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Abstract

This article discusseshe reconstructiormethodsfor the inversionof the residualstressesn rodsunderthe Navier—Bernoulli
or the Vlassov(containingwarping)kinematicconditions.The proposedrameworkpermitsus to expresgheresidualstressein
termsof the Airy stresgpotentialexpresse@sthe solutionof anordinarydifferential equation.The particularcaseof the Navier—
Bernoulli kinematicsleadsto a closed-formsolution.

Résumé

Sur la reconstruction de champsdescontraintes résiduellesdans les barres apres enlevementde la matiere. Cetarticle
présentdes méthodegle reconstructiordescontraintegésiduellesdansdespoutresen considérantieshypothésesinématiques
de type Navier—Bernoulliou Vlassov(avecgauchissment).a techniqueproposéepermetd’exprimerles contraintegésiduelles
apartir d’'unefonctiond’Airy, solutiond’'une équationdifférentielleordinaire.La cinématiquede Navier—Bernoulliconduita une
solutionexplicitede ceprobléme.
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Version frangaise abrégée

La détermination des contraintes résiduelles dans les structures est un sujet de grande importance puisque le
présence affecte considérablement la résistance a la fatigue et a la rupture des piéces mécaniques.

Deux classes de méthodes d’identification peuvent étre utilisées : les méthodes non destructives (mesures p:
diffraction des rayons X, par ultrasons, etc.) et destructives (enléevement de la matiére, percage de trou, etc.). Ce
derniéres provoquent un relachement de contraintes (et de déformation) conduisant ainsi a un probléme inverse ¢
reconstruction de champ de contraintes initial a partir de mesures effectuées sur la frontiere du solide.
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Dans cet article, nous présentons les méthodes de reconstruction des contraintes résiduelles aprés enlevemer
la matiere dans le cas des barres élancées de section rectangulaire. L'hypothése principale adoptée est celle d
relaxation purement élastique des contraintes aprées enlévement successif de couches d'épaisteats/pothése
permet de ramener la résolution du probléme de reconstruction a I'étude de trois problémes élastiques distincts (vc
Fig. 2) : le premier problem®1 est celui de I'équilibre de la poutr@ libre de charges extérieures et contenant
le champ de contraintes résiduelles incomnuPour le deuxiéme probléeme nd®, le solide est constitué par la
barre £2;, obtenue a partir d&2 aprés enlévement d’'une couche d'épaisgeur’est sur cette configuration que la
mesures des contraintes par diffraction des rayons X est effectuée sur la face supérieurP3Estine probleme
élastique auxiliaire traduisant I'équlibre de la baf2g, soumise aux tractions surfaciqueso - €;) sur sa face supé-
rieure @ étant le champ de contraintes résiduelles a identifier). L'application du principe de superposition a ces trois
problémes conduit a la relation (3).

Il est impératif de noter que le probléme de reconstruction posséde une solution explicite si le systeme (2) et (3
ainsi que le probléme auxiliaire ont des solutions explicites. Rappelons que pour le cas d’'un demi-espace élastiqu
la solution du probléme auxiliai@3 est fournie d’'une maniere explicite par la solution de Boussinesg—Cerultti et le
systeme (2) est résolu aprés application de la transformée de Fourrier [2].

Pour le cas des barres de dimensions finies, une solution explicite analogue a celle de Boussinesg—Cerutti ¢
difficille a établir. L'idée est de résoudre le probléme auxiliaire dans le cadre de la théorie des poutres de Navier:
Bernoulli puis celle de Vlasov et d'introduire le potentiel de contraintes d’Airy (13) pour résoudre les Egs. (2) et (3).

Des formules intégrales explicites (16) pour la reconstruction de champ de contraintes résiduelles sont obtenu
pour la cinématique de Navier—Bernoulli. Elles constituent une généralisation des formules de Morre et Avans [3
établies pour les barres (plaques) de longueurs infinies.

1. Introduction

Identification of residual stresses is an important task in many engineering fields such as fatigue or fracture me
chanics, where their presence can significantly increase or decrease the apparent strength of mechanical compone

The problem of stress redistribution after matter removal has instructively been illustrated by Prof. H.D. Bui who
has sectioned a commercial aluminium rod. The two parts were highly deformed after the cut due to the presence
residual stresses as displayed in Fig. 1. The present article is intended to bring a modest contribution to this problen

Accurate measurements of residual stresses are performed by non-destructive techniques X-ray diffraction me
surements at the surface of structures or by destructive methods: hole-drilling, layer removal, etc., if one wants t
explore the residual stress field in depth of the solid. This relies essentially on measuring the stress redistribution pre
duced by matter removal on a body containing residual stresses produced by an incompatible initial thermal or plast
strain distribution. In such a case, one supposes that matter removal leads to an elastic redistribution of stresses &

Fig. 1. Deformation of an aluminium rod after cutting, due to the presence of residual stresses, an experiment proposed by Prof. H.D. Bui.



measures generally the strain or the stresses on the boundary after the matter removal by means of X-ray diffraction ¢
by neutron diffraction. This technique conducts therefore to an inverse reconstruction problem of the initial residual
stress before mater removal from measurements performed after matter removal.

The study of the matter removal problem can be related to an evolution problem and uniqueness of its solution ha:
already been proven in [1] for bodies of arbitrary shape.

For a practical purpose, Moore and Evans [3] proposed for the matter removal technique, in their pioneering paper,
a series of exact integral formulas for the reconstruction of residual stress field in the following cases: (a) solid rod
and hollow cylinder (tube) with rotationally symmetric stresses independent of the axial coordifiatdlat plate
with stresses varying along the thickness of the plate. These formulas apply only in cases where the residual stres
field depends on just one spatial variable (corresponding to depth). However, many configurations arise in application:
where the stress fields are varying along the surface of the body. Explicit formulas for such cases have been obtaine
only in the following cases: (i) hollow cylinder (tube) with rotationally symmetric stresses and varying along the
z-coordinate (exact infinite series expression given by Nishimura [4]); (ii) two and three dimensional half-spaces with
stresses depending of all spatial variables (closed-form expression obtained by Ballard and Constantinescu [2]). Thi
main difficulties in finding closed-form solutions of this problem for bodies of different shapes can be related to: (i) the
existence of a fundamental solution of Boussinesq—Cerruti type of the elastic problem for the body under discussion;
and (ii) the integration of the evolution problem defined previously.

This article proposes to fill the gap between axially homogenous stresses in infinite bars (plates) and varying
stresses in a semi-infinite domains by discussing the case of slender finite dimensional rectangular solids within the
framework of rod theory.

Rod theories, can be interpreted in terms of power series developments of the three dimensional elastic solu
tion in term of a small parameter, i.e. the diameter of the cross-section of the rod. Expanding the three dimensiona
‘exact’ elastic solution up to different orders one can obtain explicit successive approximations including bending, tor-
sion, warping and Poisson effects of the beam under study. A detailed mathematical proof can be found in Trabuchc
etal. [5].

The asymptotic expansions of the three dimensional displacement and stress field are given in the following powelt
series of odd power terms:

u(e) =ul + e?u? + fu* + hot, o(e) =02+ %02+ e*o* + h.o.t. (1)

where h.o.t. are higher order terms anid the diameter of the cross-section.

The main conclusion of Trabusho et al. [5] is that without further assumptions on the loads or geometry, the zero
order term of the asymptotic expansion i#°, ¢°) coincides with the Navier-Bernoulli model and the second order
terms (u®, %) + ¢2(u?, 62) permits the justification of the Saint-Venant model for simple torsion, Timoshenko’s
bending equations and Vlasov’s rod theory [6].

This paper discusses the reconstruction formulas for the inversion of the residual stresses in rods under the Navier
Bernoulli or the Vlassov (containing warping) kinematic conditions. The proposed framework permits one to express
the residual in term of the Airy stress potential expressed as the solution of an ordinary differential equation. The
particular case of the Navier—Bernoulli kinematics conducts to a closed-form solution.

2. The reconstruction problem

Let 2 be a free rod of rectangular section and dimensionsb x ¢ referred to a Cartesian coordinate system
(x,y,z) (see Fig. 2). The neutral fibre coincides withx) and (Oy, Oz) are principle axes of inertia of the cross-
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Fig. 2. The three problems for the rod.



section. This simplifying assumptions are made for the clearness of the presentation and do not represent a restricti
to the generality of the setting of this problem.

From £2, layers of constant thicknegsare removed continuously, leaving for eacka new rods2,,. During the
matter removal procedure we assume that:

H1 The relaxation of the body due to matter removal is elastic

In order to define a method of solution, as in the three dimensional case, one can split the reconstruction probler
into three elastic equilibrium problems (see Fig. 2):

P1 The equilibrium of the initial solid2 with the unknown distribution plastic strain fiedd creating residual stress
field to be reconstructed. This fieddsatisfies the balance equations:

. o +0x;,=0
dive =0, e b 2
{ Oxzx +07:,=0 &)
P2 The equilibrium ofs2;, the rod after matter removal containing the undisturbed plastic strairefiel@his is the
configuration on which surface stress measurements are performed by means of X-ray diffraction method.
P3 The auxiliary problem defined af2;, is a purely elastic problem, with a stress distributidhcreated by surface
tractions on the upper surface given by:

t=—0(x,h) e =—ox (x,h)ex — o (x,he;

whereo is the residual stress field of probldé®i. In order to recall later this dependence we shall use the following
notation:

0" (x,2) = Gltl(x, 2) = Gloyz, 0. 1(x,2), z€lh,c]

Under theH1 assumption of an elastic redistribution of stresses, one can now apply the superposition principle anc
as a consequence the following equality between the components of the residual stress comppoétite three
problems can be established:

Oxx (6, ) = 0% (X, h) + o) (x, h) = 0% (x, h) + Glowy, 0] (x, ) ©)

This implicit relation between the components of the residual stress and the measur@mmeptesents together with
the balance equation (2), a system of equations for the unknown components of the residual stress.

The problem has a closed-form solution provided both the expreétien, o,.] and the system (2) and (3) have
a closed form solution.

In the case of the half space probléhwas computed using the Boussinesg—Cerultti stress potentials and the system
has been transformed into an ordinary differential equation using an integral transform which could be integrated.

In the present case of a slender domain of finite extension, the main idea is to use the expressiafinéd in
the framework of an imposed rod kinematics for the problem. The balance equation will be eliminated by the use of
the Airy stress potentiab to express the residual strass

3. Reconstruction for the Navier—Bernoulli rod
Let us consider a rod with the longitudinal axes along its mean fibre. According to the Navier—Bernoulli (Love—
Kirchhoff) beam theory [6], the rod kinematics is defined by the following form of displacement field:
u=(u(x)—w,(x)z)ex +wx)e; 4)

whereu(x) and w(x) are the axial translation and the transversal deflexion of the cross-section respectively.
denotes the partial derivative with respecktd he angle of rotation of the cross-sectiorH® , (x) and signifies that

the cross-section remains orthogonal to the mean fibre during the deformation of the rod. Moreover, the cross-sectic
is rigid in its plane.
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Fig. 3. The coordinates for the rod after removal of a layer of thickhess

The three dimensional strain of the rod is related with the displacement field under the small strain assumption by:
e=¢xexQer= Uy —Wyy)er ® e, )
The stress field is expressed for a linear elastic isotropic material as:
a:sxx((k+2u)ex®ex+)»(ey®ey+ez®ez)) (6)

wherei andu are the Lamé moduli. One can remark that the kinematic assumption neglects the shear stress, whick
does not imply that the shear forces do vanish. The generalized stresses for the beam theory are related to the thr
dimensional stress components and to displacement field through:

N(x)=/axx(x,z)ds=ESu,x(x), My(x)zfzoxx(x,z)ds=—Elw,xx(x) (7
S S

whereN (x) and M, (x) stand for the resultant force and the resultant bending moment of the section of coardinate
S denotes the area of the cross-section Ard /[, z2dS is the moment of inertia.

The auxiliary problem?2;, (0 <k < ¢, see Fig. 3) expresses the of equilibrium the following forces and stresses:
Nt 4+ fh=0
{ Mﬁx +mh + fl=0 ®
The exterior loads are related to the components of residual striegshe following expressions:
() = —boy,(x, h)ey — bay,(x, h)e, 9)

—h
(c . e, (10)

Supposing that the sectian= 0 is traction free, the solution of the auxiliary problem can be defined as:
Nh(x)  12M}(x) c+h

bc—h)  ble—h3\"" 2

Using the previous formulae on the upper surfaeeh (see Fig. 3) in the system of Egs. (2) and (3) one obtains:

mly(x) = boy: (x. h)

or(x,2) = (1)

4 X X u
Gxx(x,z)=0)?}(x,z)+:/0xz(u,z)du - #/‘/(Uzz(“/vz) du’) du
0 00

00y n 00y, -0 (12)
ox 0z

00y; 00 _0

0x 9z

whereg:. is the stress supplied by the X-ray measurementsraak the residual stresses to be reconstructed.
In order to solve this system, we shall introduce the Airy function, z):

92 92 92

Oxx = —>» Oz = ———, O =—>
922 e 0x0z T 9x2

(13)



Therefore equilibrium equations in (12) are automatically satisfied and the system reduces to following ordinary
differential equation:

20 400 6

-_—— 4+ — P =0" 14
522~ Zaz T 729 =% (14)
where Z = ¢ — z. The conditions® (0, z) =0, 82 ®0,z) =0 and 22 3@ +(0,z) = 0 can be obtained by integrating the

boundary conditions for the stress field.
Eq. (14) is a second order Euler equation and the general solution has the form:

h h
m /7
07 = A7+ B2+ 77 [ D g g [ HE D g (15)
z z
VA VA

Using the boundary conditionrs , = 0 ando,, = 0 on the upper surfacg = ¢ as well ass,, = 0 on the end sections

one obtainsA(x) = B(x) = 0. A straightforward computations gives now the expression of the initial residual stresses
as a function of the measured surface stress:

rate =iz H e 6<c—>/ Tl
0

x,7')

sz(x Z)—Z(C_Z)/L

m !
Uxx,x(x, Z')

_ 2
3(c—2) (c — Z/)2

dz’ (16)

Z Z
o (x,7) o (X, 2)
ozz(x,z>=(c—z)2/%da—(c—&/Ldz’
0

7/ (C _ Z/)Z
0

A simple inspection of the formulae show that they still hold if the width of the bar depends of the spatial variable
One can remark that imposing, . = 0 conducts formally to the original Moore and Evans formulae. The resem-

blance is only formal because the conditign , = 0 on a rod of finite length implies that,, = 0. Another remark

is the apparent contradiction between the Navier—-Bernoulli rod kinematics imp@sirg0 and the final solution

whereo,, # 0. However, a close inspection shows that this is directly related to the approximation given by the rod

kinematics. In order to improve the accuracy in this respect we shall next propose to enrich the rod kinematics.

4. Reconstruction for the Vlasov rods with warping
4.1. General Vlasov rods with warping

The kinematical enrichment proposed by Vlasov’s model in [6] is based on the following form of displacement
field:

u=(u1(x) + uz(x)z + uz(x)e(2))ex + w(x)e; 17)

whereu1(x), w(x), u2(x) anduz(x) are the axial translation, the vertical deflexion, the rotation angle of the cross-
section and the warping amplitude, respectively. The funciiorepresents the warping, i.e. out of plane axial
displacement of the section.is supposed to be a known function and satisfies a serie of orthogonality conditions.
As an illustration let us recall that warping of rods with an open profile section is necessarily related to the torsion,
whereas for full or closed mean profile, warping can results also from bending and tension.

In this theory, the small strain tensor is expressed as:

exx 0 &y Ui x + U2 x2+ U3 x@ 0 %(”2 +uzp,; + w,x)
e=| 0 0 o]= 0 0 0 (18)
e, 0 O %(uz +uzp.+wy) O 0



In linear elasticity, the three dimensional stress, is obtained from Hooke’s law:

(A + 2p)&xx 0 2y,
o= 0 AExx 0 (19)
211Ey; 0 AExx

The equilibrium equations are established by use of the Principle of Virtual Work and using the orthogonality condi-
tions verified by the warping functiop:

lpls=0 and |zp|s=0 With|-|s=/-ds
S

They are expressed as:
Elsul,xx + fx =0
MSMZ,X + //st,xx + /'L|(p,z|5u3,x + fz =0
E11u2,xx — uSup — /‘Ll(p,z|Su3 - I'st,x + my = 0

E1l@®|suz,cx — mlo,zlsuz — ploZlsuz — ulo.|sw. +ry =0

(20)

1-v

with E1 = Ta B E the Young modulus andthe Poisson ratio. The external loading is given by the distributed

forces and respectively moments:
f=hxex+ fz(x)ez, my(x) = fz(x)x, ro(x,z) = fx(x)@(2) (21)

The generalized stresses are related to the displacement and the three dimensional stresses by the following equatiol

N=/axx(x,z)ds:ESu1,x
s
My=/zaxx(x,z)ds=EIu2,x
S

B= /w(z)oxx(x, 2) ds = E1]¢?|susz (22)
S

T :/sz(xaz)go,z(z)ds:H|¢,2|S(u2+w,x)+M|¢,22|Su3
S

T :/sz(x» 2)ds = uSup + ple ;| suz + wSw i
S

wherel = |z2|s andS = |1|s. N, T and M denote the axial force, the shear force and the bending moment respec-
tively, defined as in the Navier—Bernoulli rod theoB.and 7,, denote the bimoment and the second shear force,
respectively.
As for the previous section, one can write the solution of the auxiliary problem for@ga¢h < i < ¢), within the
Vlasov kinematics, given by:
h h
N+ fl(x)=0
h h
T +f. = 0
M +T"+m' =0
h ho o h_
B —T, +r, =0

(23)

This provides the stress solution of the auxiliary problem:

Ni(x) 12M§?(x)< _c+h)+Bh(x) (_c+h>
blc—h)  ble—m3\" 2 s, \CT 2

h
Oy (X,2) =



It is important to note that the warping functions are now parametrized by the height of the removel &ngbr
therefore denoted as,.
The system of Egs. (2) is therefore reduced to the differential equation for the unknown residual stress field:

6 [ [ o e
(C_Z)ZO/O/GZZ(u,z)du du + ” 2| B*(x)

X
4
oxx(x,2) =00 (x,2) + :/sz(u,z)du —

Boux | Bow: _ (24)
ax 0z

00y, 00 _0

ox 9z

As before, the expression of the stress field using an Airy potential funétianz) eliminates the equilibrium equa-
tions in (24) leading to the following expression of the bimoment:

c c 82¢
B*(x) =b/0xx(x,z/)<p(z/) dz:b/ a—zz(x,z/)fp(z/) dz’
Z z

The system (24) becomes:

22 4 a<p+ 6 @ (55°)
9z2 ¢c—z 3z  (c—2z)? lozls.

(x e (Z)d =0t (x,c—2) (25)

Using the boundary conditiorg (0, z) =0 andaq) (0, z) = 0, one finally obtains:

92 4 9o 6 ¢ 92
v:(55°) ®(x. 2 so(z)

322 c—z0z  (c—22 |€0| 922

e (x,2). (26)

Unfortunately, this integral-differential equation does not have a closed-form solution for a general form of the warping
functiong. From the practical point of view, one has to choose first the warping fungtemtepted to the rod profile
and integrate afterwards Eq. (26) symbolically or numerically.

4.2. Vlasov rod with warping and Navier—Bernoulli assumption

An interesting result is obtained for the particular case of Vlasov kinematics with wrapping combined with the
Navier—Bernoulli assumption of orthogonality of the cross-section and the mean fibre during deformation. This con-
dition is expressed asy(x) = —w . (x), and the general form of the displacement is:

u=(u1(x) — w (Dz +uz(p(2))ex +wx)e; (27)
The second shear for@ is in this case related to the shear foftéy:
2
_ I ls T

l@.2ls
The expression of generalized stresses is reduced to:

X

N(x) =b/oxz(u,h) du

O

Mx)=b //UU(M h) du’ du—b—/oxz(u h)du (28)

B(x) = |¢ |//ozz(u h) du’ du—i—bgo(hz )/sz(u,h)du




Under the kinematic assumptions of this theory, the expression of the solution of the auxiliary pedbleetomes:

X

fo(x,h):ah/oxz(u,h)du—,Bh//crzz(u/,h)du/du
0 00
where

2
4 b h—c 6 h—c\ ey Is,
h 2 h .z
o= ) B =—+b<ﬂh< )
< 2 > (C_h)z 2 |‘Ph,z|S;,

= ®
c—h lg?ls, "
The system (24) is now only reduced to:
Gxx(x,z)=0§;(x,z)+a2/0xz(u,z)du —ﬂZ//(Gzz(“/vZ)d”/) du
00

0

doxy | oy 0 (29)
dx 0z
A0y, 00y _0
ax 0z
Again introducing Airy® (x, z) stress potential we obtain the following differential equation:
3°d Gl )
92 X T =0k (30)

with the boundary conditiong (0, z) =0, 4%(0, z) = 0 and%% (0,z) = 0.
This second order partial differential equation can generally be solved in a symbolic way, provided the expression
of the functionsx® and 8¢ are explicit. This can be achieved by a particular choice of the warping fungtion

5. Conclusion

The aim of this article was to investigate the problem of reconstructing residual stress from measurements aftet
matter removal in slender bodies. The technique used was based on the superposition principle applied to the initia
domain and the domain after matter removal. For all studies rod kinematics the residual stresses were directly relate!
to the solution of an ordinary differential equation on vertical lines of the cross-sections of the rod.

An interesting point is to compare the information necessary to compute the initial residual stress field in an inner
point of the body:

— for an infinite rod (plate), without stress gradient along the surface (Moore and Evans [3]): one needs to measure
the stresses on the vertical line above the point;

— for finite rod (plate) with stress gradient along the surface (this paper): one needs to measure the stresses and the
gradient on the vertical line above the point;

— half-space without stress gradient along the surface (Ballard and Constantinescu, 1994 [2]): one needs to measul
the stresses in the all the removed volume.

This reflects on the one hand the growing complexity of the problem and on the other hand the strength of the rod
kinematics hypothesis. One should, however, remember that the rod solution is only an approximate solution, wher
compared to the fully three dimensional solution of the problem. In order to construct this solution one should dispose
of the fundamental stress solution for a rectangular body of finite extension, which is not available for the moment.
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