k, and
g1 = (_QSO,Ca ) _Qscfl,ca Lo,.., 0)’ o Jk—ctl = (—¢0,k, S _¢c—17k, 0,...,0, 1)5 Jk—c+2 =
(2, —21,0,....,0), ..., g = (0,...,0, ¢,— 21,0, ...,0) for some C* functions ¢; ; on a neigh-
borhood of z and for &' =k —c+ 1+ (¢ —1)!. Then

1 0 doe -+ Dok
(to---tx) = (to---te-1) ' : : :
0 1 ¢c—1,c o (bcfl,k
1 0
to to
) _ 0 1 .
’ (bO,c T ¢c—1,c ’
tr . . te—1
ok - Pe—1k
Therefore Z?:o t? is equal to
1 0
' to 1 0 ¢oc =+ Dok
0 1 ool . A
(bO,c - ¢c—1,c : 0 c—1 . : :
. . te—1 0 1 gbcfl,c o gbc—l,k
ok Pe—1k
whereas the matrix (yi;); ;o equals



1 0

0 : ) y(.),o yO,c.—l 1 | 0 (ﬁ(.),c ¢9,k
¢O,c ¢cfl,c ' ' ’ ' '

i ) Ye—1,0 " Yel,e—1 0 1 Ge1ec " Pe—1k
bok  De—1k

Hence we can forget h; and v;; = y;4, ¢ = 0,...,k, j = ¢,..., k, and we can replace N
with its image under the projection U x REHD? 5 (@,9i5) — (,¥i)ij<e—1 € U X R,
Come back to the realization of M in U x P (k). Then it becomes

M= {(z,y) e U x R : lijm(z,y) =0, i,j,m=0,...,c—1,

Zyj,mgi,j(x)zo, i=k—c+2,..,K,m=0,...,c—1, and &(y) =0,i=1,...,5},

where £ are generators of I(P(c — 1)) C Rly;jlij<c—1. Therefore it suffices to show that
Lijm, 257:10 Yjirm8it ity Ens 1, 5,m=0,..,c—1, 7 =k—c+2,.. K, =1,...,5, generate
I (M ). However, by easy calculations we prove that l; ;, and &, generate I (M ). (To
realize M in U x P(k) we need the equations Z?:o tjgij(x) =0, i =1,...,k—c+1, which
are equivalent to t. = todo.c + -+ te—1Pe—1,c, -, bk = toPo g + -+ - te—1Pe—1,k-)

2.3. Perturbation of a blowing-up. When we perturb h;, ¢ = 0,...,k, in the strong
Whitney C*° topology, the common zero set Z(h;) of h;’s may become of smaller dimension
than C and singular, where the strong Whitney C'* topology on C*°(U) is defined to be
the topology of the projective limit space of the topological spaces C*°(Uy) with the C'*
topology for all compact C°° submanifolds possibly with boundary Uy of U. (Note that
Whitney Approximation Theorem in [[[§] holds also in this topology, and we call it Whitney
Approximation Theorem.) However,

Lemma 2.2. Let h;, i =0, ...k, and §; = (Gi,05 - Gike), @ =1,...,K, be C¥ functions on
U and C¥ maps from U to Rk‘H close to h; and g;, respectwely, in the strong Whitney
C topology. Assume that (1) zj Og,jh =0,i=1,...k". Then

o C = Z(hy) is smooth and of the same dimension as C, ho, B generate 1(Z (hi))
and g1, ..., i are generators of the sheaf of relations A of ho, ..., hy,.

o Letm: M — U and @ : M — U denote the blowings-up along centers C and C,
respectively. Let M and M be realized in U x P(k) as in section [2.3. Then there
exist analytic diffeomorphisms T of U and 1 : M — M close to id in the strong
Whitney C* topology such that 7(C') = C and 7o) =Tom.

Proof. The problem in the former half is local and clear around a point outside of C', and
hence we assume that h; = z;41, j =0, ...,c— 1, for a local coordinate system (z1, ..., z,),

and h; = Zf;ol ¢ijhi, j = ¢, ..., k, for some C*“ functions ¢; ; on U. T?en Z(ho, ...y he—1)
is smooth and of the same dimension as C. Hence we need to see that h;, j =c,....k, are

contained in the ideal of C*(U) generated by ilj, j=0,...,c— 1. Choose C¥ functions
aj, i=1,...,k—c+1,j=1,..,k, on U so that

a1l aq k! g1

Qp—c+1,1 " O—ct1,k gk!
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is of the form

—¢o1 - —¢e—11 1 0
—Q0k—ct1 ° —Pe—1k—ctr1 O 1
Set
91,0 e 91,k Q1,1 T Qi g1
- - -
Jk—c+1,0 " k—ct+1,k Ok—ct1,1 " Ok—ctl K 9k’
~/ ~/
91,c T 91,k 1 0
Then : : is closed to . Hence
~/ ~/
Je—ctle " Yk—ct1k 0 1
- i -1 -
91,c Tt 91k aq1 tee Qo k! 0n
= - -
Jh—ct1,c " k—ctlk Qk—c4+1,1 " Qk—ct1,k 9k
~I ~/
91,0 T 91,c—1 1 0
is well-defined and of the form : . Now (1) implies
~I ~I
R gk—c—l—l,O e gk—c—f—l,c—l 0 1
g1 ho 0
| = | :|. Therefore,
gk’ ;Lk 0
~I ~I T
91,0 e 91 ,e—1 1 0 ho 0
~I ~I 7
Jk—ct10 " Ir—ct1,e-1 Y 1) \hg 0

and hj = — 3570 37 y1 i G=c k.

We need to see that g1, ..., ji are generators of A. By (1) they are global cross-sections
of A. We postpone proving gi, ..., gx’ generate A.

Next we prove the latter half of the lemma. We first define 7 on C. The condition on
7|c to be satisfied is 7(C') = C. Let U ¢ RY, let ¢ denote the orthogonal projection of
a tubular neighborhood of U in R¥, and let p : V — C denote the proper orthogonal
projection of a small closed tubular neighborhood of C in U. We require 7 to satisfy,
moreover, po 7 = id on C. Then 7|¢ is unique and the problem of finding 7|¢ is local.
Hence we assume that as above h; = xj41, j = 0,...,c — 1, for a local coordinate system
(21, ...,zy) at each point of C and h; = Zf;ol ¢ijhi, j = ¢, ..., k, for some C* functions ¢; ;.
Then 7|¢ is well-defined (cf. proof of lemma 3.5 in [[]), and 7|¢ is an analytic embedding
of C into U close to id in the strong Whitney C'*° topology.

Secondly, we extend 7|¢ to V' by setting 7(x) = g(Top(z)+x—p(x)) for z € V, which is
close to id in the strong Whitney C*° topology. Moreover, using the extension we extend
T|c to an analytic diffeomorphism 7 of U close to id in the same topology by a partition
of unity of class C*°, theorem PR.1].() and by Whitney Approximation Theorem.

Lastly, we need to find . Set h; = h; o 7=V and §; = g; o7 and define Z\:4 by l:LZ and
giin U x P(k) and 7 : M — U. Then

M = {(z,t) € U x P(k) : tsh; o 7~ (z) = tjhyo 7~ (x), 4, j = 0,....,k, and
7



k
thgm or Nz)=0,i=1,.. K},
=0

and ¢ : M 5 (z,t) — (7(x),t) € M is an analytic diffeomorphism close to id in the strong
Whitney C* topology such that 7ov = 7or. Hence we can replace h; and g; with h;jor 1
and g; o 71, respectively. Thus we assume from the beginning that Z(h;) = Z(h;). Set
hl; = h; — h;. Then there exist analytic functions Xij> 4, J = 0,....,k, on U close to 0 in the
topology such that b} = Z?:O Xijhj, © = 0,...,k, which is proved, as before, by a partition
of unity of class C*°, theorem P.1].(J) and by Whitney Approximation Theorem.
1 0 X0,0 " Xk0
Set A(z) = . +1 : and define an analytic diffeomorphism 1)

0 1 X0k Xkk
of U x P(k) by ¥(x,t) = (z,tA(x)) for (x,t) € U x P(k). Then (hq, ...,hx)A = (ho, ..., hy)
on U, hence ¢)(M) = M, 7o) = m on M and |y is close to id in the topology, which
proves the latter half.
It remains to show that g, ..., gir generate A, ie. g1, -, Jr generate the C*(U)-module

ho
X defined by X = {§ € (C*(U))*** : g| : | = 0} by theorem B1.(f). As above
hi,
we can assume that Z(h;) = Z(h;). Moreover, we suppose that hi = h; for any i for
ho ho
the following reason. For the above A we have A | : | = | : |. Hence X = {j €
hug hy,
ho
(C*U)*+t o gtA | | = 0}. Then it suffices to see that §i*A4, ..., i’ A generate the
I
ho
C*(U)-module X = {g € (C*(U))**':g| : | =0} because the map (C¥(U))** 55 —
T
GtA € (C¥(U))**1 is an isomorphism as C¥(U)-modules. Here §1‘A4, ..., gi' A are close to
ho 90 ho 90
g1, ---, gir respectively. Therefore, replacing | : | and [ : | with | : | and | : | %A,
h, k! hy Jr’

respectively, we suppose from the beginning that h; = h; for all ¢ and A=A
As above, the problem is local at each point of C' and we assume that h; = x;41, j =
0,...,c — 1, for a local coordinate system (x1, ..., 2,). Recall that

Bia B ks a1 | 0
(*) : : . . . .

ﬁkchrl,l s ﬁkchrl,k/ % 0] 1

for some C* functions 3; j on U. Let r denote the restriction to A of the projection of OF+1
to the last k — ¢ + 1 factors and r, : HO(U, A) — (C*(U))*=**! denote the induced map.
Then (*) implies that r,(g1), ..., 7 (G) generate r(A) = OF~¢+1 Hence it suffices to see

that ANO°x {0} x --- x {0} is generated by {Zfil Bigi = Bi € C¥(U), T*(Ziil B:igi) = 0}.
8



Since g1, ..., g generate A, there exist C* functions v; ;, i = 1,...,(c—1)!, j=1,.., K,
such that

Y11 Y a1 9 —x10--- 0 0 --- 0

V=11 0 V=LK' ) \9K 0 ---0zc =21 0 -+ 0

whose rows are global generators of AN O° x {0} x --- x {0}. Consider the matrix

M1 M,k g1
: : . Its (i,j) components, i = 1,...,(c—1)!, j = (c— 1)+

Ye-1t1 7 Ve-Dk ) \Iw’

1,...,k', are close to 0. Hence by (*) there exist C* functions ¢; j, i = 1,...,(c — 1), j =
1,..., k', close to 0 such that the (4, j) components, i = 1,....,(c—=1)!, j = (c—1)!+1, ..., ¥,
of the matrix

V1,1 e Y1,k g1 SRR 01k 71
V-1 " Ve—1)k') \GK Oe—1)t1  Oe—1yn ) \Gw
are 0. Replace v; ; with 7; ; = 7;,j — 0; ;. Then the (4, j) components, i = 1, ..., (c—1)!, j =
71,1 T Y1,k a1
(c—=1)!4+1, ..., K, of the matrix : : : | are 0, and each row is an
V=111 Ve ) \GK

g —x10--- 0 0 -+ O
approximation of the corresponding row of the matrix | : : : :
0 - 0r¢ —Teq O -+ 0
Therefore, we can suppose from the beginning that ¥ = ¢ — 1, ¥/ = (¢ — 1), g1 =
(r2,21,0,...,0),.cc, gir = (0, ..., 0,2, —T(—1).

Let m, denote the maximal ideal of O, for x € U. For each x € C, g1, ..., §i' generate
A, if and only if g1, ..., iz and m,A, generate A, by Nakayama lemma. On the other
hand, the images of g1z, ..., gk, in the linear space A,/m,A,, x € C, are a basis and
hence A, /m;.A,; is a linear space of dimension k’. Hence it suffices to see that the images
of G1z, -, Gire i Ag/mz Ay, € O, are linearly independent. Here mz A, = m20¢ N A,
because clearly my A, C m20¢ N A, and A,/(m2 N A,) (= (m20S + A,)/m20%) and
Ay /m A, are linear spaces of the same dimension. Now U,epOS/m20¢ coincides with
the space of 1-jets from U to R°. Hence for z € C, the images of iz, ..., Jrrz in O /m205,
i.e. in A,/ (m20SNA,) is linearly independent if g1, ..., gy are sufficiently close to g1, ..., gx/,
respectively, in the Whitney C' topology because the images of ¢i4, ..., gz are linearly
independent.

O

Remark 2.3.

(1) In lemma P.3, 7|¢ is an embedding of C into U close to id in the strong Whitney
C* topology such that 7(C) = C. Conversely, assume that there exist an analytic
embedding 7¢ of C into U close to id in the same topology. Then 7¢ is extensible
to an analytic diffeomorphism 7 of U close to id in the topology. Define C, h; g
and @ : M — U to be 7(C), hjor~ ', g; o7 ! and the blowing-up of U along
center C, respectively. Realize M and M in U x P(k) as before. Then h; and g
are close to h; and g; respectively, Z?:o gmﬁj =0, and hence by lemma .3 there

exists an analytic diffeomorphism ) : M — M close to id in the topology such
that Toyp =71om.
9



When there exists 7¢ such as above, we say C'is close to C in the strong Whitney
C* topology. Let ¢ : My — M, and ¢ : M; — M, be analytic maps between
analytic manifolds with M; € R™, M; € R™, My ¢ R™ and M, C R"™.
Assume that M; is close to M; in the topology through an analytic diffeomorphism
7 : My — M; close to id in the topology. Then we say ¢ is close to 1 in the topology
if ¢ is so to ¢ o 7.

(2) The germ case of lemma P.2 holds in the following sense. Let h;, g;, U and C
be the same as above. Let X be a compact subset of U, and let h; and §; be C¥
functions and maps defined on an open neighborhood V of X in U close to h;|y
and g¢;|y, respectively, in the compact-open C* topology with Z;?:o gmﬁj = 0.
Shrink V. Then the same statement as the former half of lemma P.2 holds. For the
latter half, let 7 : M — U and 7@ : M — V denote the blowings-up along centers
C and C = Z(h;). Let M C U x P(k) and M C V x P(k) be as above. Then
there exist analytic imbed dings 7— : V — U and ¢_ : M — M close to id in the
compact-open C' topology such that 7_ o # = w o ¢_. In this case we say C is
close to C' at X in the C'*° topology, and define closeness of an analytic map to
another one at a compact set.

2.4. Nash approximation. An analytic function with only normal crossing singularities
at a point = of an analytic manifold is a function whose germ at x is of the form +z%(=
+ [, z3") + const, & = (aq,...,a,) # 0 € N" for some local analytic coordinate system
(x1,...,xy) at x. If the function has only normal crossing singularities everywhere we
say the function has only normal crossing singularities. Remember that by Hironaka
Desingularization Theorem an analytic function becomes one with only normal crossing
singularities after a finite sequence of blowings-up along smooth centers. An analytic
subset of an analytic manifold is called normal crossing if it is the zero set of an analytic
function with only normal crossing singularities. This analytic function is called defined
by the analytic set. It is not unique. However, the sheaf of O-ideals defined by the
analytic set is naturally defined and unique. We can naturally stratify a normal crossing
analytic subset X into analytic manifolds X; of dimension i. We call {X;} the canonical
stratification of X.

Now we state and prove a Nash approximation theorem of an analytic desingularization
of a Nash function. This result will be crucial for the proof of theorem [[.4.

Theorem 2.4. Let f be a Nash function on a Nash manifold M. Let M, —= M,_1 —

- I My = M be a sequence of blowings-up along smooth analytic centers Cp,_1 in
Mpy—1,...,Co in My, respectively, such that f om o--- 0 my has only normal crossing
singularities. Let X be a compact subset of M. Then there exist an open semialgebraic
neighborhood U of X in M, a sequence of blowings-up Uy, — Upp—1 — -+ —> Uy = U
along smooth Nash centers Dp,—1 in Up—_1, ..., Dg in Uy, respectively, and an analytic em-
bedding v : Uy, — My, such that (7,1 (Dp—1)) C 7, (Cru1), -y (1100 -07) "H(Dy)) C
(myo-0my) HCo) and fomo---ompot) = foro---0Ty,. Let My, ..., M, be realized
in M x P(kg),.... M x P(kg) x -+ x P(kp—1), respectively, for some kq,...,km—1 € N.
Then we can realize Uy, ...,Up, in U X P(kg),....,U X P(ko) x -+ X P(ky,—1), respectively,
so that each pair D; C U; and 1 are close to C; C M; at (ty0---071;_1) (X) and to id
at (11 0 -+ 0 Tp)"H(X), respectively, in the C™ topology.

The proof of theorem P.4 is the heart of the paper. It consists in a combination of
algebra and topology, via a nested Néron Desingularization Theorem (see Theorem 11.4,
[[7)) and Nash Approximation Theorem. We proceed as follows. First we describe the
analytic situation of the sequence of blowings-up in terms of ideals. Next we apply the
nested type of Néron Desingularization Theorem and come down to a regular situation.

10



Then, in the regular situation, the classical Nash Approximation Theorem enables to
realize the approximation. The idea comes from the proof of Theorem 1.1 in [f], where
the usual Néron Desingularization Theorem is used.

Proof. Consider the blowing-up m; : M; — Mj along center Cy. Let
e 7Y denote the sheaf of O-ideals on M defined by Cy,
o 1), ..., hgo its global generators,
o A C (’)kOJr1 the sheaf of relations of hJ, ... hk07
e ¢V = (g 0 ,g%ko), ...,g2(,) = (92670’ ""gk(’),ko) global generators of A?,
o &, ....&0 generators of the ideal I(P(kg)) of R[ygj]ogi,jgko of functions vanishing
on P(kp) in R(Fo+1)?,
Set 19 (2,9°) = y21 oD () =y i hY (x) for (x,9°) € Mox R+ and for iy, iy, i3 =

11,12,13

S ko. Then

(1) Zgw =0 on My fori=1,..,k,

Ml = {(x7y0) € MO X R(k0+1) lo (x?yo) = 0) il,i2ai3 = 0,' .. >k05

11712 13
0
> gl (@) =0,i1 =0, ko, g =1,...kp, and & (4°) =0, i =1,..., 50},

and both sides coincide algebraically, i.e. I(M;)(C C¥(My X R(kOH)Q)) is generated by
those 1! Zf“zo y?m g?w- and &). Let {a}} denote the generators. Note that 7 is the

11,092,137
restriction to My of the projection My x RkotD)? _, Mj. Come back to definition [L1.
There we assume that Cy C Sing f, which is described as follows. Let vy, ..., v, be Nash
vector fields on M, which span the tangent space of My at each point of My. Then we
see, as prev10usly, that Cy C Sing f if and only if there exist C“ functions a . on My,
i1=1,...,n, 7 =0,..., kg, such that

(2) v f = Za”] on My fori=1,...n

?j, i=1,..,n,7=0,... ko, be C¥ approximations of h8, . hko’
... ,gk,, ”, 1=1,...,n, j =0,..., ko, respectively, in the strong Whitney C*° topology
such that

(1) Z](’Og?jhg—Oforz—l k:6 and

(2) vif = Z,O ?]h?forz—l

Then by lemma .3, the common zero set Co=2 (ﬁ?) is smooth and of the same dimension

Lethg,.. hgo,gg, ,gk,

as Co, ¢Y, ..., gg, are generators of the sheaf of relations A° of o, .. Bg , if we let My x

R(kot1)? 5 My xP(ko) D M; =5 My denote the blowing-up of My along center Cy defined

by hY, ... ﬁg then there exist analytic diffeomorphisms vy of My and v : My — M, close

to id in the strong Whitney C°° topology such that 1y(Cp) = Co and 71 0 g = g o 7.

Hence f o7 : M; — R is close to fom : M; — R in the strong Whitney C* topology

because if we regard [ as a function on My x RFo+D? then fom = f|M and form; = f|u-

Moreover, Cy C Sing f by (2) for Bg, and I(M,) is generated by ll1 0.5 (€, 4°) Which
11



k ~ .
is defined by ll1 i, i (T,y 0 = y21 ZQhO (7) — yZB “ho (2), Zjoz(] y?,ilg%,j(x) and & (y°) in
C¥(My x R (ko+1)? ). Let &} denote the generators corresponding to a;.

Consider the second blowing-up mo : My — M; along Cy. In the same way as for the
first blowing-up we define

e I' C Oy,
o hd,...ht € HO(M;,TY),
o Al C Oﬁ/}jl,
° gl = (gio,...,gikl), ...,g,i,l = (gli,vo,...,gé,l’kl) € HO(My, AY),
o &f,...El € R[yllj]0<ij<k1,
o Il (:c,yo,yl) _ y“ Zth ( ) _ ylg “hl ( ) for (x’yo’yl) € M; x R(k‘1+1)2

11,12,13
and for il,’iQ,'g—O kl,
e (% functions a . on M1 fori=1,...n, j=0,..,k;
so that
1
(1) Zgil’j(x,yo)h}(x,yo) =0 on M fori=1,..k],
k1
(2) vzf(a:):z le(a:y)h (z,9°) on M fori=1,..,n
7=0

M2 = {(x7y07y1) € Ml X R(kl+1) ll (x7y07y1) = Oa 2‘171.272‘3 = 07' e 7k17

i1,i2,i3
Zyil-lgl-lz,j(x,yo) =0,i;=0,...,k1,ip=1,....k],and £ (y}) =0,i=1,...,51},

where (M) in C¥(M; x RE1+D%) is generated by those functions, denoted by {a?},
in the last braces, and w9 is the restriction to My of the projection My x R(k1+1)? M;.
Here we require as another prescription of blowings-up that C' is normal crossing with
7 1(Cp). For each (z,4°) € C; N7~ (Cp) there are two possible cases to consider: Oy
is transversal to 77 1(Cp) at (z,3°) or Cizyo) C 711_1(00)(“/0). Divide, if necessary, C}
into two unions of its connected components so that on each union, only one case arises,
and regard m; : M7 — My as the composition of two blowings-up along centers one union
and the inverse image of the other. Then we can assume that globally C is transversal to
TH(Co) or €y € 7 (Cp). The latter case occurs if and only if there exist C* functions
b1 on My, jo=0,...,kg, j1 =0, ..., k1, such that

0,51
3) Z Jo, 31 (%Z/O) on My for jo =0,..., ko.
71=0
We extend hjl',gl{j, and b}o i (if exist) to analytic functions on My x R*o+D?  We use

the same notation for the extensions because no confusion can arise. Then (1), (2) and
(3) become

2
M) Zgw J 251 i1, “ on My x R(k0+1)
i1
(2) vif = Z a; j j + Z ﬁ2 oy 22 on My x R(ko—l—l)
12
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®) Z JosJ1 ]1 + Zﬂg,jo ao; on My x R (ko+1)?

hiags o0 Mo % R*o+D® Now Z(hl) N My = C1, and I(Mo)
in C¥(Mj x R(Fot1)?  Rk1+1)? ) is generated by o} and o2, which we naturally regard as
C% functions on My X RkotD)? o R1+1)?, 3 3

For the second blowing-up, we consider again C“ approximations hé,.. hi,l g =

(Q%O’ agi kl) 7911/ = (.g]ilp(]," agli/ )a ~@1ja 1= 15 - T ] = Oa kla bjo 517 ]0 0 --->k05

: 1 _ 1 1 _ 1
J1=0,...,k and ﬁ“ Q2,3 of hg, ... hk17 91 = (91,07 ---79171?1)7 ""gk’l = (gk’l,07 ---agk/pkl)a a; i

for some C¥ functions 3¢

bjlo i (if exist) and “ in.is O1L Mo X R*0+D? in the strong Whitney €' topology such that
(i) Zj gllj le Bl )01, zau on MO S R(kOJrl) for i = 1
(2) vif z az thl + 222 BQ )12, Zalg on MO X R(k0+1) for i = 1
(3) A Z]l 70,1 ]1 + Z ﬁs ”00‘1 on My X RFo+D? for jo = O k

Then C’l = Z(hl) N M is smooth and of the same dimension as C;. If C; C 77 (Cy),
then C’l is contained in 71 (Cp) by (3) and ( ). Oy & 7y 1(Cy), i.e. if Cy is transversal
to w7 1(Cp) in My, Cy is transversal to 7, *(Cp) in M; because the above dlffeomorphlsm
1[1 M; — M is close to id in the strong Whitney C* topology and carries T (Co) to
(Co) and because C; is close to Cl in the strong Whitney C*° topology. Hence, in
any case C} is normal crossing with 7, *(Cp). It also follows from ( ) that Cy C Sing f =
ﬁfl(Sing f). Thus we can take the blowing-up 79 : My — My of M, along center Cl, and
imbed My by ...k} into My x P(ky) € My x RFHD* ¢ Mgy x R*otD?  Rl+1)?

so that 79 is the restrlctlon to M2 of the prOJectlon M1 x Rk1+1D? Ml Then there
exist analytic diffeomorphisms ¢ : M; — M; and 1/11 My — M, close to id in the strong
Whitney C*° topology (1 is not necessarily equal to 1) such that ¢;(C;) = C; and

To01hy = YPi0my; fomriomy : My — R is close to fomomy : My — R in the strong Whitney

C topology; I(MQ) is generated in C“’(MO x RFot1)? y gk1+1)? ) by Ly i s (2,90, 1) =

yl1 12h113(x YY) — y23 Zlhlg(ac y?), Zj 0Yj, z1gzz,]( L0, 511(3/1) and ozl. Let d? denote the

former generators, and let ozl- be naturally extended to My x R(k““)2 x Rk1HD?,

Note that there exists a C* diffeomorphism from Ms to Mz close to id in the strong
Whitney C> topology and carrying 75 *(C})U (1 072) ™1 (Cp) to 5 1 (C1)U (71 072) ~H(Co)
for the following reason. First by lemma 3.6 in [[]], we have a C* diffeomorphism from
M; to M; close to id in the strong Whitney C* topology and carrying Cy U my 1(00) to
C1U#H(Cp). Hence we can assume that Cy Uy (Cp) = Cy U7 (Cp). Then in the same
way as in the proof of lemma P.9 we construct a C* diffeomorphism n : My — M close to
id in the strong Whitney C* topology such that 75 0 ) = 79 and hence 1(m5 ' (C1) U (7 o
m2) "1 (Co)) = n(my (CLUn; 1 (Co))) = 7y (Cr Uy (Co)) = Ty 1 (C) U (71 0 72)~H(Co).

We repeat inductively the same arguments on each blowing-up. Then the condition (3)
becomes a little complicated because the union of the inverse images of the previous centers
is not necessarily smooth. Let us consider the center Cs of the blowing-up 73 : Mg — M.
We describe the condition that Cy is normal crossing with A = 75 *(C})U(mr0ma) " 1(Co) as
follows. Let h2 2 = (gJQO,. ,gi,@), 2, azz,j, 1-2372-272-3 onNMO x RFoT1)? 5 RE1HD? 304 their
cv approx1mat10ns hj, QJ = (§]2»70,...,§]2.7k2), £2, dzz,j, 1-2172-272-3 in the strong Whitney Cioo
topology be given for for the center Cy so that the corresponding equalities to (1), (1),
(2) and (2) hold. Set Y = A — m;*(C}). Then Y is a smooth analytic set of codimension
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1in My, if Cy ¢ m75(Co) then Y = A, if C; € 77 }(Cp) then 7, 1(Cy) C (71 0 m2) " (Ch)
and Y U, *(C) is a decomposition of (71 o )1 (Cp) to smooth analytic sets, it follows
from the normal crossing property of Cy with A that C5 is normal crossing with w5 1(01)
and with Y (the converse is not necessarily correct), and I(Y") in C¥(Ms) coincides with

ko
{f € C¥(My) : fh} = Zcmh? for some ¢; ; € C¥(M3), i =0,....k1 }.

j=0
Let X , J = 1,..,ta, be generators of I(Y). Then there exist C“ functions 0202% ; on
Mg, ]0 = 0 k?(), ]1 = 1 k‘l, ] = 1, ...,t2, such that

ko
0,2 0,2
(4) X5,y y R, () = >t (@ g,y (2) o My,
Jo=0

and as in the case of the second blowing-up, dividing C5 we can assume that C5 is transver-
sal to m, '(C}) or contained in 7, ' (C}) and that Cy is transversal to Y or contained in Y.
If Cy C ng(Cl) then there exist C¥ functions b?l g, on My, j1 =0,. ki, Jo =0,..., ko,
such that

(3) Z b.]l \J2 ,I y 'Y )hjg(x y Y ) on M2,
Jj2=0

and if Cy C Y then there exist C* functions d?:]i on My, j=1,...,ts, jo =0,..., kg, such
that

ko
0,2 0,1 0,2 0, 1y7,2 0,1
(5) g,y yt) = dy (@, yh RS (2,0 yt) o M.
j2=0
As before we assume that XO 2 p2 2% d%% are defined on My x Rko+1)? » Rk1+1)?,

gL J27 jl J2? Tdh.J2
Then there exist C* functions %-1 in.is a0d %-1 in.is.ia O Mo X RFo+D? 5 R(E1+D? gych that

(3) Z 71,92 ]2+271231a +Z’Yl,z,]1 a;,

02,1 _
(4) X hjl - ]0 Jl,J ]0 + 2727173 J1%i + 272717%]1 &,

Jo

(5)  xg7 =D dinhg, D el + Y aii0f on Myx RECHDTRITHDT,
J2 ) 7
b2 0 2 70,2

. w . .
We need to consider also C approximations X] 1,20 Cia o Biggs 'y“ iz/is

0,2 ;92 0,2 . .
of x;%, b5, ;, (if exist), ¢! cj JH, d;, (if exist),

R(’““H'l)2 x RF1HD? i the strong Whitney C'*° topology such that
( ) h;Q_ Z]Q 0b§1oj22 J2 +Z 71@]10‘2 +Z 71@]1 z2’
Ay <0271 _ ~0, &2
(~) 02h Z%)chom,] jo T Z 722]]10‘@ + Z 72 gt i . ) . ,
(5) X7 = Xy A3, + 2278500 + 22,73,,07 on My x RUCFDTx RIHDT,
Set Y = Z(Xj) N My. Then

~i
and i, 4, i iy
Vi iniy (if exist) and ~f ;.5 on My x

Y = (71 072) 71 (Co) — 7y (C1)
because Y contains the right hand side by (4) and because the converse inclusion does

from the facts that Y and the right hand side are smooth and of codimension 1 in My and
14



in My, respectively, and that x; are generators of I(Y') in C%(Ms). Hence 7y (Cl) (0
) 1(Cy), which is normal crossing, is the union of the smooth analytic sets 75 (C}) and
Y. Moreover, Cy is normal crossing with 7, 1(C1) U (71 0 m9) = (Cp) for the following four
reasons.

If Cy is transversal to 75, *(C1) or to Y, so is Cy to 75 *(C1) or to Y, respectively, by the

same reason as before. If Cy C 75 (Cy), then there exist C* b?l j, With (3) on My, hence

B}l = Z a0 b§1 thi on My and Cy C Ty (C’l) In the same way we see that if Cy C Y then

Cy C Y. The fourth reason is that Cy is normal crossing with m, '(C1) U (71 0 m2) =1 (Cp).
By these four properties we can find also a C* diffeomorphism from M, to My close to
id in the strong Whitney C™ topology and carrying Cs, m, *(C1) and (1 o 1)~ (Co) to

Cy, 7y Y(Cy) and (71 0 712) "1 (Cy), respectively.
Let 1 < m’ (< m) € N. As above we inductively imbed M,/ into M,,, 1 xR(km’*1+1)2(C
My x Rko+D)? L % R(kM’—lﬂ)Q) and obtain a finite number of C* functions on MO X
- ROt mamely Y a6 G T e BT BT

ﬂ:im;r; ™ for m” (<m/),m"” (< m') € N and a finite number of C* maps from My x - - - X

RFm/—1+D? o R s +1)? , namely g;»”/ = (g}%, v gyf,;m/) such that the following conditions
are satisfied:
e the blowing-up 7,y : M, — M,,_1 is the restriction to M, of the projection
M, 4 x REmw—1tD?  pr
. {h;ﬁl : j} are generators of I(C,) in C¥(M,,);
° {flml (ym’) : 1} are generators of I(P(ky,)) in R[ygbjl]ogi,jgkm/ (C C“’(R(km’“)Q));

° {g;n/ : j} are generators of the sheaf of relations of h()”/, h;gnl on M,,;
. {X;ﬁ”’m, : j} are generators of I(Yy,» pyy) in C*(Mpy), where Yy py =7 1(C'm/_l)
and
Ym//7m/ :(ﬂ-m”-i-l Q-+++0 Wm/)fl(cm//) — (7Tm//+2 QO+++0 Wm/)fl(cm//_’_l) —_— s — 7T;L/1(Cm/_1)
for m"” < m’ —1; {afV i} = {vi i, ) Zj -1 ~ Y, “1 ZLA > yjflgfﬁj Lt
i1,142,13,1};

" . . 2
o {7 . m" < m/,i} are generators of I(M,y) in C¥(My x - x RFm—1F17)
’ ’_ ’_ " .
where we naturally regard A" L gm L & 1 and a* as functions on My x

- X R(k; ’71)2;
! s R D2,
()Zg%] J Z ///< 6121, 11 OnMOX x R¥m/—1 5
" !
m’ pm’ m me_m!" k_is_{+1)2.
e (2) v f= Za”h] +Z”’<m 5 ini Oy on My x - - x REm/—1+1)7
Z2
m'’'m'ym/—1 m’” m/ _m!' m'—1 m/"' . m" m! g
* (4) Xj hjl ZJO Cjo,j1.3 Xo + megm/ 4,4,5,51 ;" on My x X
%
2
R/ —1+D7 for m/ < m —1;
m//,m/_ mm’ . m! m" m! m' ko, +1)2
* (5) Xj _Zj1du1 hi; +22 ///< 5,0, G on Mo x -+ x RFm 1

fOI‘ m// < m, _ 1 if C C le/7m ;
(6) Xj —1,m’ _ hm/ 1 on MO N R(km/_1+1)2.

(The condition (3) is included in (5) and (6).) Here d;nﬁm and Bgz/:;’m”’m/ exist only if

Chy C Yy and we assume that if Cyy ¢ Y,y then C,, is transversal to Y,» , in
M. Note that Uy, <y Yy iy is a decomposition of W;L}(Cm/_l)u- U(mry0- - -0y ) "H(Co)
into smooth analytic sets.
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Assume that there exist inductively also a blowing-up Mg x - - - x R Em—1T1)* 5 M,y LN
M1 along center C—1 close to My x - -+ X RFm—1+1)* 5 My LN M,y _1 in the strong
Whitney C*° topology and C* approximations

Bm ~m ~m! m ~m//7m/ ~m//’m/ &m, ~m//7m/ ~m///’m//7m/ Bm”l7m//7ml -m! (~m’ -/ )
@55 X J0,91,3 7 g1 0 T 97,402,437 P ,i2,i3,ia 11,12,13 1 95 95,0 ""g],k‘m/
of
hm m m!! m m' m’ m//,m/ am, m//7m/ m///,m//7m/ m///7m//,m/ _( m’ m )
Q5> X 70,91,3 7 T 4,91 0 Tt 0 MPanie,i30 My ,ie,is,ta 0 i ,i2,03 195 = 95,00 gJme/

on My x --- X R(’““m’fl‘H)2 in the strong Whitney C*° topology such that 7, is the
restriction to M,  of the projection My x - -- x RFm/—1+D? My X -+ X% R(km/—QH)Q,

(@ iy = {y R =y R Zy],‘“:’;;%s Ly, ig, dg, 0}
and the corresponding conditions (1), (2), (4), (5) (if Cpy C Yy m) and (6) to (1), (2)7

(4), (5) (if Cpy C Yy ) and (6) are satisfied. Set Cp, = Z(hm )N My, Yo 4 =
71 (Cpr—1) and

f/m”,m’ = (7~Tm”71 ©--+0 7?m’)il(éfm”) - (7Tm” ©0--+0 7~"'m/)il(éfm/url) - 7~T;n/1(c~’m’71)
for m"” < m/ — 1. Then, as before:

o I(M,y) in C¥(My x --- x RFm—1+D?) is generated by {am”" -m" <m/, i}

e C, is smooth and of the same dimension as C,,;

e I(Cyy) in C¥(M,y,) is generated by {B}”l ik

° {L(};n/ :j} are generators of the sheaf of relations of BB”/, vy ;LZ:;/ on M,,;

o (Y ) in C¥(M,,) for each m” < m’ is generated by {)Zgn”’ml 5} by (4);

) C’ - f/mu . if and only if Cpy C Yo s

o if Cpy & Yy py then C,, is transversal to ffmu,m/ in Mm/;

® Uprcynt Yo e is & decomposition of 77 (Crr—1) U+ U (F1 0 0 7y ) H(Co) into
smooth analytic sets;

e C,, is normal crossing with this set;

e there exists a C¥ diffeomorphism from M, to M,, close to id in the strong
Whltney C topology and carrying Cyy, ..., (m1 0+ 0 Tt ) H(Co) to Crys ..., (71 ©

owm) 1(Cy), respectively;
° f 071 0+ 0y, is close to f om o---0my in the strong Whitney C* topology.

Finally, as above, we imbed M,, and M,, into My x RFoTD? ..« I{N(k'”—lJrl)2 by
hgnfl, . h;nmf_ll and hgnfl, - h;nmf_ll, respectively, define aj", &7, Y, p, and Yy, for 0 <

m’ < m, and let {Xml’m :j} and {)Zml’m : 7} be finitely many C* functions on My X - - - X
R*m-1tD* which are generators of (Y ) in C¥(My,) and of 1Yy ,,) in C¥(M,,),

mm

respectively, for each m’ < m such that each X; is close to X;-n ™ in the strong Whit-

ney C™ topology. Then there exists a C% diffeomorphism ¢, : M,, — M,, close to
id in the strong Whitney C™ topology carrying 7,.1(Cpy1),..., (71 0 -+ 0 7)1 (Cp)
to 7N (Cr1)y ooy (1 © -+ 0 7)) H(Cp), respectively. Set F = fom o---o0my, and
F = fo# o---0f,. Then F has only normal crossing singularities. We require 1,
to carry, moreover, Sing F' to Sing F. That is possible if F has only normal crossing
singularities by the same reason as before.

We will describe a condition for F' to have only normal crossing singularities. As the
problem in the theorem is local around the compact subset X of M, we assume that M,,
is covered by a finite number of good open subsets in the following sense. We have the
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disjoint union B of finitely many closed balls B; in the Euclidean space of same dimension
as M, a C*¥ immersion p = (p_1,...,pm-1) : B — My x Rko+D? L R(km—1+1)2,
finitely many C* functions ¢; ; on each B; regular at 5;]1(0) and 6; ; > 0 € N such that
Sp C My, p(Int B) D X, for each i p|p, is an embedding, F' o p|m g, has only normal
crossing singularities with unique singular value zg;, and

0.
Fop|B¢ = H(S@jj + 20;-
J

Here the condition Sp C M, and the last condition are equivalent to

(7) fopolp = Hawzm
and there exist C* functions Vz?:ﬂjl on My x --- x RFm=1t1" « B guch that for each oy
with m’ <m
(8) agnl(x,yo, ...,ym,_l) = VT_,l(x,yO, ...,ym_l,z)(ﬂv —p-1(2))+
m—1

1/27 (2,9°, s y™ 1 2) (Y7 — pj(2)) on My x -+ x RFm-14D° B
j=0

because * — p_1(2), ¥/ — p;j(2), j = 0,...,m — 1, generate the ideal of C*(My x --- x

R(km-1+1)* x B) defined by the graph of p—{(p(z),2) : z € B}. Conversely, existence of

such p, 6; j, ¢; ; and Vl?:ﬂj/ implies the normal crossing property of F'. Note

{201} = F(Sing F'|(x0.omn)-1(v)) = f(Sing f|v)

for an open neighborhood U of X in M. (Assume that U = M for simplicity of notation.)
Hence a condition for F' to have only normal crossing singularities is that there exist C¥
approximations p = (p—1,...,fm—1) : B — My % RFoHD? 5« RlEm—1+D)? o 0, 5” of
d;,; and " -l of 1", », in the strong Whitney C* topology such that

@) fopils, = H5”+Zo@,

Iz (z,9°, s y™ 1, 2) (v — pj(2)) on My x --- x R(km-111)° x B,

However, we cannot find directly the approximations by proposition B.1] below. Indeed,
we need additional arguments as follows. Extend trivially p to p = (p_1, ..., pm—1) : Mo X

e X R(km*1+1)2 xB — MO XX R(km*1+1)2 and 52‘7j to (51'7]‘ : Mo XX R(km*1+1)2 XBZ' —
R. Then (7) holds on My x --- X R(m-1+D* B, Approximate these extended p and 6; ;
by a C% map p = (f_1, ., pmt1) : Mo x ++- x REm—14D? o B Mo oo x REm-141)°
and C¥ functions d;; on My x --- x RFm- 1+D” % B, respectively, so that (7) and (8)
hold on My x --- X RFm=1tD? oy B and My x -+ x Rlbm- 1+1)? x B;, respectively. Regard
locally My as a Euclidean space, and consider the map P:Myx - x Rkm—1t)?* y B 5
(2,90 ™ 2) = (= p1(2, e 2)s e ¥ = P (T, 2)) € Mg X -+ - X R(Fm-1+1)?,
As P is close to the map : My X -+ X Rkm—1t)? B 5 (2,9 g™t 2) — (2 —

p1(2y ey 2)y ey = pi(, . 2)) € Mgy X - X R*m—1+)” the Jacobian matrix
17



D(P)
D(z,...,y™—1)
lytic map p = (p—1, ., Pm—1) : B — My x -+ x RFm-1+D such that p(p(2),2)) = p(z)
and p is close to p in the strong Whitney topology. Then p is a C* immersion,

vanishes nowhere. Hence by the implicit function theorem we have an ana-

(7 fop_i(z) = fop_( H(SZ z) + 20 for z € By,
(8) & o pz) = 777/1(,6(2)’ 2)(p-1(2) — p-1(p-1(2), 2))+
m—1
’7@7}/ (P(2),2)(pj(2) — pj(p(2),2)) =0 for z € B.
7=0

By (8), §p C M,,, hence p(Int B) > X, and by (7), F has only normal crossing
singularities because d; ;((2), ) is close to &; ;(2) in the strong Whitney C* topology.
Note that if p is of class Nash, so is p.

Under the conditions (7) and (8), F and F are C% right equivalent through a C¥
diffeomorphism close to id in the strong Whitney C'*° topology for the following reason.
Since F and F have only normal crossmg singularities, and since f o p_; and fo p_
are C* right equivalent by (7) and (7), we can modify v, to carry Sing I’ to Sing F' (cf.
step 1 of the proof of theorem 3.1 in [ff]). Replacing F' with F o t,,, we assume that
My = My, 7t (Crac1) = 70 (Crnt), oy (Rr 04+ 0750 ) 7H(Co) = (w1 0+ 07) "1 (Cl) and
Sing F = Sing . Let s be a Nash function on R with zero set {zo;} and regular there.
Then ko F and ko F satisfy the assumption of lemma 3.10 in H:

e they have the same sign at each point of M, only normal crossing singularities
at (ko F)71(0) = F~1(F(Sing F)) and the same multiplicity at each point of
(ko F)~(0),

e the C¥ function on M,,, defined to be ko F'/koF on My, — (ko F)~1(0), is close to 1
in the strong Whitney C'* topology. Indeed, the map :C¥(M,,) > ¢ — ¢-(koF) €
ko FC¥(M,,) is open in the strong Whltney C topology (cf. remark in step 1 of
the proof of lemma 3.1,(i) in [f]), x o F' is contained in x o FC*¥(M,,) and close to
% o F and hence there exist ¢ € C¥(M,,) close to 1 such that ¢ - (ko F) = ro F.

Therefore there exists a C* diffeomorphism 1)/, of M, close to id in the strong Whitney
C* topology such that ¢/ ((k o F)~1(0)) = (ko F)~*(0) and F — F o ¢/ is r-flat at
(ko F)~1(0) for a large integer r. Then by lemma 3.11,(i) in [[], F and F are C* right
equivalent through a C* diffeomorphism close to id in the strong Whitney C'* topology.

Consider the case of germ on X. Enlarglng X if necessary we assume that X is semial-

l

gebraic. Set Xy = X. Let hm,, g;", ;”JI, o Vi " be the same as above. Let hO g], 0 - be

defined not on My but on an open neighborhood Uy of Xy in My close to hj, gj, 0> T
spectively, at Xg in the C* topology so that (1) and (2) hold on Uy. Shrink Uy if necessary.
Then by remark P.3.(B) of lemma R.3 we have the blowing-up Uy x R*+)* 5y I 1
along center Dy = Z(ﬁ?) defined by 58, veey 520 and analytic imbed dings g of Uy into M)
and v of Uy into M close to id at Xo and at 7y (X), respectively, such that 1(Dg) C Cy

andpoOﬁ—Wlopo

Next let h1 gj, i) jo o 111 in.i5 D€ defined on an open neighborhood of Xy x Xj in
My x R(k°+1) close to h}, v 1-11 in.ige TeSPectively, at Xo x Xy in the € topology such

that (1), (2) and (3) hold on the neighborhood, where &} are defined as in the global case
and X; denotes a large ball in R*0+1” with center 0 such that 7 1 (Xo) and 7 1(X,) are
contained in Xg X Int X;. Shrink Uy and the neighborhood of Xy x X7 so that U; and

M NUy x R*0+D? are closed subsets of the neighborhood, which is possible because 7
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and 7; are proper. Then there exist the blowing-up Uy X Rot1)?  RE1H1)? 5 U, 22 U4
along center Dy = Z(iL]l) NU; defined by iLé, weey ﬁ}ﬂ and analytic imbed dings 11 of U7 into
M and 1y of Uy into My close to id at 7, 1(Xo) and at (7, 0 79)~(Xp), respectively, such
that 11 (D7) C C1 and 1)1 o 179 = mg 0 1.

" / " /
" m ~ ~m'"m’ ~m/"m

Let 1<m/ <m, m” <m’ and m"” < m’. By induction, let iLJ . g;n’, a’{f}/, X; s Cog i
Jml/7m/ ~m//7m/ ~m///7m//,m/ ~m///,m//7m/
Jigr 0 Miyiogis? Minieigia 0 iy ig,is
2 2 / / .
X,y in My x RKo+D® 5 x REm/ 11D ¢loge to h;-” , g;-” , ..., Tespectively, at Xox---x X,/
in the C* topology such that (1), (2), (4), (5), (6) hold on the neighborhood, where &
(ki—1+1)?

be defined on an open neighborhood of Xy x --- X

are given as in the global case and X; denotes a large ball in R with center 0 for

i=2,..,m'. For m'(<m)eN,let &" and )Z?Ll’m be defined on an open neighborhood

of Xg x --- x X,, close to " and X;nl’m, respectively, at Xg x -+ x X,;, as before, and

Dis Sm, 17{3/ on an open neighborhood of X x- - - x X, x B close to p;, d; ;, uz?:“jl, respectively,

at Xo x --- x X,, x B so that (7) and (8) hold on the neighborhood.

Then we obtain a sequence of blowings-up Uy, — Uyy—1 — - -+ — Uy along smooth
analytic centers D,, 1 = Z(ﬁgﬂfl)ﬂUm,l inUp_1,...,09 = Z(ﬁ?) in Uy, respectively, and
an analytic embedding v : U, — M,, such that (7, (Dy,_1)) C 7, (Cru—1), ooy W((71 ©
0Ty "H(DY)) C (7100 7) HCo), S 0710w+ 0 0 s = f 071 0+-0 Typ, Uyeos U
are realized in Uy x P(ky) C Uy x RETD’ ) x P(kg) x -+ X P(km_1) C Uy x
RFoFD? . x R(km—IH)Q, respectively, and each pair D; C U; and v are close to C; C M;
at (ry0---07;_1) 1 (Xp) and to id at (ry0---07,) 1 (Xp), respectively, in the C* topology.

NQ, g;?,... of class Nash. This is a

Thus it remains only to find the approximations hj

consequence of proposition B.] below.
O

3. NESTED NASH APPROXIMATION

3.1. Nash approximation of an analytic diffeomorphism. In view of theorem @
and the proof of theorem [L.4, we need to be able to make a Nash approximation of analytic
solutions of a system of Nash equations. Next proposition is a nested version of the Nash
Approximation Theorem established in [J].

Proposition 3.1. Let My, ..., M,, be Nash manifolds, X1 C My, ..., X;, C My, compact
semialgebraic subsets, and let ly,...,lpm,n1,...;nm € N. Let F; € N(X; x -+ x X; X
R x - x R and fi € O(X1 x --- x X;)b fori=1,...,m such that

Fi(@1, ..., i, fi(z), ., filzr, . @i)) =0
as elements of O(Xy x --- x X;)"%. Then there exist fi € N(X1 x --- x X;)b close to f;

in the C'* topology for i = 1,...,m such that Fi(xl,...,a:i,fl(xl),...,fi(ml, i) =0 in
N(Xy x -+ x X;)™.

Proof. The proof is inspired by Nested Smoothing Theorem 11.4, [[j] by Teissier and
its proof. The proof for m = 1 coincide with Theorem 1.1, if M is compact and if
X1 = My, and we can prove the proposition for m = 1 in the same way even if M is
non-compact.

Regard each F; as n; elements of N'(X1 x -+ x X; X R x - - x Rli). We can assume
that M; and X; are all connected and that F; are polynomial functions in the variables
(1, .-, ;) € R x - -x Rl with coefficients in V(X7 x- - - x X;) for the same reason as in the
proof of Theorem 1.1, [B]. Let V(X1 x -+ x X;)[y1, ..., ;] denote the ring of polynomials
in the variables (y1,...,y;) € R x--- x RY% with coefficients in N(X; x --- x X;) and
(F1, ..., F;) the ideal of N'(X7 x -+ X X;)[y1, ..., yi] generated by Fi, ..., F;.
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Consider a commutative diagram of homomorphisms between rings :

N(X1) $1 N(?;}I))[yl] Y1 O(Xl)
p1 q1 1

N(X1 % X2) b2 N (X1 xX2)[y1,92] P2 O(Xl « X2)

(F1,F2)
p2 q2 T2
Pm—1 dm—1 Tm—1

MK, o =2 MLl %2 (3, .1 ),

where for each i, ¢;, p;,q; and r; are naturally defined, ¢; = id on V(X7 x --- x X;) and
¥i(y;) is defined to be f; as an element of O(X; x --- x X;) for each j < i. Then it
suffices to find homomorphisms ¥ : N (X1)[1]/(F1) — N(X1), o0 b : N(X1 X -+ X
X)W1, s Yl /(F1y ooy Fi) — N(X1 % -+ - X X)) such that 91 0 ¢1 = id, ..., om0 ¢ = id,
Y1(Y1), ey U (ym) are close to f1, ..., fm, respectively, and r; 01p; = ;11 0¢q; for 0 < i < m.
For that we only need to decide the values 11 (y1), ..., Um (Ym) because 1;(yr) = Ur(yx) as
elements of V(X7 x --- x X;) for k < i by the equality r; 0 9; = 4,11 0 ¢;. By [B], [A] and
[[4] we know that O(X; x --- x X;) and N(Mj x --- x M;) are Noetherian, and the proofs
in [ff] and [[[4] work for the Noetherian property of N (X x --- x X;). Hence all the rings
in the diagram are Noetherian. Therefore, we assume that 1; are injective enlarging F; if
necessary.

We will find k; € N, finite subsets G; of N(X1 X -+ x X;)[z1, ..., 2], 2j € RF | and a

commutative diagram of homomorphisms between rings:

N(X1)[yi] P1 N(X1)[#1] &
(Fll)y1 (Gll) : O(X1)
q1 S1 71
N(X1xX5)[y1,y2] & N(X1xX2)[21,22] &
1(};17;2)311 Y2 éél,ég)l 2 O(Xl % X2)
q2 S92 79
dm—1 Sm—1 Tm—1

N(Xlx(..}’.—'ij)ftn}‘—)i%l7...’ym] pm N(Xlx(.c.,;letrgr[j)h“’zm} &m O(X1 x - x Xpn)
such that for each i, s; is naturally defined, & o p; = ¥y, p; =& =id on N (X7 x -+ x X;),
the zero set Z; of (Gq,...,G;) is the germ on X; x -+ X X; X R* x ... x R¥ of a Nash
submanifold of My x - - - x M; x R¥1 x - .- x R¥i and (Gy,...,G;) is the ideal of N'(X7 x -+ - X
X;)[z1, ..., zi] of function germs vanishing on Z;. Note that then the restriction 7; to Z; of
the projection M7 x --- x M; x RFx- .- xRF — My x -+ x M; is submersive because
N(X1 X e X Xz) - ./\/(Xl X oo X Xi)[zl, ...,Zi]/(Gl, ,Gl) and fi‘N(Xlx---XXi) = id,
that &(z1, ..., %) is an analytic cross-section of 7; and that when we regard locally M; as

D(G1,...,Gi)
D(21,05%4,215-,2i)

of Z;in My x -+ x M; x RFt x - x RFi at each point of Z;.
20
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As in the proof of Theorem 1.1, [ there exist k; € N, finite subsets G; of N'(X; x - - - x
X;)[z], zi € R¥ and homomorphisms of V(X X --- x X;)-algebras

N(X1 %X X)) Y1, e ¥i iN(XIX“‘XXi)[Z@'] i |
(Fl,---,F@') (Gz) O(X1 X X Xz)

such that for each 7, & o p} = 14, the zero set Z! of (G;) is the germ on X X - -+ x X; X RFi
of a Nash submanifold of Mj x - -- x M; x R¥ and (G;) is the ideal of N'(X; x - - - x X;)[zi]
of function germs vanishing on Z/. Then as above the restriction 7 to Z/ of the projection
M x --- x M; x RF — My x -+ x M; is submersive and fz'(zl) is an analytic cross-
section of 7. Define p; to be the composition of p, with the canonical homomorphism
N(X1 Xoees XXZ)[ZZ]/(GZ) — N(X1 X XXZ‘)[Zl, vy Zz]/(Gh vy Gl) and §Z by fz(zl) = le(zl)
and &(z;) = ri—10---orjo §§(zj) Then the conditions on Gy, p; and §; are satisfied.
Indeed, first the zero set Z; of (Gy,...,G;) in My X -+ x M; X RF x ... x R¥ is the fibre
product of the submersions (7,id) : Z] x My x -+- x M; — My x --- x M;, (7h,id) :
Zhx My x -+ x My — My x -+ x My, ...,m} : Z] — My x --- x M; and hence the germ on
Xy x-x X; xRF x -+ - x R¥ of some Nash submanifold of M x - - x M; x RFt x - .. x R¥i.
Next, add some finite subset of N (X7 x - -+ x X;)[21, ..., 2;] to G; whose elements vanish
on Z;, if necessary. Then (Gq, ..., G;) is the ideal of N (X7 x - -+ x X;)[z1, ..., ;] of function
germs vanishing on Z;. Thus we obtain the required diagram.

For the construction of 1;2"8 it suffices to find homomorphisms of V(X7 X -+ x X;)-
algebras & : N(X1 x --- x Xi)[21, ..., 2]/ (G1, ..., Gi) — N (X1 x --- x X;) so that &(z) €
N(X1 x---x X;)F are close to &(z;) € O(X1 x---x X;)* in the C* topology because if we

define &; by gl-(zj) =rj_10---150&(z) for j < i then ¥ = & o p; fulfill the requirements.

By induction on m we assume that &1, ...,&n_1 are given. Then as before we only need
to decide &y (2m) € N (X1 X -+ X Xp)Fm close t0 Em(zm) € O(X1 X -+ x X)) in the
C topology so that G, (L1, ..., Tm, Em(zm)) = {0} as a subset of N (X] x --- x X,,), i.e.
Em(zm) is a Nash cross-section of n/, . (Here the elements of G,, may be of the variables
T1yeeey Tiny 21, -0y Zm- HOwever, we can remove some elements from G, so that they are
all in the variables z1, ..., Ty, 2, by the above arguments.) Let U C U’ be small open
semialgebraic neighborhoods of X7 x - -+ x X,,, in M x --- x M,, such that U is compact
and contained in U’, Z/, is the germ on X7 X -+ x X, X R*™ of a closed Nash submanifold
Z' of U' x RF= 7/ is the germ on X; X --- x X,, x RF™ of a surjective submersion
7 Z' — U' and &,,(zy,) is the germ on X x --- X X, of an analytic cross-section
¢€:U — Z' of 7. Let n be a Nash approximation of |7 : U — Z’ in the C*™ topology
(Nash Approximation Theorem), which is an embedding but not necessarily a cross-section
of 7T’|7T,,1(U). Let &, (2m) be the germ of no (!, on)~" on X; x --- x X,,,. Then &y (2m)
is a Nash cross-section of 7/, close to &, (2,) in the C*° topology. Thus we complete the
proof.

O

As a corollary of proposition B.] we obtain the following Nash approximation theorem,
which generalizes that proved in [f] in the case where X = M and M is compact.

Theorem 3.2. Let M be a Nash manifold, X C M be a compact semialgebraic subset,
and f,g be Nash function germs on X in M. If f and g are analytically right equivalent,
then f and g are Nash right equivalent. The diffeomorphism of Nash right equivalence can
be chosen to be close to the given one of analytic right equivalence in the C'*° topology.

Here we naturally define analytic or Nash right equivalence of two analytic or Nash
function germs, respectively, on X in M. We note only that the diffeomorphism germ of
equivalence is X-preserving.
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For the proof we introduce some notions. Let X be a semialgebraic subset of a Nash
manifold M. We consider the germs of sets on X in M. For a germ A on X of a subset
of M, let A% or A=X denote the Nash closure of A in M, i.e. the smallest Nash set germ
in M containing A. In the case where A is a subset of M also, A% stands for the Nash
closure of the germ of A on X in M. We define by induction a sequence of Nash set germs
M; in M as follows. Let M; be the germ X~ and assume that My, ..., Mj_1 are given for
k(> 1) € N. Then, set

My, = [(Mp_1 - X) N (M nX)].

We call {M;} the canonical Nash germ decomposition of X. Then {M;} is a decreasing
sequence of Nash set germs, for each i the set X N M; — M; 1 is a union of some connected
components of M; — M;1 and {M;} is canonical in the following sense. Let {M]/} be
another decreasing sequence of Nash set germs such that for each i the set X N M/ — M,
is a union of some connected components of M/ — M/ 41, which is called a Nash germ
decomposition of X. Assume that {M]} is distinct from {M;}. Then M| = My,...,. M, | =
My, and M D M, for some k.

A subset Y of an analytic manifold N is called global semianalytic if Y is described
by finitely many equalities and inequalities of global analytic functions on N. Let Y
be a relatively compact and global semianalytic subset of N. Then we can define the
global analytic closure 7" of the germ on Y of a subset Z of N (or of the germ Z on
Y of a subset of N) and a (the canonical) global analytic germ decomposition of Y in

the same way. Indeed, for a global semianalytic set Z in N, dimZ = dim Z" for the
reason explained below, moreover if Z is, moreover, relatively compact then Z is global
semianalytic by [Ig] and finally, a global analytic set is global semianalytic (and moreover
is the zero set of one global analytic function, cf. proof of corollary 2.2 in [f]). To prove

that dimZ = dimZ  we can assume that Z is a global semianalytic set of the form
{x € N: f(x) =0,f1 >0,..., fr(z) > 0} for some analytic functions f, f1,..., fr on N

dividing Z if necessary, and it suffices to prove that the global analytic closure 7V of Z is
of the same dimension as Z. Let x¢y € Z where the germ of Z" is of dimension dim 7N,
which exists since Z N Reg?N # (). Then f; > 0,..., fx > 0 on a neighborhood of xg

in Z". Hence Z contains the neighborhood and is of dimension dimZ". (We do not
know whether the canonical global analytic germ decomposition of Y does exist if Y is a
non-relatively compact global semianalytic set.)

Remark 3.3.

(1) Let N DY and N’ D Y’ be analytic manifolds and respective relatively compact
and global semianalytic subsets and ¢ : N — N’ an analytic diffeomorphism such
that ¢(Y) =Y. Then ¢ carries the canonical global analytic germ decomposition
of Y to the canonical global analytic germ decomposition of Y’, which is clear.

(2) Let M D X be a Nash manifold and a semialgebraic subset. Then the canonical
global analytic germ decomposition of X is well-defined and coincides with the
canonical Nash germ decomposition of X because the global analytic closure of a
semialgebraic set equals its Nash closure (cf. remark (vi) in section 2.2 of [g]).

Proof of theorem [3.3. Let M C R", set My = HX, and let {M; : i = 1,2,...} be the
canonical Nash germ decomposition of X. Let O(X) and N (X) denote respectively the
germs of analytic and Nash functions on X in R" but not in M. Let {¢;; : j} for each
i =0,1,... be finitely many generators of the ideal of N'(X) defined by M;. Extend f and
g to elements f and § of N'(X), respectively. Then we have 7 = (71, ..., m,) € O(X)" such
that |ps is the germ on X of a C* diffeomorphism between neighborhoods of X in M
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and fom =g on M. Hence there exist a; € O(X) such that
(1) fAOT(':g—i-ZOéj(ﬁQ’j.
J

By remarks B.3.([) and B3.(B), = is M;-preserving. Hence there exist 3; ;7 € O(X)
such that for each ¢; ;

(2) Gijom =Y Bijjbij
j/

_ Apply proposition B.1 to ([l) and (H). Then there exist # € N'(X)", a&; € N(X) and
Bi i € N(X) close to m,a; and (; ; j7, respectively, in the C* topology such that

) fof =g+ e,
j

2) Gijom = Z Bij.jrbigr-

J

Since 7 is an approximation of T, (E) implies that 7|p; is the germ on X of a Nash

diffeomorphism between open semialgebraic neighborhoods of X in M. Hence by ([l),
fo(7|m) = g, and the theorem is proved.

0

Consider the plural case of {X}. Let X and X, j = 1, ..., k, be semialgebraic subsets of
a Nash manifold M. We define the canonical Nash germ decomposition {M;} of {X; X}

as follows. Set Xy = Ué?:lXj and M; = Yé(, and assume by induction that we have
defined M; for some 7 > 0. Then we set

My = (U [(M; — X;) N (M; N X5)] )

The same properties as in the single case hold. To be precise, { M;} is a decreasing sequence
of Nash set germs on X, for each ¢ and j > 0 X; N M; — M; 1 is a union of some connected
components of M; — M;11, and {M;} is canonical in the same sense as in the single case.
We define also a Nash germ decomposition of {X; X;} and a (the canonical) global analytic
germ decomposition of a finite family of relatively compact global semianalytic sets in an
analytic manifold in the same way. Then remark B.3.([l) and B.3.(f) hold also in the plural
case.

Using these notions and remarks in the same way as above we can refine theorem .9
as follows.

Remark 3.4. In theorem B.9, let A; and B; be a finite number of semialgebraic subsets of
M such that the diffeomorphism germ of analytical right equivalence carries the germ on
X of each A; to the one of B;. Then the diffeomorphism germ of Nash right equivalence
is chosen to have the same property.

In particular, if we set f = g = constant then we have the following statement.

Let M and X be the same as in theorem B.4, and let C; and D; be finitely many
semialgebraic subsets of M. Assume that there exists the germ m on X of an analytic
diffeomorphism between neighborhoods of X in M which carries the germ on X of each
C; to the one of D; and such that 7(X) = X. Then 7 is approximated by the germ on
X of a Nash diffeomorphism between semialgebraic neighborhoods of X in M in the C*°
topology keeping the properties of 7.

3.2. Proof of theorem [L.4.
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3.2.1. Proof of theorem in the case where X = M and M is compact. Assume that
f and g are almost blow-analytically equivalent. Let 7y : N — M, ny : L — M and
h: N — L be two compositions of finite sequences of blowings-up along smooth analytic
centers and an analytic diffeomorphism, respectively, such that fon; = gom;oh. By

Tfm

Hironaka Desingularization Theorem [ there exists a sequence of blowings-up N, —"

Npypo1 — -+ SELLN Ny = N along smooth analytic centers C,,_1 in Ny,_1,...,Cp in Ny,

respectively, such that f oms o741 0--- 07, has only normal crossing singularities.
Since h : N — L is an analytic diffeomorphism, we have a sequence of blowings-up
L,, Tom, L1 —--- Tol, Ly = L along smooth analytic centers D,,,_1in L,,_1, ..., Dg in
Ly, respectively, and analytic diffeomorphisms h,, : Ny, — L, ..., hg = h : N9 — Lg such
that hy,—1(Cr—1) = Dpy—1, ..., ho(Cy) = Dy, and the following diagram is commutative :

Tfm T

Nm—>Nm71—>"'—>NO

hml hmll hol
T7 TA’]‘

Lmln>Lm71—>"'—q>L0.

Hence, replacing 7y, my and h with mpo71p10---07f,, TgoTy1 00Ty, and Ay,
respectively, we can assume from the beginning that f o7y and g o 7y have only normal
crossing singularities. Then by theorem P.4 there exist compositions of finite sequences
of blowings-up along smooth Nash centers 7y : N — M and Tg : L — M and analytic
diffeomorphisms 7 : N — N and Ty L — L such that f o mpoTs = fomy and
gomgoTy = goT,. Hence fomy 07]71 =goTy OTg_l oh, and fo7; and go7 are analytically
right equivalent. Then by theorem B.J they are Nash right equivalent, i.e. f and g are
almost blow-Nash equivalent.

Next we prove that if f and g are almost blow-analytically R-L equivalent then they are
almost blow-Nash R-L equivalent. For that it suffices to prove that two analytically R-L
equivalent Nash functions ¢ and v with only normal crossing singularities are Nash R-L
equivalent. Let m and 7 be analytic diffeomorphisms of M and R, respectively, such that
7o = or. Then n(Sing ¢) = Sing ), 7(¢(Sing ¢)) = ¢(Sing ) and 7(¢~(¢(Sing 9))) =
Y~ (1(Sing1)). By remark B.4 we have a Nash diffeomorphism 7y of M close to 7 in the
C™ topology such that 7o(Sing ¢) = Singt and m(¢~ (¢ (Sing ¢))) = ¥~ (x(Singv)),
and since ¢(Sing ¢) is a finite set, we have a Nash diffeomorphism 7y of R close to 7 in the
compact-open C* topology such that 7p = 7 on ¢(Sing ¢). Replace ¢ with 7-0_1 o1 o my.
Then we can assume from the beginning that Sing¢ = Sing, ¢(Sing¢) = ¥ (Singv),
»~1(#(Sing ¢)) = ¥~ 1(¢(Sing 1)), and 7 and 7 are close to id in the C*° topology and in
the compact-open C'*° topology, respectively. Hence for each zy € ¢(Sing ¢), ¢ — 29 and
1) — zg have the same sign at each point of M and the same multiplicity at each point of
" 1(20). Let p be a Nash function on R with zero set ¢(Sing ¢) and regular there. Then
po ¢ and p o satisfy the conditions in lemma 3.10, [f]—(p o #)71(0) = (po¥)~1(0) (=
¢~ 1(#(Sing ¢))), pod and porp have the same sign at each point of M, only normal crossing
singularities at (p o ¢)~!(0) and the same multiplicity at each point of (p o ¢)~1(0), and
the natural extension to M of the function pot/po ¢ defined on M — (po ¢)~1(0) is close
to 1 in the C™ topology. Hence by lemma 3.10 in [[] there exists a Nash diffeomorphism
71 of M close to id in the C* topology such that 7 (¢~ (¢(Sing ¢))) = ¢~ (¢(Sing ¢))
and ¢ — 1 oy is I-flat at ¢~ (4(Sing ¢)) for a large integer I. Replace, once more, 9 with
Y omy. Then we can assume, moreover, that ¢ — v is I-flat at ¢~ (¢(Sing ¢)) and close to
0 in the C* topology. Hence by proposition 3.11,(i) in [{], ¢ and v are analytically right
equivalent and then by theorem B.9 they are Nash right equivalent.
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3.2.2. Proof of theorem in the case of X C Sing f. Assume that f and g are Nash
functions defined on open semialgebraic neighborhoods U and V', respectively, of X in
M, and let 7y : N - U, mg : L — V and h : N' — L' be two compositions of finite
sequences of blowings-up along smooth analytic centers and an analytic diffeomorphism
from an open neighborhood N’ of 7TJ71(X) in N to one L’ of 7Tg_1(X) in L, respectively,
such that for; =gomgoh and h(ﬂ';l(X)) = w;l(X). When we proceed as in the proof
in the case of X = M we can replace 7y : N — U, my : L — V and h : N — L' by
Nash 7y : N —U,%,:L—Vand h: N — I, respectively, so that fomy= gofrgoﬁ.
However, we cannot expect the equality B(ﬁ';l(X ) =7y L(X). For the equality we need
to modify 7y and .

As in the construction of the canonical Nash germ decomposition we have a decreasing
sequence of Nash sets X;, i = 1,2, ..., in U such that X7 is the Nash closure of X in U and
for each i the set X; N X — X;11 is a union of some connected components of X; — X;11.
Set Xy; = 71]71(XZ~). Then {Xy;} is a decreasing sequence of global analytic sets in N,

W;l(X) C Xy, and for each 7 the set WJTl(X) NXy;—Xyq1 is a union of some connected
components of Xr; — Xy;,1. By Hironaka Desingularization Theorem we reduce the
problem, in the same way as in the case of X = M, to the case where Xy; are normal
crossing, f o7y has only normal crossing singularities, and hence 71]71(X ) is a union of
some connected components of strata of the canonical stratification of Sing(fons). Shrink

N’, V, L and L’ so that L' = L if necessary. Then wg_l(X ) and gom, have these properties

of 77;1(X) and f oms. We call these properties ().

Let N and L be realized in U x P(ksg) x -+ X P(kfpy—1) and in V x P(kg) X - -+ X
P (kg 1), respectively, as in theorem .4l Then by theorem P.4 there exist composmons
of finite sequences of blowings- up along smooth Nash centers 7y : N — U and Ty L—V
and analytic embeddings hf : N — N’ and h, : L — L’ such that

e U and V are open semialgebraic neighborhoods of X in U and V, respectively,
o fompohy = fony, gowgohg = g oy, N and L are realized in U x P(kyso) x
X P(kf_1) and in V x P(kg o) x -+ x P(kymr_1), respectively,
. N and L are close to N and L at ﬁ;l(X) and ﬁg_l(X), respectively, in the C'™
topology,
o (%) hy and hy are close to id at ﬁ;l(X) and 7,1 (X), respectively, in the C*
topology.

Hence
fofpohit=gofgohs oh on Shynh™(Shy).

Clearly hy(Sing(fo7y)) C Sing(fons) and hy(Sing(goy)) C Sing(gomg). It follows from
(*) and () that 7 “1(X) and 7, 1(X) are unions of some connected components of strata
of the canonical stratlﬁcations of Sing(f o 7¢) and Sing(g o 74), respectively, and hence

hy (77 (X)) =77

oy FHX) and  hy(7,N(X)) =7,

g (X).

Therefore, the germs of f o7y on ﬁ;l(X) and of g o 7y on 7, 1(X) are analytically right

9
equivalent. On the other hand, by remark B.4, the germs of N on ﬁ;l(X ) and of L on

ﬁ;l(X ) are Nash diffeomorphic. Hence we can regard them as the same Nash set germ.

Then by theorem B.3 and remark B.4, the germs of f o 7y on ﬁ;l(X) and of g o7, on

Ty 1(X) are Nash right equivalent. Thus the germs of f and g on X are almost blow-Nash
equivalent.
Finally, the case of the R-L equivalences runs in the same way as that of X = M.
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