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Independent Component Analysis

Pierre COMON

THOMSON - SINTRA
Parc Sophia Antipolis, BP 138, 06561 Valbonne Cedex, France

Abstract

The Independent Component Analysis (ICA) of a
random vector consists of searching the linear
ransformation that minimizes the statistical dependence
between its components. In order to design a practical
optimization criterion, the expansion of mutual
information is being resorted to, as a function of
cumulants. The concept of ICA may be seen as an
extension of Principal Component Analysis, which only
imposes independence up to the second order and
consequently defines directions that are orthogonal.
Applications of ICA include data compression, detection
and localization of sources, or blind identification and
deconvolution.
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1. Introduction

This paper attempts to provide a precise definition of
ICA within an applicable mathematical framework. It is
envisaged that this definition will provide a baseline for
further development and application of the ICA concept.

In this discussion, the following linear statistical model
is assumed:

{1 y=Mx+v,
where x, ¥ and v are random vectors with values in RN

or C and with zero mean and finite covariance, and M is

a regular square matrix. The problem set by ICA may be
summarized as follows. Given realizations of y, it is
desired to estimate both M and the corresponding
realizations of x. To achieve this, we assume that the
components of vector x are statistically independent.
However, because of the presence of the noise v, it is in
general impossible to recover exactly x, especially if v is
non-gaussian. We shall however derive a process that
delivers the best estimate z of x, according to an

optimization criterion that we have named “contrast”.
v

X M J y

Figure 1

Let us dawdle a few lnes on related applications. If x is
a vector formed of N successive time samples of a white
process, and if M is Toeplitz triangular, then model (1)
represents nothing else but a deconvolution problem. The
first column of M contains the successive samples of the
impulse response of the corresponding FIR causal filter.
Such blind identification and/or deconvolution problems
have been addressed in different manners in [1] [12] [26]
[271 [28] [32]. Note that if M is not triangular, the filter
is allowed to be non-causal. Moreover, if M is not
Toeplitz, the filter is allowed to be non-stationary.

In antenna processing, ICA may be utilized with the
goal of localization of radiating sources with possibly
perturbed or ill-calibrated arrays, as well as for detection
and estimation of sources from unknown arrays without
localization. The use of ICA has also some interesting
features for jammer rejection, noise reduction, and blind
equalization; it has been already experimented in radar for
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instance [11]. Further ICA can be utilized in the
identification of multichannel ARMA processes when
the input is not observed and in particular for estimating
the first coefficient of the model [8], which is generally
assumed to be known [17). On the other hand, ICA can
be used as a data preprocessing tool before Bayesian
detection and classification. In fact, by a change of
coordinates, the density of multichannel data may be
approximated by a product of marginal densities,
allowing a density estimation with much shorter
observations. Other related topics include high-order
Hnear whitening and diagonalization of symmetric
tensors.

The caleulation of ICA was discussed in several recent
papers [4] [8] [9] [13] [16] [18] [19] [23], where the
problem was given various names, For instance the
terminology “sources separation problem" has often been
used. We shall not review existing works in detail here,
but rather propose a steady definition. Qur investigations
have revealed that the problem of "Independent
Component Analysis” was actually first proposed and so
named by Herault and Jutten in 1986, refer to [19]. We
shall retain this terminology. Furthermore, as
demonstrated below, it has some links with Principal
Component Analysis (PCA).

Suppose X is a non-degenerate gaussian random vector
of dimension N with statistically independent
components, and z a vector defined as z = C x, where
C is a regular NxN matrix. Then if z has independent
components, matrix C can be shown to be of the form:

@ C=AQA4,
where both A and A are diagonal and Q orthogonal. This
demonstral 30 1, if both x and z have a unit covariance
mattix, theu « wnay be any orthogonal matrix. We shall
show later (theorem 23) that when x has at most one
gaussian component, this indetermination reduces to a
matrix of the form AP, where A is a diagonal matrix with
entries of unit modulus, and P a permutation. This latter
indetermination cannot be reduced further without
additional assumptions, Note that PCA has exactly the
same inherent indeterminations as ICA, so that we may
assume the same arbitrary constraints in order to define
ICA uniquely.

(3) DEFINITION
The ICA of a random vector y with finite covariance is
a pair {F,A} of matrices such that:
(3a) the covariance of y decomposes into
Vy=FA?F,
where A is diagonal real positive and F is full
column rank;

(3b) A? is the covariance of a random vector z whose
components are “the most independent possible", in
the sense of the maximization of a given "contrast
function",

(3c) The entries of A are sorted in decreasin g order;

(3d) the columns of F are of unit norm;

(3¢} the entry of largest modulus in each column of F is
given a positive real part.

In this definition, superscript (*) denotes transposition,

and complex confugation if the quantity is complex. As a

consequence, ICA defines the so-called "source vector” z

satisfying:

) y=Fz.

The requirement that F is square is not absolutely

necessary, F could have more rows than columns,

Nevertheless for the sake of clarity, this case is not

discussed, As we shall see with theorem (23), ICA is

unique as long as y has at most one gaussian component.

2. Statements related to independence

In this section, we shall first propose an appropriate
contrast criterion. Then we state two results. Tt will be
proved that ICA is uniquely defined if at most one
component of x is gaussian, and then it will be shown
why pairwise independence is a sufficient measure of
statistical independence in our problem.

Most of the results presented in this paper hold true
either for real or complex variables. However, some
derivations would become much more comphivated if
derived in the complex case. Therefore only real variables
will be considered for the sake of clarity. In the
remaining, plain lowercase (resp. uppercase) letters
denote in general scalar quantities (resp. tables with at

least two indices, namely tensors), whereas boldface
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lowercase letters denote column vectors with values in
RN,

Let x be a random variable with values in RN and
denote p,(u) its probability density function (pdf).
Vector x has mutually independent components if

) P (1) = H P, (0.

So a natural way of checkmg whether x has independent

components is to measure a distance between both sides
of ()
) 8(p,. Ilp,)-
In statistics, the large class of f—divergences is of key
importance among the possible distance measures
available [2]. In these measures the roles played by both
densities are not always symmetric, so that we are not
dealing with proper distances. For instance, the Kullback
divergence is defined as:
D Spepy) =j p,(u) log22fe du.
Recall that the Kullback divergence satisfies
)] 8(py. P 2 0,
with equality if and only if p (u) = p,(u) almost
everywhere, This property results from the well-known
inequality

log w £ w— 1, with equality iff w = 1.

Now, if we lock at the form of the Kullback divergence
of (6), we obtain precisely the average mutual
information of x:
©® 1) =J Py (0 logr 2T

From (8), the mutual information cancels if and only if

du, ue RN,

the variables x; are mutually independent, and is strictly
positive otherwise.
On the other hand define the differential entropy of x as:

(10 S(p) = —J Py(u) log py(u} du.

Remind that differential entropy is not the limit of
Shannon's entropy defined for discrete variables; it is not
invariant by change of coordinates as the entropy was.
Yet, it is the usual practice to still call it entropy, in short.
Entropy enjoys very privileged properties as emphasized
in [29], and we shall show next that information (9) may
also be written as a difference of entropies.
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Now denote EN the space of random variables with
values in RN, B} the Euclidian subspace of EN spanned
by variables with finite covariance matrix, provided with
the scalar product <x,y> = E{x"y}, and E5 the subset
of EY of variables having a tegular covariance. Lastly
define IEP' as the euclidian subspace of ]EEI constituted of
variables with finite moments up to order r. Note that any
random variable of BN, with finite moments up to order r
and with a pdf not reduced to a point-like mass, can be
reduced by projection to a variable belonging to
]'f-:v:q = ]Eff‘ N ﬁg‘ for some N, N'>Nz1.

Among the densities of ﬁ? having a given covariance
matrix V, the gaussian density is the one which has the
largest entropy. If x is zero-mean gaussian, its pdf will
be referred to with the notation ¢, (u), with:
11y ¢, = o N2 IVF2 exp{—u® V- u}2.

Our proposition says that

(12) S(h = S(py),

with equality iff ¢, (u) = py(u) almost everywhere. The
entropy obtained in the case of equality is

(13)  S(¢,) = % [N +Nlog(2m) + log det V1.

Other simple densities enjoy similar properties. For
instance, the uniform density maximizes entropy over the
class of densities with a bounded support. On the other
hand, the exponential density maximizes entropy over the
class of densities defined in the first quadrant, (R*)Y, and
with a given mean. In the rest of the paper, there will be
no restriction on the support of the densities, so that they
will be defined on the entire space RN,

For densities in IE%’, one defines the negentropy as:

14 I(p,) = S, — S(py)s

where ¢, stands for the gaussian density with the same
mean and variance as p,. Negentropy may be written in
another manner, as a Kullback divergence:

15) Ip = f p () 1og22™ gy,
Gx(ur)

which shows, referring to (8), that

(16} Ipyz0,

with equality iff ¢, = p, almost everywhere.
From (9) and (15), the mutual information may be
written as the difference of negentropies
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N
_ ~ 1 II vy
a7 I{p,) =I(py EJ(PXi)+21n detV ’

where V denotes the variance of x. The proof is deferred
to [7] for reasons of space. This relation gives a means of
approximating the rmutual information, provided we are
able to approximate the negentropy about zero, which
amounts to expanding the density p, in the neighborhood
of ¢, This will be the starting point of section 3.

So far, it has been seen that the gaussian density plays a
key role in the problem under consideration, since ICA is
undetermined if p, is gaussian. It is therefore natural to
resort to negentropy which measures deviations from
gaussianity. We have shown that both the gaussian
feature and the mutual independence can be characterized
with the help of entropy. Yet, these remarks justify only
in part the use of (17) as an optimization criterion in our
problem. In fact from (3), this criterion should meet the
requirements given below.

{18) DEFINITION

A contrast is a mapping ¥ from EN to R satisfying the
3 requirements;

* ¥(x) depends only on p,, V x & EN,

« ¥ is invariant by scale change, that is:

Y(AX) = ¥(x), V A diagonal regular,

+ if x has independent components, then:

F(A x) £ ¥(x), ¥V A regular,

Contrary to the criterion proposed in the subsequent
theorem, it is easy to see thag the information (17) is not
scale invariant, Let z be a zero-mean random variable of

EE‘, V its covariance matrix, and L a matrix such that
V =LL"* (it could be a Cholesky factorization, or any
other square-root decomposition, based on SVD for
instance), Then we define the standardized variable
associated with z;

(19) F=L"z

Note that Z, + Z;. In fact, Z; is merely the variable z,
normalized by its variance. In the following, we shall
only talk about 'ii, the ith component of the standardized
variable Z. It is easy to see, by the way, that entropies of
z and 7 are related by [7]

(20) S(p,) = S(py) - :1? log det V.
Now we are in a position to define a contrast criterion.
(21) THEOREM

The following mapping is a contrast over ﬁ?

Yipp = pg)-
See [7] for a proof. Note that from (17) we have

N
¥(pp) = 2, Jog,) - IR
i=1

Criterion (21) is admissible for ICA computation. This
theoretical criterion, invelving a generally unknown
density, will be made usable by approximations in
section 3. Regarding computational loads, the calculation
of ICA may still be too heavy even after approximations,
and we now turn to a theorem that theoretically explains
why the practical algorithm designed in section 4, that
proceeds pairwise, indeed works.

(22) LEMMA

Let x and z be two random vectors such that z=B x,
where B is regular. Suppose additionally that x has
independent components, and that z has pairwise
independent components. If B has two non-zero eniries
in the same column j, then X is either gaussian or
constant.
(23) THEOREM

Let x be a vector with independent components of
which at most one is gaussian, and whose densities are
not reduced 1o a point-like mass. Let C be an orthogonal
NxN matrix and z the vector z= C x. Then the 3
following properties are equivalent: )
(i} The components g are pairwise independent
(ii) the components z; are mutually independent
(Gii) C = A P, A diagonal, P permutation.

See appendix for a proof of lemma and theorem.

3. Optimization criteria

Suppose that we observe ¥ and that we look for an
orthogonal matrix Q maximizing the contrast:
24) ¥, = - 1oy
Z=Q5.
In practice, the densities piand p-)-,-aIc not known, so that

where



the criterion (24) cannot be directly utilized. The aim of
this section is to express the contrast (21) as a function of
the standardized curnulants (of order 3 and 4), which are
quantities more easily accessible. The expression of
entropy and negentropy in the scalar case will be first
briefly derived. We start with the Edgeworth expansion
of type A of a density. A central limit theorem says that if
z is a sum of P independent random variables with finite

curnulants, then the ith order cumulant of z is of order:
2-i

25) X, ~PT.
This theorem can be traced back to 1928 and is atiributed
to Cramér [33]. Referring to [20, p176, formula 6.49],
the expansion of the pdf of z up to order 4 about its best
gaussian approximate (here with zero-mean and unit
variance) is given by

6 B -
¢2(u}
3, hy(u)
4, ks 4(u)+6, K3 he(w)
5' Lk, hy(u) +-H-1<3 K, hy(w) + g}’ K3 hy(u)
+61! K he(u) + Ks Ky hg(u) +33 T K4 hg(u)
+ o(P—2)+T)OTQK3 Ky o)+ 23580 ()

In this expression, k; denotes the cumulant of order i of
the standardized scalar variable considered (this is the
notation of Kendall and Stuart, not assumed
subsequently in the muitichannel case), and h,(u) is the
Hermite polynomial of degree i. The advantage of
Edgeworth expansion over Gram-Charlier's lies in the
ordering of terms according to their decreasing
significance as a function of P-172, See [20] [21] for
general remarks on pdf expansions.

Now let us turn to the expansion of the negentropy
defined in (15). We start with
(27) (1+v) Iog(1+v) = v +v¥42 — v3/6 + v¥/12 + o(v%),
and with the propertics satisfied by the h,(u)'s {71:

(28) $(u) hy(u) du=0,
(29) J ¢(w) h(u) ho(u} du=35_, p

(30) [ & (u) hi(u) h,() du = 313,

33

[€3)) j o(w) h3w) hew) du =6,
(32) j d(u) hi(u) du = 93 31%,
THEOREM

Using these relations together with (26) and (27), one
can prove that for a standardized scalar variable z:

(33) Xp,) = K3+ 1 < +—1c3--§1<§ K, + o(F2).

See [7] for a proof. Next, from (17), the calculus of the
mutual information of a standardized variable Z needs not
only the marginal negentropy of each component Z; but
also the joint negentropy of Z. It tumns ocut that the
calculation of J (p—i) is much more complicated than for
the scalar case given above, though it goes along the
same lines. Assume the Einstein summing convention,
where the presence of the same index on top and bottom
means a summation over this index, e.g.

KUK K, = 2; Ky KK,
ij

This notation has some important mathematical meaning
when used in the televant context [5] [22] [6]. Then after
very cumbersome and tedious calculations, one can show
that!
(34) Jpp) = 5 KIKyy + - KM
48 K’ kK,JnK,‘thqm + 4 KK KK
-3 LgikR, KIE + o(P-),

where K o denote the cumulants Cum({Z,Z e ,fz'q}.

However, 1t is more clever to notice that

@33) Jpp) = 1o

since entropy is invariant by orthogonal change of
coordinates. Using (33) and (35), the mutual information
of Z takes the form, up to O(P2) terms:

(36) I(pp) = oy

Z {4 Kfu + K%lll + 7 K?u 6 K%u }

Yet, cumulants satisfy a multilinearity propeity [3],
which allows them to be called tensors [24] [25]. Denote
K the family of cumulants of Z and T that of ¥, Then, by
resorting to Einstein notation for the sake of conciseness,
this propenty can be written at orders 3 and 4 as:

1. the exact form of this expansion was derived with the help
of J.F.Podevin, a student visiting the author.
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(37 K= Q& Q? Qi Tpgrr

39 K = & Q Q5 Qi Tpgee

On the other hand, T (p,..) does not depend on Q so that
the criterion (24) can be reduced up to order P2 to the
maximization of a functional y

(39 wQ= 2 4 X% + Khy+7 K - 6 K Ky

with respect to Q, keeping in mind that the tensors K
depend on Q through relations (37) and (38). The
function W(Q) is actually a complicated rational function
in N(N-1)/2 variables. The goal of the remainder of the

paper is to avoid exhaustive search and save
computational time in the optirnization problem.

Simpler criteria

(41) LEMMA

Denote *Q the matrix obtained by raising each entry of an

orthogonal matrix Q to the power . Then we have:
HZQul<iull

(42) THEOREM

The functional

N
w®=2K&$

where K, ; are margmal standa.rdlzed cumnuiants of

Hod
order r, is a contrast for any 1>2.

The proofs are given in appendix. See also [10] or 7
for more details. These contrast functions are generally
less discriminating than {24), In fact, if two components
have a zero cumulant of order 1, the contrast (42) fails to
separate them (this is the same behavior as for gaussian
componenis). However, as in theorem (23), at most ong
source component is allowed to have a null cumulant.

Now, it is easy to show [10] [7] that the quantity

(43) Q=2 K i

11 lg
is invariant under linear and regular transformations. This

result gives an interpretation to the significance of
contrast functions such as (42). Indeed, the maximization
of Y(Q) is equivalent 1o the minimization of Q—y(Q),
which is eventually the same as to minimize the sum of
and these
cumulants are precisely the measure of statistical

the squares of all cross-cumulants of order T,

dependence at order r. The same interpretation can be

given for the contrast (39) since the expression
@4) Q= 2 4Kh+Kin+3 KKK Kom
ijklmngr
+4 Ky K, K,

imn" - jmr

Kiyne — 6 KiijllmKJklm

is invariant under linear and regular transformations [7].
The interest in maximizing the contrast (42 rather than

minimizing cross cumulants Ties essentially in the fact that

only N cumulants are involved instead of O(N%). Thus,

this spares a lot of computations when estimating the

comulants from the data, A first analysis of complexity

was given in [6] and [10].

Link with blind identification and deconvolution

The criteria (39) and (42) may be connected with other
criteria recently proposed in the literature for the blind
deconvolution problem. For instance, the criterion
proposed in [28] may be seen to be equivalent to
maximize ZKiiﬁz. In [12], cne of the optimization
criteria proposed amounts to minimizing ZS(pZi), which
is consistent with (14), (17) and (24). In [1], the family
of criteria proposed contains (24).

On the other hand, identification techniques presented in
[31] [26] [27] [17] [30] solve a sysiem of equations
obtained by cumulant matching. Though they work quite
well in general, these approaches may seem arbitrary in
their selection of particular equations Tather than others.
Morgover, their robusmess are questioned in presence of
measurement noise, especially non-gaussian, as well as
for short data records. In [32] a matching in the Least
Sqquares (LS) sense is proposed; in [8] the use of much
more equations than unknowns improves o robusmess
for short data records. A more general approach is
developed in [15] where a weighted LS matching is
suggested. Our equation (39) gives some justifications to
the process of selecting particular cumulants, by showing
their dominance faced to the others. In this context, some
simplifications would occur when developing (3% asa
fanction of Q since the components y; are generally
assumed identically distributed (this is not assumed in
our derivations). We insist however that the fourth order
cumulant cannot be isolated from the third order ones,
except if they all vanish.
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4. A practical algorithm

Pairwise processing

As suggested by theorem (23), in order to maximize
(39) it is necessary and sufficient to consider only
pairwise cumulants of Z, The preof of (23) was valid for
any contrast but only in the case where the observation y
was effectively stemming linearly from a random variable
x with independent components (model (1) in the
noiseless case). It turns out that it is true for any ¥ and
any 7= Q ¥, and for any contrast of polynomial form in
marginal cumulants of Z as it is the case in (39) or (42).
The proof resorts to differentiation tools borrowed from
classical analysis, and not to statistical considerations [7].
These statements justify a pairwise processing.

S H

¥y Q A z

] L—l

Figure 2: processing scheme in three main steps.
Two additional transforms, P and A, must be applied afterwards in
order to meet all the requirements of definition (3).

Given a set of data, Y={y(f), 1<t<T}, the proposed
algorithm processes each pair in tum, similarly to the
Jacobi algorithm in the diagonalization of symmetric real
matrices;

(45) ALGORITHM

1) Compute a matrix L and the corresponding standardized
data, Z=1! Y, L may be based on the QR factorization of
Y oron its PCA,

2) Initialize F=L.

3) Begin a loop on the sweeps: k=1, 2,...

4) Sweep the N(N-1)/2 pairs (i,j), according to a fixed
ordering. For each pair:
a. estimate the required cumulants of (Z, Zi) by
resorting to X-statistics for instance [20] [10].
b. find the angle @ maximizing W(QUD), where QU? is
the Givens rotation of angle 8, 8e]-a/4,1/4).
C. accumulate F ;= F Q @i)*,
d. update Z := QUD Z,

5) End of the loop on k if k=kmax or if all estimated angles
are very smafl,

6) Compute the norm of the columns of F: A

7} Sort the entries of A in decreasing order:
A=PAP*andF:=FP".

8) Normalize F by the transform F:=FA T,

(=IE, .

i

35

9) Fix the phase (sign) of each column of F according to
(38). This yields F:= F A.

As shown in [10], the step 4)b can be carried out in
various manners, and can become very simple when a
contrast of type (42) is used. Real-time implementations
are also possible [9]. See [10] and [7] for more details.

Robustness in presence of non-gaussian noise

In this section, the behavior of ICA in presence of non-
gaussian noise is investigated by means of simulations.
We need first to define a distance between matrices
modulo a multiplicative factor of the form AP, where A is
diagonal regular, and P is a permutation . Let A and A be
two regular matrices, and define the matrices with unit-
norm colmmns

A=AALA=AR, with Ay = 1A, By = 1A I
The gap £(A,A) is built from the matrix D = A™! A as:
46) eAA) =3 I3, Dy 1P+ X I3, Dy - 112

1 j j i
+2 1% IDijIZJ— EDN)Y &)ﬁrz ~1l
i

It can ble sliown [7]1 that tJhiS measure of distance is
indeed invariant by postmultiplication by a matrix of the
form AP: e(AAP,A) = £(A,AAP) = g(A,A).

Consider the observations in dimension N=2:
n Y1) = Mx() +7 W,
where 1=i<T, x and w are zero-mean and standardized,
x is formed of two independent random variables of
kurtosis 1.2 and ~1.5 respectively, w; are uniformly
distributed in [¥3,Y3] (and have thus a kurtosis of
-1.2), 1 is a positive real parameter, and

e[ 33).

Then when 7 increases, the signal to noise ratio
decreases. We give? in figure 3 the behavior of
algorithm (45) when the contrast (42) is used at order =4
(which also coincides with (39) since the densities are
symmetrically distributed in this simulation).

2: simulations presented in figures 3 and 4 have been

performed with the help of D.Cren, a student who visited the
author in 1990,
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&(M,F)

Lk

ot

(11

200
(1] i IL] N (L] [ 1] [

Figure 3: gap &(M,F) for 90 independent realizations of Y of size
T=2000, each for 90 different values of 1) (by steps of 0.1).

(L] (X

The most surprising in these simulations is the excellent
behavior of ICA even in the close neighborhood of
1= L. For 1 > 1, the ICA algorithm considers the vector
Mx as a noise, and the vector 1 w as a source vector.
Because w has independent components, it could be
checked that e(I,F) tends to zero as 7| increases to
infinity, showing that matrix F is approaching AP.

Another interesting experiment is to look at the
influence of the cheice of the sweeping strategy on the
convergence of the algorithm. For this purpose, consider
now cleven independent sources. Here, we assume &
fixed cyclic-by-Tows description of the pairs, but the
sources are shuffled. In ordering 1, the source Kurtosis
are

(1-11-11-11-11-10)
whereas in ordering 2 they are
(11111-1-1-1-1-10),

Note the presence in this simulation of a null cumulant,
and of cumulants of opposite signs. The mixing matrix is
defined by My=1+ Bij,
and the additive noise has null kurtosis.
This simulation was performed directly from cumuiants,
so that the performances obtained are those that would be
obtained for T == with real-world signals. The contrast
ntilized is (42) with r=4. It is plotted in figure 4(a) for
ordering 1, and in figure 4(c) for ordering 2, as a
function of the number of Givens rotations computed.
For convenience, the gap between the original matrix, M,
and the estimated matrix, F = LQ*A~! is also plotted in
figures 4(b) and 4(d).

i o(FM)

[] ) s

4
=

1]

i)

35 " [D) % 2ls

ms.

e(F.M)
"2
1)

45

A

Number of pairs processed
H m L) B m

Figure 4: influence of the ordering of the sources on the
convergence speed. The contrast y and the gap € are ploned int ()
and (b) respectively for ordering 1, and in (¢} and (d) for ordering 2.




I real-world experiments, the gap cannot be accessed so
that the stopping criterion can only be based either on the
contrast variation, or on the significance of the plane
rotations,

Other simulations results related to ICA are repotted in
[10] and [7].

5. Conclusion

The definition of ICA given in this framework depends
on a contrast function that serves as an optimization
criterion. One of the contrasts proposed is built from the
mutual information of standardized observations.

ICA can be computed by maximizing a combination of
third and fourth order cumulants, obtained from the
Edgeworth expansion of the mutual information. For the
purposes of complexity reduction, an algorithm is
proposed that minimizes a simplified criterion, by rooting
a sequence of polynomials of degree four.
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Appendices

+Proof of lemma (22)
Mutual independence of the components of x yields

(A1) o) =IT o, 0.

On the other hand, the relation z = B x implies
a2 o, (w) = ¢ (B'w).
A characteristic function is always continuous.
Therefore, since it takes the value 1 at the origin, there
exist & neighborhood of zero, U, in which q)z(u) and
@, (u) are strictly positive, For convenience, denote by
the logarithm of @ for ue U. Then (A-1} and (A-2) give
together
(Aa-3) 2,0 = 2 % (B W,
where B, denotes the i:h' column of B. Now suppose
there exist two non-zero entries Bpj and B ; in B. Then
from (A-3), and by pairwise independence of z, and z,
we may write:

2 % Brity) + X By = 2 % (Bl # B
Nc;w from a result of Darmois [114], we know that all X
for which both B, and qu are non-zero are polynomials

of degree at most 2. ¢

+Proof of theorem (23)

Implications (iii) = (if) and (i) = (i) are quite obvious.
We shall prove the last one, namely (i) = (iii). Assume z
has pairwise independent components, and suppose Cis
not of the form AP. Since C is orthogonal, it has
necessarily two nonzero entries in at least two different
columns. Then by applying the lemma twice, x has at
least two gaussian components, which is contrary to our
hypothesis.0
#Proof of lernma (41)

The matrix 2Q is bistochastic (i.e. the sum of its entries in
any Tow or column is equal to 1). But from Birkhoff
theorem, the set of bistochastic matrices is a convex
polyhedron whose vertices are permutations. Thus 2Q
can be decomposed as

(A5) Q=Y. 0 P, 20, o =1

Then we have the sincquality )

(A-6) 12Qulisy, o 1P, uli=Hulo

+Proof of theorem (42)s

Since Q is unitary, we have IQijl < 1, and consequently
I"Ql < 1%Q;l. And applying the triangular inequality

A7 Y, Gy < Y, O Qi luf.

ij.k i,k
Then using the lemma we get
(A-B) N1Quitgi2Quiz<iiulizg

The details of the proofs are deferred to a full paper [7].
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