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Kinetic equations with Maxwell boundary conditions

S. Mischler
1

Abstract

We prove global stability results of DiPerna-Lions renormalized solutions for the initial
boundary value problem associated to some kinetic equations, from which existence results
classically follow. The (possibly nonlinear) boundary conditions are completely or partially dif-
fuse, which include the so-called Maxwell boundary conditions, and we prove that it is realized
(it is not relaxed!). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck
type models. The proofs use some trace theorems of the kind previously introduced by the
author for the Vlasov equations, new results concerning weak-weak convergence (the renor-
malized convergence and the biting L

1 weak convergence), as well as the Darrozès-Guiraud
information in a crucial way.

Équations cinétiques avec conditions aux limites de Maxwell

Résumé - Nous montrons la stabilité des solutions renormalisées au sens de DiPerna-Lions pour
des équations cinétiques avec conditions initiale et aux limites. La condition aux limites (qui peut
être non linéaire) est partiellement diffuse et est réalisée (c’est-à-dire qu’elle n’est pas relaxée!).
Les techniques que nous introduisont sont illustrées sur l’équation de Fokker-Planck-Boltzmann
et le système de Vlasov-Poisson-Fokker-Planck ainsi que pour des conditions aux limites linéaires
sur l’équation de Boltzmann et le système de Vlasov-Poisson. Les démonstrations utilisent des
théorèmes de trace du type de ceux introduits par l’auteur pour les équations de Vlasov, des
résultats d’Analyse Fonctionnelle sur les convergences faible-faible (la convergence renormalisée
et la convergence au sens du Biting Lemma), ainsi que l’information de Darroès-Guiraud d’une
manière essentielle.

Mathematics Subject Classification (2000): 76P05 Rarefied gas flows, Boltzmann equation
[See also 82B40, 82C40, 82D05].

Keywords: Vlasov-Poisson, Boltzmann and Fokker-Planck equations, Maxwell or diffuse reflec-
tion, nonlinear gas-surface reflection laws, Darrozès-Guiraud information, trace Theorems, reno-
malized convergence, Biting Lemma, Dunford-Pettis Lemma..

Contents

1 Introduction and main results 2

2 An illuminating example: the free transport equation. 6
2.1 A priori bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Biting L1-weak convergence and L1-weak compactness in the velocity variable. . . 8
2.3 The trace theorem and the stability result. . . . . . . . . . . . . . . . . . . . . . . . 11
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1 Introduction and main results

Let Ω be an open and bounded subset of RN and set O = Ω× RN . We consider a gas confined in
Ω ⊂ RN . The state of the gas is given by the distribution function f = f(t, x, v) ≥ 0 of particles,
which at time t ≥ 0 and at position x ∈ Ω, move with the velocity v ∈ RN . The evolution of f is
governed by a kinetic equation written in the domain (0,∞) × O and it is complemented with a
boundary condition that we describe now.

We assume that the boundary ∂Ω is sufficiently smooth; the regularity that we need is that
there exists a vector field n ∈ W 1,∞(Ω; RN ) such that n(x) coincides with the outward unit normal
vector at x ∈ ∂Ω. We then define Σx

± := {v ∈ RN ;± v · n(x) > 0} the sets of outgoing (Σx
+) and

incoming (Σx
−) velocities at point x ∈ ∂Ω as well as Σ = ∂Ω × RN and

Σ± = {(x, v) ∈ Σ;±n(x) · v > 0} = {(x, v); x ∈ ∂Ω, v ∈ Σx
±}.

We also denote by dσx the Lebesgue surface measure on ∂Ω and by dλk the measure on (0,∞)×Σ
defined by dλk = |n(x) · v|k dvdσxdt, k = 1 or 2.

The boundary condition takes into account how the particles are reflected by the wall and thus
takes the form of a balance between the values of the trace γf of f on the outgoing and incoming
velocities subsets of the boundary:

(γ−f)(t, x, v) = Rx(γ+f(t, x, .))(v) on (0,∞) × Σ−,(1.1)

where γ±f := 1(0,∞)×Σ±
γf . In order to describe the interaction between particles and wall

by the mean of the reflection operator R, J.-C. Maxwell [54] proposed in 1879 the following
phenomenological law by splitting the reflection operator into a local reflection operator and a
diffuse (or Maxwell) reflection operator:

R = (1 − α)L+ αD.(1.2)

Here α ∈ [0, 1] is a constant, called the accommodation coefficient. The local reflection operator L
is defined by

(Lx φ) (v) = φ(Rx v),

with Rx v = −v (inverse reflection) or Rx v = v− 2 (v ·n(x))n(x) (specular reflection). The diffuse
reflection operator D = (Dx)x∈∂Ω according to the Maxwellian profile M with temperature (of the
wall) Θ > 0 is defined at the boundary point x ∈ ∂Ω for any measurable function φ on Σx

+ by

(Dx φ)(v) = M(v) φ̃(x),

where the normalized Maxwellian M is

M(v) = (2 π)
1−N

2 Θ−N+1

2 e−
|v|2

2Θ ,(1.3)
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and the out-coming flux of mass of particles φ̃(x) is

φ̃(x) =

∫

v′·n(x)>0

φ(v′) v′ · n(x) dv′ =

∫

Σx
+

φ

M
dµx.(1.4)

It is worth mentioning that dµx(v) := M(v) |n(x) · v| dv is a probability measure because of the
normalization condition (1.3). Moreover, there holds for any measurable function φ on Σx

+

∫

Σx
−

Rxφ |n(x) · v| dv =

∫

Σx
−

Lxφ |n(x) · v| dv =

∫

Σx
−

Dxφ |n(x) · v| dv =

∫

Σx
+

φn(x) · v dv,(1.5)

which means that all the particles which reach the boundary are reflected (no particle goes out of
the domain nor enters in the domain).

The reflexion law (1.2) was the only model for the gas/surface interaction that appeared in
the literature before the late 1960s. In order to describe with more accuracy the interaction
between molecules and wall, other models have been proposed in [26], [27], [51] where the reflexion
operator R is a general integral operator satisfying the so-called non-negativity, normalization and
reciprocity conditions, see [30] and Remark 6.4. We do not know if our analysis can be adapted to
such a general kerenel. However, the boundary condition can be generalized in an other direction,
see [31], [12], and we will sometimes assume that the following non linear boundary condition holds

Rφ = (1 − α̃)Lφ+ α̃D φ, α̃ = α(φ̃),(1.6)

where α : R+ → R+ is a continuous function which satisfies 0 < ᾱ ≤ α(s) ≤ 1 for any s ∈ R+.

In the domain, the evolution of f is governed by a kinetic equation

∂f

∂t
+ v · ∇xf = I(f) in (0,∞) ×O,(1.7)

where I(f) models the interactions of particles each one with each other and with the environment:
typically, it may be a combination of the quadratic Boltzmann collision operator (describing the
collision interactions of particles by binary elastic shocks), the Vlasov-Poisson operator (describing
the fact that particles interact by the way of the two-body long range Coulomb force) or the
Fokker-Planck operator (which takes into account the fact that particles are submitted to an heat
bath). More precisely, for the nonlinear boundary condition (1.6) we are able to deal with Fokker-
Planck type equations, in particular the Fokker-Planck-Boltzmann equation (FPB in short) and
the Vlasov-Poisson-Fokker-Planck system (VPFP in short), while for a constant accommodation
coefficient we are able to deal with Vlasov type equations such as the Boltzmann equation and the
Vlasov-Poisson system (VP in short). We refer to section 6 where these models are presented. It
is worth mentioning that we are not able to deal with the Vlasov-Maxwell system.

Finally, we complement these equations with a given initial condition

f(0, .) = fin ≥ 0 on O,(1.8)

which satisfies the natural physical bound of finite mass, energy and entropy
∫ ∫

O

fin (1 + |v|2 + | log fin|) dxdv =: C0 <∞.(1.9)

We begin with a general existence result that we state deliberately in an imprecise way and we
refer to section 6 (and Theorem 6.2) for a more precise statement.

Theorem 1.1 Let consider the initial boundary value problem (1.1)-(1.7)-(1.8) associated to the
FPB equation or the VPFP system with possibly mass flux depending constant accommodation
coefficient (1.6) or the boundary value problem associated to the Boltzmann equation or the VP
system with constant accommodation coefficient (1.2). For any nonnegative initial datum fin with
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finite mass, energy and entropy ((1.9) holds) there exists at least one (renomalized) solution f ∈
C([0,∞);L1(O)) with finite mass, energy and entropy to the kinetic equation (1.7) associated to
the initial datum fin and such that the trace function γf exactly fulfills the boundary condition
(1.1) (it is not relaxed!).

The Boltzmann equation and the FPB equation for initial data satisfying the natural bound
(1.9) was first studied by R. DiPerna and P.-L. Lions [35, 37, 38] who proved stability and existence
results for renomalized global solutions in the case of the entire space (Ω = RN ). Afterwards, the
corresponding boundary value problem with reflection boundary conditions (1.1) and constant
accommodation coefficient has been extensively studied in the case of the Boltzmann model [47],
[4], [5], [6], [7], [28], [43], [48], [29], [56]. It has been proved, in the partial absorption case
γ−f = θRγ

+
f with θ ∈ [0, 1) and in the completely local reflection case (i.e. (1.1) holds with

α ≡ 0), that there exists a global renormalized solution. But in the most interesting physical case
(when θ ≡ 1 and α ∈ (0, 1]), it has only been proved in [6] that the boundary condition (1.1) holds
in the relaxed form

γ−f ≥ R(γ+f) on (0,∞) × Σ−(1.10)

instead of (1.1). Also, the Boltzmann equation with nonlinear boundary conditions has been
treated in the setting of a strong but non global solution framework in [44].

With regard to existence results for the initial value problem for the VPFP system set in the
whole space, we refer to [14], [15], [16], [19], [22], [23], [34], [59], [66], [24], [61] as well as [20] for
physical motivations. The initial boundary value problem has been addressed in [13], [21]. We
also refer to [3], [11], [46], [58], [68] for the initial boundary value problem for the VP system
and to [58] for the corresponding stationary problem. We emphasize that in all these works only
local reflection or prescribed incoming data are treated, and to our knowledge, there is no result
concerning the diffuse boundary condition for the VP system or for the VPFP system.

We also mention that there is a great deal of information for the boundary value problem in
an abstract setting in [67], [45] with possibly non linear boundary conditions [10], [57].

In short, the present work improves the already known existence results for kinetic equations
with diffusive boundary reflection into two directions.

• On the one hand, we prove that (1.1) is fulfilled, while only its relaxed form (1.10) was
previously established.

• On the other hand, we are able to consider a large class of kinetic models (including Vlasov-
Poisson term) while only Boltzmann equation (or linear equations) had been previously tackled.

• Finally, we are able to handle some nonlinear boundary condition in the case of Fokker-Planck
type equation.

We do not present the proof of Theorem 1.1 (nor the proof of its accurate version Theorem 6.2)
because it classically follows from a sequential stability or sequential compactness result that we
present below and a standard (but tedious) approximation procedure, see for instance [56] or the
above quoted references. We deliberately state again the sequential stability result in an imprecise
way, referring to section 6 for a more accurate version.

Theorem 1.2 Let consider the initial boundary value problem (1.1)-(1.7)-(1.8) associated to the
FPB equation or the VPFP system with possibly mass flux depending constant accommodation
coefficient (1.6) or the boundary value problem associated to the Boltzmann equation or the VP
system with constant accommodation coefficient (1.2). Let then (fn) be a sequence of (renormalized)
solutions to that equations and let assume that (fn) and the trace sequence (γfn) satisfy the natural
physical a priori bounds (to be specified for each model). If fn(0, .) converges to fin weakly in L1(O)
then, up to the extraction of a subsequence, fn converges (at least) weakly in L1([0, T ] × O) for
all T ∈ (0,∞) to a (renormalized) solution f to the kinetic equation (1.7) with initial value fin.
Furthermore, for any ε > 0 and T > 0 there exists a measurable set A ⊂ (0, T ) × ∂Ω such that
meas ((0, T )× ∂Ω \A) < ε and

γ
+
fn ⇀ γ

+
f weakly in L1(A× RN , dλ1),(1.11)
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the convergence being strong in the case of the Fokker-Planck type equations. As a consequence we
can pass to the limit in the reflection boundary condition (1.1)-(1.2) (and (1.1)-(1.6) in the case
of the Fokker-Planck type equations), so that the reflection boundary condition (1.1) is fulfilled.

Let us briefly explain the main steps and difficulties in the proof of the stability result.

• The first step consists in collecting the physical estimates available on the solution f to the
equation (1.1)-(1.7)-(1.8) and on its trace γf . In the interior of the domain the a priori bounds
satisfied by f strongly depend on the model considered but they are the same than those available
in the case of the entire space. In general, for the trace, we are only able to prove that

∀T
∫ T

0

∫

∂Ω

E
(γ+f

M

)
dσxdt ≤ CT ,(1.12)

with CT only depending on C0 and T , where the functional E = Ex is the Darrozès-Guiraud
information defined by

E
(
φ
)

:=

∫

Σx
+

h(φ) dµx − h

(∫

Σx
+

φdµx

)
, h(s) = s log s,(1.13)

and where we recall that dµx(v) := M(v) |n(x) · v| dv is a probability measure on Σx
+ so that

E(φ) ≥ 0 thanks to the Jensen inequality. Let us emphasize that additionally to the a priori bound
of the Darozès-Guiraud information (1.12), we can prove an L1 a priori bound in the case of the
Boltzmann equation (and the FPB equation) and only an L1/2 a priori (but also a posteriori)
bound in the case of the VP system (and the FPVP system): in both cases, we do not have any a
priori information on the trace which guaranties uniform local equi-integrability on the trace of a
sequence of solutions. The main difficulty is thus the lack of a good a priori bound on the trace.

• The next step consists of specify the sense of the equations. The physical a priori estimates
on f make possible to give a sense to (1.7) in a renormalized sense as introduced by DiPerna and
Lions. Then, what sense gives to the trace γf of f? That so-called trace problem has been studied
in [9], [32], [2], [64], [45], [18] for the Vlasov equation with a Lipschitz force field and extended
to the Vlasov-Fokker-Planck equation in [21]. In the case of the VP and the VPFP systems,
the a priori estimate on the force field does not guarantee Lipschitz regularity but only Sobolev
regularity. A trace theory has been developed in [55, 56] for the (possibly renormalized) solutions
of the Vlasov equation with a force field in Sobolev space that we extend here to the solutions of
the Vlasov-Fokker-Planck equation. The trace of a solution is here defined by a Green formula
written on the renormalized equation.

• In a last step, we have to pass to the limit in a sequence of solutions which satisfy the ”natural
physic bounds”. For the equation satisfied by f in the interior of the domain, the proofs have been
done yet by DiPerna-Lions [34, 35, 37] and Lions [52], and nothing has to be changed. The main
difficulty solved here is to handle with the boundary condition. Let us emphasize that using only
the L1 boundedness information (as it is available for the Boltzmann equation for instance) on a
sequence of the trace of solutions to a kinetic equation satisfying the boundary condition (1.1) it
is only possible to prove the relaxed boundary condition (1.10), see [6, 43].

• In this paper, we prove some L1-weak (L1-strong in the case of FP models) convergence in
the velocity variable for the sequence (γ+fn) (as stated in Theorem 1.2) which is strong enough
to conclude. Our proof is based on the use of notions of weak-weak convergences, namely the
renormalized convergence (r-convergence) and the biting L1-weak convergence (b-convergence).
We say weak-weak convergences in order to express the fact that they are extremely weak sense
of convergence: weaker, for instance, to the L1-weak convergence and to the a.e. convergence.
On the one hand, thanks to the trace theory, we prove that the sequence of trace functions (γfn)
r-converges to γf (as well as a.e. for FP models). Next, thanks to some additional L1 a priori
bounds, or because the r-convergence is almost equivalent to the b-convergence when the limit
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function belongs to L0, we deduce that γ̃+fn b-converges to γ̃+f . Finally, that information and
the boundedness of the Darrozès-Guiraud information leads to (1.11).

Let us now briefly outline the contents of the paper. In section 2, we consider the free transport
equation for which we apply the above strategy. We present for this very simple case the differents
tools (renomalized and biting L1-weak covergence, trace theory and Darrozès-Guiraud informa-
tion), we state a first velocity L1-weak compactness result and then we prove the corresponding
version of the stability Theorem 1.2. In Section 3, we develop the notion of renormalized conver-
gence in a more general framework and we prove some more accurate version of biting L1-weak
covergence and velocity L1-weak compactness. In Section 4, we present the trace theory for the
Vlasov-Fokker-Planck equation with Sobolev regularity on the force field. In Section 5, puting
together the results from Section 3 and Section 4, we establish the renormalized and the almost
everywhere convergence of trace functions sequences. In Section 6 we present the models and
we establish the main stablity (up to the boundary) results. Finally, in the appendix, we come
back to the notion of renormalized convergence for which we give several relevant examples and
counterexamples.

2 An illuminating example: the free transport equation.

In this section we assume that f is governed by the free transport equation

∂f

∂t
+ v · ∇xf = 0 in (0,∞) ×O,(2.1)

complemented with the initial condition (1.8) and the boundary reflection condition (1.1) with
constant restitution coefficient α ∈ (0, 1]. Our aim is to adapt the DiPerna-Lions stability theory
to that simple boundary value problem. We follow the strategy expounded in the introduction.
We first collect the a priori bounds satisfied by a solution to the boundary value problem (2.1)-
(1.1)-(1.8) with initial datum satisfying (1.9). We next present some general functional analysis
tools which roughly speaking makes possible to deduce L1 weak convergence in the v variable from
L1 boundedness and Darrozès-Guiraux information boundedness. We finally state and prove the
stability result associated to the boundary value problem (2.1)-(1.1)-(1.8).

Remark 2.1 It is worth mentioning that the proof of the corresponding stability result for the
Boltzmann equation is essentially the same as for the free transport equation. We refer to section 6
where that model is handled. However, the reader who is only interested by the Boltzmann model
may easily adapt the proof below with the arguments introduced in [55] (it will be more elementary
than the proof presented in Section 3 to Section 6 which is made in order to also deal with a
Vlasov-Poisson term and/or with a Fokker-Planck term).

2.1 A priori bounds.

Lemma 2.2 For any nonnegative initial datum fin such that (1.9) holds and any time T ∈ (0,∞)
there exists a constant CT (only depending on C0 and T ) such that any solution f to the initial
boundary value problem (2.1)-(1.1)-(1.8) satisfies (at least formally)

sup
[0,T ]

∫ ∫

O

f (1 + |v|2 + | log f |) dxdv + α

∫ T

0

∫

∂Ω

E
(
γ+f

M

)
dσxdt ≤ CT ,(2.2)

where E is defined in (1.13), and

α

∫ T

0

∫ ∫

Σ

γf (1 + |v|2) |n(x) · v| dvdσxdt ≤ CT .(2.3)
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Proof of Lemma 2.2. We consider a solution f of (1.1)-(2.1)-(1.8), which is sufficiently regular
and decreasing at the infinity in such a way that all integrations (by parts) that we shall perform
are allowed.
Step 1. Mass conservation. Integrating the free transport equation (2.1) over x, v, using the
Green formula and the fact that the mass flux on the boundary vanishes thanks to (1.5), we
straightforwardly obtain that mass is conserved

∀ t ≥ 0

∫ ∫

O

f(t, .) dvdx =

∫ ∫

O

fin dvdx.

Step 2. Relative entropy. Multiplying the free transport equation (2.1) by h′(f/M), with
h(s) = s log s, and integrating it over x, v, we have

d

dt

∫ ∫

O

h(f/M)M dvdx =

∫ ∫

Σ

h(γf/M)M v · n(x) dvdσx.(2.4)

The Darrozès-Guiraud inequality states that the entropy boundary flux at the right hand side
of equation (2.4) is nonnegative. That is a straightforward consequence of the Jensen inequality
taking advantage that dµx(v) = M |v ·n(x)| dv is a probability measure. We present now the proof
of an accurate version of the Darrozès-Guiraud inequality which make precise how much that term
is nonnegative. From the boundary reflection condition (1.1), the convexity of h and the expression
(1.2) of the reflection operator, we have

∫

RN

h(γf/M) dµx(v) =

∫

Σ+
x

h(γ+ f/M) dµx(v) −
∫

Σ−
x

h(Rγ+f/M) dµx(v)(2.5)

≥ α

{∫

Σ+
x

h(γ+ f/M) dµx(v) −
∫

Σ−
x

h(Dγ+f/M) dµx(v)

}

+(1 − α)

{∫

Σ+
x

h(γ+ f/M) dµx(v) −
∫

Σ−
x

h(Lγ+f/M) dµx(v)

}

≥ α

{∫

Σ+
x

h(γ+ f/M) dµx(v) − h(γ̃
+
f)

}
= α Ex(

γ+f

M
),

where we have performed the change of variables Lx : v 7→ Rxv in the second term with jacLx = 1,
so that this term vanishes, and where the Darrozès-Guirraud information functional Ex is defined
in (1.13), see also (1.4). Gathering (2.4) and (2.5), we get

d

dt

∫∫

O

h(f/M)M dvdx + α

∫

∂Ω

Ex(γ+ f) dσx ≤ 0.

Finally, using the elementary estimates, that one can find in [53] for instance,

∫

RN

f
( |v|2
4 Θ

+ | log f |
)
dv ≤ CM +

∫

RN

h(f/M)M dv,(2.6)

and ∫

RN

h(fin/M)M dv ≤
∫

RN

fin

( |v|2
4 Θ

+ | log fin|
)
dv + CM ,(2.7)

we obtain that (2.2) holds.

Step 3. Additional L1 estimates. For the sake of completeness we sketch the proof of the L1

a priori bound (2.3) yet established in [6, 56]. We multiply the free transport equation (2.1) by
n(x) · v and we integrate it over all the variables, to get

∫ T

0

∫∫

Σ

γf (n(x) · v)2 dvdσxdt =

[∫∫

O

f n(x) · v dvdx
]0

T

+

∫ T

0

∫∫

O

f v · ∇xn(x)v dvdxdt,
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so that, thanks to (2.2) and because n ∈W 1,∞(Ω),

∫ T

0

∫∫

Σ

γf (n(x) · v)2 dvdσxdt ≤ CT .(2.8)

We then remark that there exists C1 = C1(Θ) ∈ (0,∞) such that

γ̃
+
f = C1

∫

Σx
−

M(v) γ̃
+
f (n(x) · v)2 dv = C1

∫

Σx
−

γ−f (n(x) · v)2 dv,(2.9)

and there exists C2 = C2(Θ) ∈ (0,∞) such that

∫

Σx
−

γ−f (1 + |v|)2 |n(x) · v| dv =

∫

Σx
−

M(v) γ̃
+
f (1 + |v|2) |n(x) · v| dv ≤ C2 γ̃+f.(2.10)

Finally, we come back to the equation (2.1) that we multiply by |v|2 and that we integrate in all
variables. We obtain

∫∫

O

f(T, .) |v|2 dvdx + α

∫ T

0

∫∫

Σ+

γ
+
f |v|2 n(x) · v dvdσxdt(2.11)

=

∫∫

O

fin |v|2 dvdx + α

∫ T

0

∫∫

Σ−

γ−f |v|2 |n(x) · v| dvdσxdt.

Estimate (2.3) follows gathering (2.9), (2.8) and (2.10), (2.11). ⊓⊔

2.2 Biting L
1-weak convergence and L

1-weak compactness in the velocity

variable.

In this section we present some functional analysis results which make possible to gain L1-weak
convergence in the v variable from L1 boundedness and boundedness of the Darrozès-Guiraud
information. For that purpose, we introduce a first notion of weak-weak convergence, namely the
biting L1-weak convergence. It seems to have been introduced by Kadec and Pelzyński [50] and
rediscovered and developed in a L1 and bounded measure framework by Chacon and Rosenthal
in the end of the 1970’s, see [41], [17]. Let us first recall the definition of the biting L1-weak
convergence that we extend to a ”L framework”.

In the sequel Y stands for a closed and σ-compact topological space, i.e. Y = ∪kYk where
(Yk) is an increasing sequence of compact sets, that we provide with its σ-ring of Borel sets and
with ν a locally finite Borel measure. We denote by L(Y ) the space of all measurable functions
φ : Y → R̄ and by L0(Y ) the subset of all measurable and almost everywhere finite functions. In
order to simplify the presentation, we will be only concerned with nonnegative functions of L and
L0. Thus, in this section, we also denote by L and L0 the cone of nonnegative functions in these
spaces, and we do not specify it anymore.

Definition 2.3 We say that a sequence (ψn) of L(Y ) converges in the biting L1-weak sense to

ψ ∈ L(Y ), in brief (ψn) b-converges to ψ, and we write ψn
b
⇀ψ, if for every k ∈ N we can find

Ak ⊂ Yk in such a way that (Ak) is increasing, ν(Yk\Ak) < 1/k, ψn ∈ L1(Ak) for all n large
enough and ψn ⇀ ψ weakly in L1(Ak). In particular, that implies ψ ∈ L0(Y ).

The fundamental result concerning the biting L1-weak convergence is the so-called Biting
Lemma that we recall now. We refer to [25], [8], [17], [41] and [50] for a proof of this Lemma.
We also refer to [1] and [33] for other developments related to the biting L1-weak convergence.
Extension of this theory to multi-valued functions has been done by Balder, Castaing, Valadier
and others; we refer to [60] for precise references.
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Theorem 2.4 (Biting Lemma). Let (ψn) be a bounded sequence of L1(Y ). There exists ψ ∈
L1(Y ) and a subsequence (ψn′) such that (ψn′) b-converges to ψ and ‖ψ‖L1 ≤ lim inf ‖ψn′‖L1 .

Our first result is a kind of intermediate result between the Biting Lemma and the Dunford-
Pettis Lemma. More precisely, we prove a L1-weak compactness in the v variable for sequences (φn)
which are bounded in L1 and such that the associated Darrozès-Guiraud information is uniformly
(in n) bounded. It is based on the Biting Lemma, the Dunford-Pettis Lemma and a convexity
argument.

Theorem 2.5 Let consider j : R+ → R a convex function of class C2(0,∞) such that j(s)/s →
+∞ when s ր +∞ and such that the application J from (R+)2 to R defined by J(s, t) = (j(t) −
j(s)) (t − s) is convex, ω a non negative function of RN such that ω(v) → ∞ when |v| → ∞ and,
for any y ∈ Y , a probability measure µy on RN . Assume that (φn) is a sequence of non negative
measurable functions on Y × RN such that

∫

Y

∫

RN

[
φn(y, v) (1 + ω(v)) + E(φn(y, .))

]
dµy(v) dν(y) ≤ C1 <∞,(2.12)

where E = Ej,y is the non negative Jensen information functional defined by

E(φ) =

∫

RN

j(φ) dµy − j
(∫

RN

φdµy

)
if 0 ≤ φ ∈ L1(RN , dµy).

Then, there exists φ ∈ L1(Y ×RN ) and a subsequence (φn′) such that for every k ∈ N we can find
Ak ⊂ Yk in such a way that (Ak) is increasing, ν(Yk\Ak) < 1/k and

φn′ ⇀ φ weakly in L1(Ak × RN ; dν dµ).

Furthermore, E is a convex and weakly L1 l.s.c. functional, and thus

∫

Y

∫

RN

[
φ(y, v) (1 + ω(v)) + E(φ(y, .))

]
dµy(v) dν(y) ≤ C1.(2.13)

Proof of Theorem 2.5. From bound (2.12) and the Biting Lemma we know that there exists a
subsequence n′ such that for every k ∈ N we can find a Borel set A = Ak ⊂ Yk with ν(Yk\A) < 1/k
such that ∫

RN

φn′ dµy(v) weakly converges in L1(A).(2.14)

Thanks to the Dunford Pettis Lemma and (2.14) there is a convex function Φ = Φk such that
Φ(s)/s→ ∞ when s→ ∞ and

∫

A

Φ
(∫

RN

φn′ dµy(v)
)
dν(y) ≤ C2 = C2(k) <∞.

Furthermore, we can assume that Φ(0) = 0, Φ′ = am in [m,m+1] with j′(s0) ≤ am ր +∞, where
s0 ∈ N⋆ is such that j(s0) ≥ 0 and j′(s0) ≥ 0.

Then we define Ψ = Ψk by Ψ(s) = j(s) for s ∈ [0, s0] and by induction on m ∈ N, we consider
tm such that j′(tm) = am −Ψ′(sm) + j′(sm) and we set sm+1 = [tm] + 1, Ψ′′ := j′′ on [sm, tm] and
Ψ′′ := 0 on [tm, sm+1] so that tm ≥ sm ≥ m and Ψ′(sm+1) ≥ am ≥ Ψ′(sm). Therefore, we have
built a convex function Ψ such that the function s 7→ j(s) − Ψ(s) is convex, Ψ(s)/s ր ∞ since
Ψ′(s) ր ∞, and Ψ ≤ Φ since Ψ′ ≤ Φ′, so that

∫

A

Ψ
(∫

RN

φn′ dµ
)
dν ≤ C2.(2.15)
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The Jensen inequality, written for the function s 7→ j(s) − Ψ(s), gives

∫

RN

Ψ(φn′) dµ− Ψ
(∫

RN

φn′ dµ
)
≤ E(φn′),

and combining it with (2.12) and (2.15) we get

∫∫

A×RN

Ψ(φn′) dµ dν ≤ C1 + C2,

and thus
∫∫

A×RN

Ψ+(φn′ ) dµy dν ≤ C1 + C2 +

∫∫

A×RN

Ψ−(φn′ ) dµy dν(2.16)

≤ C3(k) := C1 + C2 + ν(A) sup j− <∞.

Thanks to estimates (2.12), (2.16) and the Dunford-Pettis Lemma we get that (φn′) falls in a
relatively weakly compact set of L1(Ak ×RN ) for any k ∈ N. We conclude, by a diagonal process,
that there is a function φ ∈ L1(Y × RN) and a subsequence (φn′′ ) which converges to φ in the
sense stated in Theorem 2.5.

In order to prove that E is a convex functional, we begin by assuming that j ∈ C1(R+,R), so
that E is Gâteaux differentiable. By definition of the G-differential

∇E(φ) · ψ := lim
t→0

E(φ + t ψ) − E(φ)

t

=

∫

RN

j′(φ)ψ dµ− j′
(∫

RN

φdµ
) ∫

RN

ψ dµ,

for any 0 ≤ φ, ψ ∈ L∞(RN ). Therefore, by the Jensen inequality, we have

〈∇E(ψ) −∇E(φ), ψ − φ 〉 =

∫

RN

J(φ, ψ) dµ− J
(∫

RN

φdµ,

∫

RN

ψ dµ
)
≥ 0,

so that ∇E is monotone and thus E is convex on L∞(RN ): for any 0 ≤ φ, ψ ∈ L∞(RN ) and any
t ∈ (0, 1)

E(φ + (1 − t)ψ) ≤ t E(φ) + (1 − t) E(ψ).(2.17)

When j /∈ C1(R+,R) we define, for any ε > 0, the function jε(s) = j(s + ε) − j(ε) which belongs
to C1(R+,R), and the above computations for the associated functional Eε are correct, so that
inequality (2.17) holds for E replaced by Eε. Then, writing inequality (2.17) for Eε and fixed 0 ≤
φ, ψ ∈ L∞(RN ), t ∈ (0, 1) and passing to the limit ε→ 0 we obtain that E is convex on L∞(RN ).
Now let 0 ≤ φ, ψ ∈ L1(RN ), t ∈ (0, 1). If j(φ) or j(ψ) /∈ L1(RN ) then t E(φ) + (1 − t) E(ψ) = +∞
and the convex inequality (2.17) obviously holds. In the other case, we have j(φ), j(ψ) ∈ L1(RN ),
we can choose two sequences 0 ≤ (φn), (ψn) of L∞(RN ) such that φn ր φ and ψn ր ψ a.e..
Passing to the limit ε → 0 in the convex inequality (2.17) written for φε and ψε we get, by the
Lebesgue convergence dominated Theorem and the Fatou Lemma,

∫

RN

j(t φ+ (1 − t)ψ) ≤ lim inf
ε→0

∫

RN

j(t φε + (1 − t)ψε)

≤ t E(φ) + (1 − t) E(ψ) + j
(∫

RN

t φ+ (1 − t)ψ
)
,

which exactly means that E is a convex functional in L1(RN ). Finally, if 0 ≤ φ, ψ ∈ L1(Y × RN )
and t ∈ (0, 1), then φ(y, .), ψ(y, .) ∈ L1(RN ) for almost every y ∈ Y and, integrating the convex
inequality (2.17), we obtain that the functional

0 ≤ φ ∈ L1(Y × RN ) 7→ F(φ) =

∫

Y

E(φ) dν
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is convex. Furthermore, by Fatou Lemma, F is l.s.c. for the strong convergence in L1, for the
weak σ(L1, L∞) convergence and for the biting L1-weak convergence, so that (2.13) holds. ⊓⊔

We introduce a second kind of weak-weak convergence, namely the renormalized convergence,
which is the very natural notion of convergence when we deal with sequences of trace functions, as
we will see below. We now present the definition (in a simplified case) and a first elementary result
that we will use in the next subsection. More about the renormalized convergence is presented in
section 3.

Definition 2.6 Let define the sequence (TM ) by setting TM (s) := s∧M = min(s,M) ∀ s, M ≥ 0.
We say that a sequence (φn) of L(Y ) converges in the renormalized sense (or r-converges) if there
exists a sequence (T̄M ) of L∞(Y ) such that

TM (φn) ⇀ T̄M σ(L∞(Y ), L1(Y )) ⋆ and T̄M ր φ a.e. in Y.

Lemma 2.7 For any sequence (φn) of L(Y ) and φ ∈ L0(Y ) such that φn
b
⇀φ in the biting L1-weak

sense there exists a subsequence (φn′) such that φn′
r
⇀φ in the renormalized sense.

Proof of Lemma 2.7. We follow the proof of [8] where that result is established in a L1 framework.
By assumption, for any k ∈ N, there exists a Borel set Ak such that ν (Yk\Ak) < 1/k and φn ⇀ φ
weakly in L1(Ak). Thanks to Dunford-Pettis Lemma, there is a function δk : R+ → R+ such that
δk(M) → 0 when M → +∞ and

∫

Ak

φn 1{φn≥M} dy ≤ δk(M) ∀n,M, k ∈ N∗.(2.18)

Moreover, there exists a subsequence (φn′) of (φn) and a sequence (T̄M ) of L∞(Y ) such that for
any M ∈ N there holds

TM (φn′ ) ⇀ T̄M σ(L∞(Y ), L1(Y )).

We obviously have that (T̄M ) is an increasing sequence in L∞(Y ) and T̄M ≤ φ a.e. because that
is true on any Ak. Observe that

0 ≤ φn − TM (φn) ≤ (φn −M)1φn≥M a.e. in Y.(2.19)

Gathering (2.18) and (2.19) we get
∫

Ak

|φ− T̄M | dν = lim
n′→∞

∫

Ak

(φn′ − T̄M (φn′ )) [sign(φ− T̄M )] dν

≤ lim inf
n′→∞

∫

Ak

φn′ 1{φn′≥M} dy ≤ δk(M).

That proves T̄M → φ a.e. in Y when M → ∞, and then φn′
r
⇀φ. ⊓⊔

2.3 The trace theorem and the stability result.

Let us recall the following trace theorem which makes precise the sense of the trace of a solution.

Theorem 2.8 [56] Let g ∈ L∞(0, T ;L1(O)) satisfy

Λ g := ∂tg + v · ∇xg = 0 in D′((0, T )×O).

There exists γg ∈ L1
loc((0, T ) × Σ; dλ2 dt) and g0 ∈ L1(O) which satisfy the renormalized Green

formula
∫ T

0

∫∫

O

β(g) Λφdvdxdt =

∫ T

0

∫∫

Σ

β(γ g)φ n(x) · v dvdσxdt−
∫∫

O

β(g0)φdxdv,(2.20)

for all β ∈W 1,∞(R) and all test functions φ ∈ D([0, T )×Ō), as well as for all β ∈ W 1,∞
loc (R), with

β′ ∈ L∞(R), and all test functions φ ∈ D([0, T ) × Ō) such that φ = 0 on [0, T )× Σ0 .
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We may then state our first main result.

Theorem 2.9 Let fn ∈ L∞(0,∞;L1(O)) be a sequence of solutions to the initial boundary value
problem (2.1)-(1.1)-(1.8) such that both (fn) and the trace sequence (γfn) satisfy the associated
natural a priori bounds: for any T > 0 there is a constant CT

sup
[0,T ]

∫ ∫

O

fn

(
1 + |v|2 + | log fn|

)
dvdx ≤ CT(2.21)

and ∫ T

0

∫ ∫

Σ

γfn (1 + |v|2) |n(x) · v| dvdσxdt+
∫ T

0

∫

∂Ω

E(γ+fn) dσxdt ≤ α−1 CT .(2.22)

On the one hand, there exists f ∈ L∞(0,∞;L1(O)) satisfying (2.2) and fin ∈ L1(O) satisfying
(1.9) such that, up to the extraction of subsequences,

fn ⇀ f σ(L1, L∞), fn(0, .) ⇀ fin σ(L1, L∞),(2.23)

and f is a solution to the free transport equation (2.1)-(1.8) with initial datum fin.
On the other hand, there exists η± ∈ L1(0, T )×Σ±, dλ1) for all T ∈ (0,∞), which furthermore

satisfies (2.2)-(2.3) (with γ±f replaced by η±), such that, up to the extraction of a subsequence, for
any T, ε > 0 there exists a measurable set A ⊂ (0, T ) × ∂Ω such that meas ((0, T ) × ∂Ω \A) < ε
and

γ±fn ⇀ η± weakly in L1(A× RN , dλ1).(2.24)

As a consequence, γ±f = η± and the reflection boundary condition (1.1) holds.

Proof of Theorem 2.9. First, from (2.21) and the Dunford-Pettis lemma we deduce (2.23). Then,

thanks to Lemma 2.7, extracting again a subsequence if necessary, we deduce that fn
r
⇀f or more

precisely, there exists two sequences (T̄M ) and (T̄ 0
M ) such that

TM (fn) ⇀ T̄M σ(L∞, L1) ⋆ and T̄M ր f a.e.,(2.25)

TM (fn(0, .)) ⇀ T̄ 0
M σ(L∞, L1) ⋆ and T̄ 0

M ր fin a.e..(2.26)

Next, from (2.22) and theorem 2.5 (with φn = γ+fn/M , j(s) = s log s, ω(v) = |v|2, dν(y) = dσxdt,
dµy(v) = |n(x) · v|M(v) dv) we deduce that (2.24) holds. Then, thanks to Lemma 2.7 again,

extacting a subsequence if necessary, we deduce that γfn
r
⇀η or more precisely, there exists a

sequence (γ̄M ) such that

TM (γfn) ⇀ γ̄M σ(L∞, L1) ⋆ and γ̄M ր η a.e..(2.27)

One the one hand, starting from the Green renomalized formula (2.20) for the free transport
equation
∫ T

0

∫∫

O

TM (fn) Λϕdvdxdt =

∫ T

0

∫∫

Σ

TM (γ fn)ϕ n(x) · v dvdσxdt−
∫∫

O

TM (fn(0, .))ϕdxdv,

for any ϕ ∈ D([0, T )×Ō), and passing twice two the limit, first when n→ ∞, next when M → ∞,
we get ∫ T

0

∫∫

O

f Λϕdvdxdt =

∫ T

0

∫∫

Σ

η ϕ n(x) · v dvdσxdt−
∫∫

O

fin ϕdxdv.

In other words, f is a solution to the free transport equation and the trace Theorem 2.8 implies
that η = γf . On the other hand, thanks to (2.24), we may clearly pass to the limit n→ ∞ in the
L1-weak sense in the boundary equation

γ−fn = R(γ+fn) on A× RN ,

for any set A given by (2.24), and we get η− = R(η+). We conclude that the boundary condition
(1.1) is well fulfilled. ⊓⊔
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3 On the convergence in the renormalized sense.

3.1 Basic properties.

We present the main basic properties concerning the notion of convergence in the renormalized
sense. More about renormalized convergence is set out in the appendix section. In that section the
frameworks and notations are the same as those of subsection 2.2, and again, we only deal with
nonnegative functions of L = L(Y ), but we do not specify it anymore.

Definition 3.1 We say that α is a renormalizing function if α ∈ Cb(R) is increasing and 0 ≤
α(s) ≤ s for any s ≥ 0. We say that (αM ) is a renormalizing sequence if αM is a renormalizing
function for any M ∈ N and αM (s) ր s for all s ≥ 0 when M ր ∞. Given any renormalizing
sequence (αM ), we say that (φn) (αM )-renormalized converges to φ (or we just say that (φn)
r-converges to φ) if there exists a sequence (ᾱM ) of L∞(Y ) such that

αM (φn) ⇀ ᾱM σ(L∞(Y ), L1(Y )) ⋆ and ᾱM ր φ a.e. in Y.

Notice that the renormalized convergence as defined in definition 2.6 is nothing but the (TM )-
renormalized convergence.

Proposition 3.2 1. The (αM )-renormalized limit in the definition 3.1 does not depend on the
renormalizing sequence (αM ), but only on the sequence (φn). In other words, given two renormal-
izing sequences (αM ) and (βM ), if (φn) (αM )-renormalized converges to φα and (βM )-renormalized
converges to φβ then φα = φβ .

2. For any sequence (φn) of L there exists a subsequence (φn′) of (φn) and a function φ ∈ L
such that (φn′) (αM )-renormalized converges to φ for any renormalizing sequence (αM ).

3. A sequence (φn) which converges to φ a.e. or strongly in Lp, p ∈ [1,∞], also r-converges to
φ. From a sequence (φn) which converges to φ weakly in Lp, p ∈ [1,∞], or in the biting L1-weak
sense, we may extract a subsequence (φn′ ) which r-converges to φ.

Remark 3.3 1. The definition of the (αM )-renormalized convergence with αM 6= TM is important
in order to obtain the renormalized convergence of the trace functions sequence in Theorem 5.2.
Indeed, TM is not smooth enough in order to be taken as a renormalizing function for the VFP
equation and we have to introduce the ”smooth” renormalizing functions α := ΦM,θ.

2. Because of Proposition 3.2 we will often make the abuse of language by not specifying the
renormalizing sequence (αM ) used to define the (αM )-renormalized convergence and by saying that
(φn) r-converges (to φ) when it is only a subsequence of (φn) which r-converges (to φ).

3. Let notice that in general we can not exclude that the limit φ ≡ +∞, since for instance the
sequence (φn) defined by φn = φ ≡ ∞ belongs to L and r-converges to φ.

Proof of the Proposition 3.2. Step 0. We first claim that for any sequence (φn) of L and any
renormalizing sequence (αM ) there exists a subsequence (φn′ ) of (φn) and φ ∈ L such that (φn′ )
(αM )-renormalized converges to φ. Indeed, for any M we can find a subsequence (nM

k )k and
ᾱM ∈ L∞ such that αM (φnM

k
) ⇀ ᾱM weakly in L∞. By a diagonal process we can obtain a unique

subsequence (n′) such that the above weak convergence holds for any M ∈ N. Furthermore,
since (αM ) is increasing, we get that (ᾱM ) is an increasing sequence of non negative measurable
functions, so that it converges to a limit φ ∈ L.

Step 1. Let assume that for a renormalizing sequence (αK) we have αK(φn) ⇀ ᾱK ր ψ. Thanks
to step 0, there exits a sub-sequence (φn′), a sequence T̄M ∈ L∞ and a function φ ∈ L such that
TM (φn′) ⇀ T̄M ր φ. It is clear that ∀K,M ∈ N ∀ε > 0 there is kM,ε,mK ∈ N such that αK ≤ TmK

and TM ≤ αkM,ε + ε. Therefore, writing that αK(φn) ≤ TmK (φn) and TM (φn) ≤ αkM,ε(φn) + ε,
and passing to the limit n→ +∞, we get

ᾱK ≤ T̄mK ≤ φ and T̄M ≤ ᾱkM,ε + ε ≤ ψ + ε.
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Then passing to the limit M,K ր ∞ we obtain that ψ ≤ φ ≤ ψ + ε for any ε > 0, and finally
passing to the limit ε→ 0 we conclude that ψ = φ.

Step 2. Let remark that the class of renormalizing functions is separable for the uniform norm of
C(R+). For instance, the family A = {αk} of functions α such that

0 ≤ α(s) ≤ s and α′(s) =

J∑

j=1

θj 1[aj ,aj+1[(s), aj , θj ∈ Q+

is countable and dense. By a diagonal process and thanks to step 0, we can find a subsequence
(φn′) in such a way that for any α ∈ A there exists ᾱ ∈ L∞ such that α(φn′ ) ⇀ ᾱ. Let fix now
(βM ) a renormalizing sequence. On one hand, for any M there exists a sequence (αk) of A such
that αk ≤ βM ≤ αk + 1/k for any k ∈ N and αk ր βM . We yet know that αk(φn′) ⇀ ᾱk. Since
(ᾱk) is not decreasing, it converges a.e., and we set β∗

M = lim ᾱk. On the other hand, thanks
to Step 0, there exists a subsequence (φn′′ ) and a function β̄M such that βM (φn′′ ) ⇀ β̄M . That
implies ᾱk ≤ β̄M ≤ ᾱk + 1/k. Passing to the limit k → ∞, we get β̄M = β∗

M . Therefore, by
uniqueness of the limit, it is the all sequence βM (φn′) which converges to β∗

M . Finally, thanks to
the usual monotony argument we deduce that φn′ converges in the (βM )-renormalized sense and
its limit is necessary φ thanks to Step 1.

Step 3. If φn → φ a.e. or strongly in Lp then clearly αM (φn) ⇀ αM (φ) L∞-weak and αM (φ) ր φ

for any renormalizing sequence (αM ), so that φn
r
⇀φ. If (φn) converges weakly in Lp, p ∈ [1,∞],

then it obviously converges in the biting L1-weak sense and we may apply Lemma 2.7. ⊓⊔
Let now define the limit superior and the limit inferior in the renormalized sense.

Definition 3.4 Let (φn) be a sequence of L. Consider I the set of all the increasing applications
ı : N → N such that the subsequence (φı(k))k≥0 of (φn)n≥0 converges in the renormalized sense and
note φı = r-limφı(k). Thanks to the Proposition 3.2.2, we know that I is not empty. We defined
the limit superior and the limit inferior of (φn) in the renormalized sense by

r-limsup φn := sup
ı∈I

φı and r-liminf φn := inf
ı∈I

φı.

It is clear that if r-limsup φn = r-liminf φn then (φn) r-converges (up to the extraction of a
subsequence).

Proposition 3.5 1. If φn
r
⇀φ, ψn

r
⇀ψ and λn → λ in R⋆

+ then φn + λψn
r
⇀φ+ λψ.

2. Let φn
r
⇀φ and β be a nonnegative and concave function then β(φ) ≥ r-limsup β(φn).

3. Let β be a strictly concave function, and (φn) be a sequence such that φn
r
⇀φ and β(φ) ≤

r-liminf β(φn) then, up to the extraction a subsequence, φn → φ a.e. in Y .

4. Let φn
r
⇀φ and S be a bounded and nonnegative operator of L1 then S φ ≤ r-liminf S φn.

Proof of the Proposition 3.5. Step 1. From the elementary inequality

∀ a, b,M ≥ 0 M ∧ (a+ b) ≤M ∧ a+M ∧ b ≤ (2M) ∧ (a+ b),

we deduce

w-lim [M ∧ (φn + ψn)] ≤ w-lim [M ∧ φn] + w-lim [M ∧ ψn] ≤ w-lim [(2M) ∧ (φn + ψn)]

so that r-lim (φn + ψn) = φ+ ψ. Next, from the elementary identity

∀ a, b,M ≥ 0 (a b) ∧M = a
(
b ∧ (M/a)

)

and because for any ε > 0 there holds 0 < λ− ε ≤ λn ≤ λ+ ε for n large enough, we have

(λ− ε)
[
φn ∧ M

λ− ε

]
≤ (λn φn) ∧M ≤ (λ+ ε)

[
φn ∧ M

λ+ ε

]
.
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We deduce that for a subsequence (λn′ φn′)

∀ ε > 0 (λ− ε) T̄ M
λ−ε

≤ w-lim
n′→∞

TM (λn′ φn′) ≤ (λ+ ε) T̄ M
λ+ε

,

so that, passing to the limit ε→ 0 and using that TM/(λ+ε) ≤ TM/(λ−ε),

λ T̄M = w-lim
n′→∞

TM (λn′ φn′).

Passing to the limit M → ∞, we conclude that r-lim (λn φn) = λφ.

Step 2. We know that
β(s) = inf

ℓ≥β
ℓ(s),

where the inf is taken over all real values affine functions ℓ(t) = a t+ b which satisfy a, b ≥ 0 and
β(t) ≤ ℓ(t) for any t ≥ 0. Furthermore, for any ℓ and M , there clearly exists KM such that

TM (ℓ(s)) ≤ ℓ(TK(s)) and ℓ(TM (s)) ≤ TK(ℓ(s)) for all K ≥ KM , s ≥ 0.

We deduce that for any ℓ ≥ β, we have

TM (β(φn)) ≤ ℓ(TK(φn)).

Therefore, we get
lim sup

n
TM (β(φn)) ≤ ℓ(lim

n
TK(φn)) ≤ ℓ(φ)

and finally
lim sup

n
TM (β(φn)) ≤ β(φ) for any M,

which exactly means that r-limsup β(φn) ≤ β(φ).

Step 3. For any subsequence (n′) such that β(φn′ ), β(φn′/2+φ/2)) and β(φn′/2+φ/2))−β(φn′)/2−
β(φ)/2 ≥ 0 converge in the renormalized sense, we have

r-lim
[
β
(φn′ + φ

2

)
− β(φn′ )

2
− β(φ)

2

]
+
β(φ)

2
+ r-lim

β(φn′)

2
= r-limβ

(φn′ + φ

2

)
,

thanks to step 1. As a consequence, we get

0 ≤ r-lim
[
β
(φn′ + φ

2

)
− β(φn′ )

2
− β(φ)

2

]

= r-limβ
(φn′ + φ

2

)
− β(φ)

2
− r-lim

β(φn′)

2

≤ β(φ) − β(φ)

2
− β(φ)

2
= 0,

thanks to step 2 and because φn′/2 + φ/2
r
⇀φ. Therefore, for any k, we have

0 ≤ lim
n→∞

∫

Yk

T1

(
β
(φn′ + φ

2

)
− β(φn′ )

2
− β(φ)

2

)
dν

≤
∫

Yk

r-limsup
[
β
(φn′ + φ

2

)
− β(φn′ )

2
− β(φ)

2

]
dν = 0,

so that, up to extraction a subsequence,

β
(φn′ + φ

2

)
− β(φn′ )

2
− β(φ)

2
→ 0 a.e. on Y and φn′ → φ a.e. on Y.

15



Step 4. Fix χ ∈ Cc(Y ), the space of continuous functions on Y with compact support, such that
0 ≤ χ ≤ 1. Since TM (φn)χ ⇀ T̄M χ weakly in L1, we have

S(TM (φn)χ) ⇀ S(T̄M χ) weakly in L1.(3.1)

We deduce, using TK(S(TM (φn)χ)) ≤ TK(S(φn)) and Proposition 3.2.3 that

S(T̄M χ) = r-liminf
n→∞

S(TM (φn)χ) ≤ r-liminf
n→∞

S(φn).

We conclude letting χր 1 and M → +∞. ⊓⊔

3.2 From renormalized convergence to weak convergence.

We give now a kind of extension of the Biting Lemma in the L0 framework.

Definition 3.6 We say that a sequence (ψn) is asymptotically bounded in L0(Y ) if for any k ∈ N
there exists δk : R+ → R+ such that δk(M) ց 0 when M ր +∞ and for any M there is nk,M

such that
meas {y ∈ Yk, ψn(y) ≥M} ≤ δk(M) ∀k ∈ N, ∀n ≥ nk,M .(3.2)

Theorem 3.7 Let (ψn) be a sequence of L0(Y ) which r-converges to ψ with ψ ∈ L0(Y ). Then
(ψn) is asymptotically bounded in L0(Y ) and there exists a subsequence (ψn′) which b-converges to
ψ.

Remark 3.8 In the L1 framework, J. Ball & F. Murat [8] have already proved that the biting L1-
weak convergence implies, up to the extraction of a subsequence, the convergence in the renormalized
sense, as it has been recalled and extended to the L0 framework in Lemma 2.7. As a consequence,
combining Ball & Murat’s result with Theorem 3.7, we get the equivalence between the biting L1-
weak convergence and the renormalized convergence. More precisely, considering a sequence (ψn)
of L(Y ), it is equivalent to say that, up to the extraction of a subsequence,

ψn
b
⇀ψ in the biting L1-weak sense (so that ψ ∈ L0(Y )),(3.3)

ψn
r
⇀ψ in the renormalized sense and ψ ∈ L0(Y ).(3.4)

Furthermore, in both cases, the full sequence (ψn) is asymptotically bounded in L0. Again, we refer
to the appendix where some complements about r-convergence and b-convergence are given.

Proof of Theorem 3.7. Step 1. Proof of the asymptotic boundedness in L0. We argue by contra-
diction. For an arbitrary ε > 0 we know that there exists B ⊂ Yk such that ν(Yk\B) < ε/2 and
ψ ∈ L1(B). If there is no m ∈ N such that meas {y ∈ B, ψn(y) ≥ m} < ε/2 for all n large enough,
this means that there exists an increasing sequence (nm) such that

meas {y ∈ B, ψnm(y) ≥ m} ≥ ε/2 ∀m ≥ 0.

Therefore, for any ℓ ∈ N and any m ≥ ℓ we have
∫

B

Tℓ(ψnm) ≥ ℓmeas{y ∈ B, ψnm(y) ≥ ℓ} ≥ ℓmeas {y ∈ B, ψnm(y) ≥ m} ≥ ℓ
ε

2
,

and passing to the limit m→ ∞, we get
∫

B

ψ ≥
∫

B

w-lim
m→∞

Tℓ(ψnm) ≥ ℓ
ε

2
∀ℓ ≥ 0.

Letting ℓ ր ∞ we get a contradiction with the fact that ψ ∈ L1(B). As a conclusion, we have
proved that for any ε > 0 there exists mε and nε such that meas {y ∈ Yk, ψn ≥ mε} < ε for any
n ≥ nε, and (3.2) easily follows.
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Step 2. Proof of the convergence in the biting L1-weak sense. As in Step 1, for any k ∈ N we

can choose B such that ν(Yk\B) < 1/3k and ψ ∈ L1(B). Setting

∫

B

ψ dy = C0, we construct a

sequence (nℓ) such that ∫

B

Tℓ(ψnℓ
) dy ≤ C0 +

1

ℓ
.(3.5)

From (3.5), Theorem 2.4 (Biting Lemma) and Lemma 2.7, we may extract a subsequence, still
denoted by (ψnℓ

), which b-converges and r-converges to a limit denoted by ψ∗ ∈ L1(B). On the
one hand, for any M ∈ N we have TM (ψnℓ

) ≤ Tℓ(ψnℓ
) for ℓ ≥ M so that, passing to the limit

ℓ → ∞, we get w-limTM (ψnℓ
) ≤ ψ∗ and thus ψ ≤ ψ∗. On the other hand, from Theorem 2.4

(Biting Lemma) again, we have ‖ψ∗‖L1 ≤ lim inf ‖Tℓ(ψnℓ
)‖L1 ≤ C0 = ‖ψ‖L1 . Gathering these two

inequalities, we have proved

Tℓ(ψnℓ
) ⇀ ψ weakly in L1(B).

Furthermore, since (ψn) is asymptotically bounded in L0(Y ) we have, up to the extraction of a
subsequence again,

meas{ψnℓ
6= Tℓ(ψnℓ

)} = meas{ψnℓ
> ℓ} ≤ δk(ℓ) −→

ℓ→∞
0.

Therefore, we can choose an other subsequence, still noted (ψnℓ
), such that ZL := {∀ℓ ≥ L / ψnℓ

6=
Tℓ(ψnℓ

)} satisfies

meas(ZL) ≤
∑

ℓ≥L

meas{ψnℓ
> ℓ} −→

L→∞
0.

Finally, choosing L large enough such that meas (ZL) < 1/3k and setting Ak := B ∩ Zc
L, we have

|Yk\A| < 1/k, ψnℓ
∈ L1(A) for all ℓ ≥ L and

ψnℓ
= Tℓ(ψnℓ

) ⇀ ψ weakly in L1(A).

We conclude thanks to a diagonal process. ⊓⊔
A simple but fundamental consequence of Theorem 2.5 and Theorem 3.7 is the following.

Theorem 3.9 Consider a function m : RN → R and a family of measures d̟y on RN such that

∫

RN

m(v) d̟y(v) = 1,

∫

RN

m(v)1/4 d̟y(v) ≤ C4 ∀y and m(0) ≥ m(v) −→
|v|→∞

0.

Let (φn) be a sequence of L0(Y × RN ) which satisfies

∫

Y

E
(φn(y, .)

m(.)

)
dν(y) ≤ C1 <∞,

with E just like in Theorem 2.5 with dµy(v) = m(v) d̟y(v), and assume that

ψn(y) :=

∫

RN

φn(y, v) d̟y(v)
r
⇀ ψ with ψ ∈ L0(Y ).(3.6)

Then, there exists φ ∈ L1(Y × RN , dνd̟) and a subsequence (φn′) such that for every k ∈ N we
can find Ak ⊂ Yk in such a way that (Ak) is increasing, ν(Yk\Ak) < 1/k and

φn′ ⇀ φ weakly in L1(Ak × RN , dνd̟).

As a consequence ψ =

∫

RN

φd̟ and E(φ/m) ∈ L1(Y ).
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Proof of Theorem 3.9. From (3.6), Theorem 3.7 and Definition 2.3 we know that there exists a
subsequence (ψn′) such that for every k ∈ N we can find A = Ak ⊂ Yk satisfying (Ak) is increasing,
ν(Yk\Ak) < 1/k and

ψn′ is weakly compact in L1(A).

Next, we come back to estimate (2.16) in the proof of Theorem 2.5, which written with the new
notation, becomes ∫∫

A×RN

φn′ Ξ
( φn′

m(v)

)
d̟ydν ≤ C3,(3.7)

where we have set Ξ(s) := Ψ+(s)/s. Of course, we can assume without loss of generality that Ξ is
not decreasing, Ξ(s) ր ∞ when sր ∞ and Ξ(s) ≤ s1/2. From (3.7) we deduce

∫∫

A×RN

φn′ Ξ
( φn′

m(0)

)
d̟y dν ≤ C3,(3.8)

as well as
∫∫

A×RN

φn′ Ξ(m(v)−1/2) d̟y dν ≤(3.9)

≤
∫∫

A×RN

φn′ Ξ(m(v)−1/2)
(
1{φn′≤m(v)1/2} + 1{φn′≥m(v)1/2}

)
d̟y dν

≤
∫∫

A×RN

m(v)1/4 d̟y dν +

∫∫

A×RN

φn′ Ξ
( φn′

m(v)

)
d̟y dν ≤ C4 |Yk| + C3.

Gathering (3.8) and (3.9), we deduce by the Dunford-Pettis Lemma that (φn′ ) belongs to a weak
compact set of L1(A× RN , dνd̟), and we conclude as in the end of the proof of Theorem 2.5. ⊓⊔

4 Trace theorems for solutions of the Vlasov-Fokker-Planck

equation.

4.1 Statement of the trace theorems

In this section we recall the trace results established in [55], [56] for the Vlasov equation (which
corresponds to the case ν = 0 in the Theorem below) and we extend them to the VFP equation.
Given a vector field E = E(t, x, v), a source term G = G(t, x, v), a constant ν ≥ 0 and a solution
g = g(t, x, v) to the Vlasov-Fokker-Planck equation

ΛE g =
∂g

∂t
+ v · ∇xg + E · ∇vg − ν∆vg = G in (0, T ) ×O,(4.1)

we show that g has a trace γg on the boundary (0, T )×Σ and a trace γtg on the section {t}×O for
any t ∈ [0, T ]. These trace functions are defined thanks to a Green formula. We write indifferently
γtg = g(t, .).

The meaning of equation (4.1) is of two kinds. In the first case, we assume that g ∈ L∞(0, T ;
Lp

loc(Ō)), with p ∈ [1,∞], is a solution of (4.1) in the sense of distributions, i.e.,

∫ T

0

∫∫

O

(g Λ⋆
Eφ+Gφ) dvdxdt = 0,(4.2)

for all test functions φ ∈ D((0, T ) ×O), where we have set

Λ⋆
E φ =

∂φ

∂t
+ v · ∇xφ+ E · ∇vφ+ ν∆vφ+ (divvE)φ.
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In this case we assume

E ∈ L1
(
0, T ;W 1,p′

loc (Ō)
)
, divvE ∈ L1

(
0, T ;Lp′

loc(Ō)
)
, G ∈ L1

loc([0, T ]× Ō),(4.3)

where p′ ∈ [1,∞] stands for the conjugate exponent of p, given by 1/p + 1/p′ = 1, and we make
one of the two additional hypothesis

ν

∫ T

0

∫

OR

|∇vg|2 dvdxdt ≤ CT,R(4.4)

or

ν

∫ T

0

∫

OR

|∇vg|2 1{M≤|g|≤M+1} dvdxdt ≤ CT,R ∀M ≥ 0.(4.5)

Remark 4.1 The bound (4.5) is the natural bound that appears when we consider, for example,
the initial value problem with initial datum g0 ∈ Lp(O) when Ω = RN or when Ω is an open subset
of RN and specular reflections are imposed at the boundary.

In the second case, we assume that g is a renormalized solution of (4.1). In order to make
precise the meaning of such a solution, we must introduce some notations. We denote by B1 the
class of all functions β ∈ W 2,∞(R) such that β′ has a compact support and by B2 the class of all
functions β ∈ W 2,∞

loc (R) such that β′′ has a compact support. Remark that for every u ∈ L(Y )
and β ∈ B1 one has β(u) ∈ L∞(Y ). We shall write g ∈ C([0, T ];L(O)) if β(g) ∈ C([0, T ];L1

loc(Ō))
for every β ∈ B1.

We say that g ∈ L((0, T ) ×O) is a renormalized solution of (4.1) if for all β ∈ B1 we have

E ∈ L1
(
0, T ;W 1,1

loc (Ō)
)
, β′(g)G ∈ L1

loc([0, T ] × Ō), ν β′′(g) |∇v g|2 ∈ L1
loc([0, T ]× Ō),(4.6)

and β(g) is solution of

ΛE β(g) = β′(g)G− ν β′′(g) |∇v g|2 in D′((0, T ) ×O).(4.7)

We can now state the trace theorems for the Vlasov-Fokker-Planck equation (4.1).

Theorem 4.2 (The case p = ∞). Let g ∈ L∞([0, T ]×O) be a solution of equation (4.2)-(4.3)-
(4.4). There exists γg defined on (0, T )×Σ and for every t ∈ [0, T ] there exists γtg ∈ L∞(O) such
that

γtg ∈ C([0, T ];La
loc(Ō)) ∀a ∈ [1,∞) and γ g ∈ L∞((0, T ) × Σ),(4.8)

and the following Green formula

∫ t1

t0

∫∫

O

(
β(g) Λ⋆

Eφ+ (β′(g)G− ν β′′(g) |∇v g|2)φ) dvdxdt =(4.9)

=
[ ∫∫

O

β(g(t, .))φdxdv
]t1

t0
+

∫ t1

t0

∫∫

Σ

β(γ g)φ n(x) · v dvdσxdt,

holds for all t0, t1 ∈ [0, T ], all β ∈W 2,∞
loc (R) and all test function φ ∈ D([0, T ] × Ō).

Remark 4.3 A fundamental point, which is a consequence of the Green formula (4.9), is the
possibility of renormalizing the trace function, i.e.

γ β(g) = β(γ g)(4.10)

for all β ∈W 2,∞(R). More generally, (4.10) holds as soon as γ β(g) is defined. This is the property
that will allow us to define the trace of a renormalized solution.
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Theorem 4.4 (The case p ∈ [1,∞)). Let g ∈ L∞(0, T ;Lp
loc(Ō)) be a solution of equation (4.2)-

(4.3)-(4.5). There exists γg defined on (0, T )×Σ and for every t ∈ [0, T ] there exists γtg ∈ Lp(O)
such that

γtg ∈ C([0, T ];L1
loc(O)) and γ g ∈ L1

loc

(
[0, T ]× Σ, dλ2

)
,(4.11)

and satisfy the Green formula (4.9) for every t0, t1 ∈ [0, T ], every β ∈ B1 and every test functions
φ ∈ D([0, T ] × Ō), and also for every t0, t1 ∈ [0, T ], every β ∈ B2 and every test functions
φ ∈ D0([0, T ]× Ō), the space of functions φ ∈ D([0, T ] × Ō) such that φ = 0 on (0, T ) × Σ0.

Theorem 4.5 (The renormalized case). Let g ∈ L((0, T ) × O) satisfy the bound condition
(4.6) and the equation (4.7). Then γg ∈ L([0, T ] × Σ) and for every t ∈ [0, T ] there exists γtg ∈
C([0, T ];L(O)) which satisfy the Green formula (4.9) for all t0, t1 ∈ [0, T ], all β ∈ B1 and all test
functions φ ∈ D([0, T ] × Ō). Furthermore, if (4.7) makes sense for at least one function β such
that β(s) ր ∞ when sր ∞, then of course γtg ∈ L0(O) for any t ∈ [0, T ] and γg ∈ L0([0, T ]×Σ).

4.2 Proof of the trace theorems

We begin with some notations. For a given real R > 0, we define BR = {y ∈ RN / |y| < R},
ΩR = Ω ∩ BR, OR = ΩR × BR and ΣR = (∂Ω ∩ BR) × BR. We also denote by La,b

R the space

La(0, T ;Lb(OR)) or La(0, T ;Lb(ΩR)), and La,b
loc the space La(0, T ;Lb

loc(Ō)) or La(0, T ;Lb
loc(Ω̄)).

Proof of Theorem 4.2. First step: a priori bounds. In this step we assume that g is a solution
of (4.1) and is ”smooth”. Precisely, g ∈ W 1,1

(
0, T ;W 1,∞(Ω;W 2,∞(RN ))

)
, in such a way that the

Green formula (4.9) holds. The trace γg in (4.9) is defined thanks to the usual trace theorem
in the Sobolev spaces. We shall prove two a priori bounds on g. Let define β ∈ W 2,∞

loc (R) by

β(s) =

{
|s| − 1/2 if |s| ≥ 1
s2/2 if |s| ≤ 1

so that β′(s) =

{
1 if s ≥ 1
s if |s| ≤ 1
−1 if s ≤ −1

and β′′(s) =

{
0 if |s| ≥ 1
1 if |s| ≤ 1

,

and thus β ∈ B1. Fix R > 0 and consider χ ∈ D(Ō) such that 0 ≤ χ ≤ 1, χ = 1 on OR and
suppχ ⊂ ŌR+1. We set φ = χ n(x) · v. The Green formula (4.9) gives

∫ T

0

∫∫

Σ

β(γ g)χ (n(x) · v)2 dvdσxdt = −
[ ∫∫

O

β(g(t, .))φdxdv
]T
0

+

∫ T

0

∫∫

O

(
β(g) Λ⋆

Eφ+ (β′(g)G− ν β′′(g) |∇v g|2)φ) dvdxdt.

We deduce from it a first a priori bound: there are some constants γR and CR such that

γR

∫ T

0

∫∫

ΣR

|γ g| (n(x) · v)2 dvdσxdt ≤
∫ T

0

∫∫

ΣR

β(γ g) (n(x) · v)2 dvdσxdt

≤ CR

∫ T

0

∫∫

OR+1

(
g2 (1 + |E|) + |G| + ν |∇v g|2

)
dvdxdt(4.12)

+CR

∫∫

OR+1

(
g2(0, .) + g2(T, .)

)
dxdv,

where we have used the fact that for u ∈ L∞(YR) with YR = OR or ΣR there holds

γR

∫

YR

|u| ≤
∫

YR

β(u) ≤ γ−1
R

∫

YR

u2.

Let K ⊂ O be a compact set and consider φ ∈ D(O) such that 0 ≤ φ ≤ 1, φ = 1 on K and
R > 0 such that suppφ ⊂ OR. We fix t0 ∈ [0, T ]. The Green formula (4.9) implies

∫∫

O

β(g(t1, .))φdxdv =

∫∫

O

β(g(t0, .))φdxdv(4.13)

+

∫ t1

t0

∫∫

O

(
β(g) Λ⋆

Eφ+ (β′(g)G− ν β′′(g) |∇v g|2)φ) dvdxdt,
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and we get a second a priori bound

γR

∫∫

K

|g|(t1, .) dxdv ≤ CR

∫∫

OR

g2(t0, .) dxdv(4.14)

+ CR

∫ T

0

∫∫

OR

(
g2 (1 + |E|) + |G| + ν |∇v g|2

)
dvdxdt.

Second step: regularization and passing to the limit. Let us now consider a function g which
satisfies the assumptions of Theorem 4.2. We define the mollifier ρk by

ρk(z) = kN ρ(k z) ≥ 0, k ∈ N⋆, ρ ∈ D(RN ), supp ρ ⊂ B1,

∫

RN

ρ(z) dz = 1,

and we introduce the regularized functions gk = g ⋆x,k ρk ∗v ρk, where ∗ stands for the usual
convolution and ⋆x,k for the convolution-translation defined by

(u ⋆x,k hk)(x) = [τ2 n(x)/k(u ∗ hk)](x) =

∫

RN

u(y)hk(x− 2

k
n(x) − y) dy,

for all u ∈ L1
loc(Ω̄) and hk ∈ L1(RN ) with supphk ⊂ B1/k.

Lemma 4.6 With this notation one has gk ∈W 1,1
(
0, T ;W 1,∞(Ω;W 2,∞(RN ))

)
and

ΛEgk = Gk in D′((0, T ) ×O),

with Gk ∈ L1
loc((0, T ) × Ō) for all k ∈ N. Moreover, the sequences (gk) and (Gk) satisfy

{
(gk) is bounded in L∞((0, T ) ×O), gk −→ g a.e. in (0, T ) ×O,

∇vgk −→ ∇vg in L2
loc([0, T ]× Ō) and Gk −→ G in L1

loc([0, T ]× Ō).
(4.15)

The proof of Lemma 4.6 is similar to the proof of [55, Lemma 1] and of [36, Lemma II.1] to which
we refer.

From Lemma 4.6 we have that for all k, ℓ ∈ N⋆ the difference gk − gℓ belongs to W 1,1
(
0, T ;

W 1,∞(Ω;W 2,∞(RN ))
)

and is a solution of

ΛE(gk − gℓ) = Gk −Gℓ in D′((0, T ) ×O).

We know, thanks to (4.15), that gk(t, .) converges to g(t, .) in L2
loc(Ō) for a.e. t ∈ [0, T ]; we fix

t0 such that gk(t0, .) → g(t0, .). Moreover, up to a choice for the continuous representation of gk,
we can assume that gk ∈ C([0, T ], L1

loc(Ō)). Therefore, the estimate (4.13) applied to gk − gℓ in t0
and the convergence (4.15) imply that for all compact sets K ⊂ O we have

sup
t∈[0,T ]

‖(gk − gℓ)(t, .)‖L1(K) −→
k,ℓ→+∞

0.(4.16)

We deduce from this, that there exists, for any time t ∈ [0, T ], a function γtg such that gk(t, .)
converges to γtg in C([0, T ];L1

loc(O)); in particular,

g(t, x, v) = γtg(x, v) for a.e. (t, x, v) ∈ (0, T ) ×O.

Thus, we also have gk(t, .) = (γt g) ⋆x,k ρk ∗v ρk a.e. in (0, T ) × O, and since these two functions
are continuous, the equality holds for all (t, x, v) ∈ [0, T ]× Ō and k ∈ N⋆, so that gk(t, .) → γtg in
L2

loc(Ō) for all t ∈ [0, T ].
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Using now the estimate (4.12), applied to gk − gℓ, and the convergence (4.15) and (4.16) we get
that ∫ T

0

∫∫

ΣR

|γgk − γgℓ| (n(x) · v)2 dvdσxdt −→
k,ℓ→+∞

0,

for all R > 0. We deduce that there exists a function γg ∈ L1
loc([0, T ] × Σ, (n(x) · v)2 dvdσxdt),

which is the limit of γgk in this space. Moreover, since ‖γgk‖L∞ ≤ ‖gk‖L∞ is bounded, we have
γg ∈ L∞((0, T ) ×O).

Finally, we obtain the Green formula (4.9) writing it first for gk and then passing to the limit
k → ∞ thanks to the convergence previously obtained. Uniqueness of the trace function follows
from the Green formula. ⊓⊔
Proof of Theorem 4.5. The proof is based on Theorem 4.2 and on an monotony argument. This
is exactly the same as the one presented in [56] in the case of Vlasov equation. Let (βM )M≥1 be a
sequence of odd functions of B1 such that

βM (s) =

{
s if s ∈ [0,M ]
M + 1/2 if s ≥M + 1,

and |βM (s)| ≤ |s| for all s ∈ R. The function αM (s) := βM (β−1
M+1(s)), with the convention

αM (s) = M + 1/2 if s ≥ M + 3/2, is well defined, odd and also belongs to B1. We will construct
the trace function γg as the limit of (γβM (g)) when M → ∞, that one being defined thanks to
Theorem 4.2. Indeed, the condition (4.5) implies that

∇vg 1|g|≤M+1 ∈ L2
loc([0, T ] × Ō),

and then ∇vβM (g) = β′
M (g)∇vg ∈ L2

loc([0, T ] × Ō) in such a way that βM (g) satisfies the as-

sumption on Theorem 4.2. We define Γ
(±)
M = {(t, x, v) ∈ (0, T ) × Σ,±γβM (g)(t, x, v) > 0} and

Γ
(0)
M = {(t, x, v) ∈ (0, T ) × Σ, γβM (g)(t, x, v) = 0}. Thanks to the definition of αM and the renor-

malization property (4.10) of the trace, one has γ βM (g) = γ αM (βM+1(g)) = αM (γ βM+1(g)). We
deduce that, up to a set of measure zero,

Γ
(+)
M = Γ

(+)
1 , Γ

(−)
M = Γ

(−)
1 and Γ

(0)
M = Γ

(0)
1 for all M ≥ 1.

Therefore the sequence (γ βM (g))M≥1 is increasing on Γ
(+)
1 and decreasing on Γ

(−)
1 . This implies

that γ βM (g) converges a.e. to a limit denoted by γg which belongs to L([0, T ] × Σ). Obviously,
if (4.7) holds for one function β such that β(s) ր +∞ when s ր ±∞, then β(γg) ∈ L1((0, T ) ×
Σ, dλ2) and γg ∈ L0((0, T ) × Σ). In order to establish the Green formula (4.9) we fix β ∈ B1 and
φ ∈ D((0, T ]×Ō). We write the Green formula for the function β(βM (g)), and using the fact that
γ
[
β ◦ βM (g)

]
= β(γβM (g)), we find

∫ T

0

∫∫

O

(
β ◦ βM (g) (

∂φ

∂t
+ v · ∇xφ+ E · ∇vφ) + (β ◦ βM )′(g)Gφ

)
dvdxdt =

=

∫ T

0

∫∫

Σ

β(γ βM (g))φn(x) · v dvdσxds.

We get (4.9) by letting M → ∞ and noticing that β ◦ βM (s) → β(s) for all s ∈ R. ⊓⊔

Remark 4.7 Theorem 4.4 is now a quite simple consequence of Theorem 4.5 using the a priori
bounds stated in the proof of Theorem 4.2. Let emphasize that with the additional assumption (4.4)
in hands, it is possible to give a direct proof of Theorem 4.4 (following the proof of Theorem 4.2)
instead of passing through the renormalization step. See [55] for details.

Proof of Theorem 4.4. For all β ∈ B1 it is clear that β(g) ∈ L∞, ∇vβ(g) ∈ L2 and that β(g)
is solution of (4.7) using Lemma 5.5 below (we just have to multiply equation (5.20), in the case
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µ ≡ 0, by β′(gk) and pass to the limit k → ∞). Thanks to Theorem 4.5, we already know that
g has a trace γtg ∈ L(O) and γg ∈ L((0, T ) × O) which satisfies the Green formula (4.9) for all
β ∈ B1 and φ ∈ D([0, T ] × Ō). We just have to prove that γg and γtg belong to the appropriate
space. On one hand, for all β ∈ B1 such that |β(s)| ≤ |s| one has

‖β(γtg)‖Lp
R
≤ sup

k
sup
[0,T ]

‖β(gk(t, .))‖Lp
R
≤ sup

[0,T ]

‖gk(t, .)‖Lp
R
≤ ‖g‖L∞,p

R
,

and thus, choosing β = βM , defined in the proof of Theorem 4.5, one gets, passing to the limit
M → ∞,

sup
[0,T ]

‖γtg‖Lp
R
≤ ‖g‖L∞,p

R
<∞.

In the same way and using (4.12), we show that

‖γg‖L1([0,T ]×ΣR,dλ2) <∞.

We still have to prove that γtg ∈ C([0, T ], L1
loc(Ō)), which is an immediate consequence of the

following Lemma. ⊓⊔

Lemma 4.8 Let (un) be a bounded sequence of L1
loc(O) such that β(un) ⇀ β(u) in

(
Cc(O)

)′
for

all β ∈ B2. Then un → u in L1
loc(O).

Proof of Lemma 4.8. We fix j : R → R a nonnegative function of class C2, strictly convex on
the interval [−M,M ] and such that j′′(t) = 0 for all t /∈ [−M,M ]; in particular j ∈ B2. We also
consider χ ∈ Cc(O) such that 0 ≤ χ ≤ 1. By assumption

∫

O

j(un)χ→
∫

O

j(u)χ(4.17)

and by convexity of j one also has

lim inf
n→∞

∫

O

j
(un + u

2

)
χ ≥

∫

O

j(u)χ since
un + u

2
⇀ u in

(
Cc(O)

)′
.(4.18)

Remarking that
1

2
j(t) +

1

2
j(s) − j

( t+ s

2

)
≥ 0 ∀t, s ∈ R,(4.19)

we deduce from (4.17) and (4.18) that
∫

O

[1
2
j(un) +

1

2
j(u) − j

(un + u

2

)]
χ→ 0.(4.20)

From the fact that in (4.19) the inequality is strict whenever t, s ∈ [−M,M ] and t 6= s, we obtain
from (4.20) that there exists a subsequence (unk

) such that unk
→ u a.e. on suppχ ∩ [ |u| < M ].

The preceding argument being valuable for arbitrary M and χ, we obtain, by a diagonal process,
a subsequence of (un), still denoted by (unk

), such that unk
→ u a.e. in O.

We now set j±(s) = s±. We first remark that we can write j± = j±,1 + j±,2 with j±,1 ∈ B2

and j±,2 ∈W 2,∞(R) in such a way that
∫

O

j±(unk
)χ→

∫

O

j±(u)χ.

On the other hand, the elementary inequality
∣∣ b − |a − b|

∣∣ ≤ a ∀a, b ≥ 0 and the dominated
convergence Theorem imply j±(unk

) − |j±(unk
) − j±(u)| → j±(u) in L1

loc(O). It follows that

lim sup
k→∞

∫

O

∣∣ j±(unk
) − j±(u)

∣∣χ =

∫

O

j±(u)χ− lim
k→∞

∫

O

j±(unk
)χ = 0.

We conclude that unk
= j+(unk

) − j−(unk
) → j+(u)− j−(u) = u strongly in L1

loc(O) and that, in
fact, it is the entire sequence (un) which converges. ⊓⊔
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5 Renormalized convergence for trace functions sequence.

We present now a quite general stability result in both the interior and up to the boundary for a
sequence of renormalized solutions to the Vlasov-Fokker-Planck equation on a domain. This will
be a key argument in the proof of Theorem 1.2. In some sense, this result says that renormalized
convergence, as well as the a.e. convergence, can be propagated from the interior to the boundary.
Notice that it is not clear that a similar result holds for the L1-weak convergence.

Theorem 5.1 Consider three sequences (gn), (En) and (Gn), with Gn = G+
n − G−

n , G±
n ≥ 0,

which satisfy the convergence assumptions

gn ⇀ g weakly in L∞(0, T : L1(O)),(5.1)

En → E strongly in L1((0, T ) × Ω), uniformaly bounded in L1(0, T ;W 1,1(Ω)),(5.2)

α′
M (gn)G±

n ⇀ Ḡ±
M weakly in L1((0, T ) ×OR),(5.3)

with Ḡ±
M ր G± a.e. with β(g)G± ∈ L1((0, T ) ×OR),

for all β ∈ B3 the class of functions of W 1,∞
loc (R) such that |β′(s)| (1 + s)−1 ∈ L∞(R), all renor-

malizing sequence (αM ) of B3 as well as the renormalized Vlasov equation

ΛEn β(gn) = β′(gn)Gn in D′((0, T ) ×O),(5.4)

for which clearly each term makes sense thanks to (5.1)–(5.3). Then g ∈ L∞(0, T ;L1(O)) is a
solution of

ΛE β(g) = β′(g)G in D′((0, T ) ×O), G = G+ −G−,(5.5)

for all β ∈ B3. Furthermore, the traces γgn and γg defined thanks to the Theorem 4.5 satisfy

γgn
r
⇀γg in the renormalized sense.(5.6)

Proof of Theorem 5.1. The proof is esentially the same as Step 2 in the proof of [56, Proposition
5] and as the proof of Theorem 2.9. Nevertheless, for the sake of completeness, we sketch the main
arguments.

Step 1. Up to the extaction of a subsequence, we have gn
r
⇀g thanks to (5.1) and Lemma 2.7, and

there exists η ∈ L((0, T ) × Σ) such that γgn
r
⇀η thanks to Proposition 3.2. More precisely, there

exists two sequences (ᾱM ) and (γ̄M ) and such that

αM (gn) ⇀ ᾱM σ(L∞, L1) ⋆ and ᾱM ր g a.e.,(5.7)

αM (γgn) ⇀ γ̄M σ(L∞, L1) ⋆ and γ̄M ր η a.e..(5.8)

The Green formula (4.9) associated to the equation (5.4) with β = αM implies

∫ T

0

∫∫

O

(
αM (gn) Λ∗

Eϕ+ α′
M (gn)Gnϕ

)
dvdxdt =

∫ T

0

∫∫

Σ

αM (γ gn)ϕ n(x) · v dvdσxdt,

for any ϕ ∈ D((0, T ) × Ō). Passing to the limit M → ∞ with the help of (5.7), (5.2), (5.3) in the
above identity, we obtain

ΛE ᾱM = ḠM in D′((0, T ) ×O)(5.9)

and γᾱM = γ̄M thanks to the trace Theorem 4.2 and the convergence (5.8).

Step 2. For a given function β ∈ B3 ∩ L∞, we write the renormalized Green formula (4.9)
associated to the equation (5.9) as

∫ T

0

∫∫

O

(
β(ᾱM ) Λ∗

Eϕ+ β′(ᾱM ) ḠMϕ
)
dvdxdt =

∫ T

0

∫∫

Σ

β(γM )ϕ n(x) · v dvdσxdt,(5.10)
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for any ϕ ∈ D((0, T )×Ō). Using that (ᾱM ), (G±
M ) and (γ̄M ) are a.e. increasing sequences we have

β(ᾱM ) ր β(g), β′(ᾱM ) Ḡ±
M ր β′(g)G± in L1((0, T )×O)(5.11)

as well as
β(γ̄M ) ր β(η) a.e. and uniformaly bounded in L∞((0, T ) ×O).(5.12)

Passing to the limit in (5.10) with the help of (5.11) and (5.12) we obtain

∫ T

0

∫∫

O

(
β(g) Λ∗

Eϕ+ β′(g)Gϕ
)
dvdxdt =

∫ T

0

∫∫

Σ

β(η)ϕ n(x) · v dvdσxdt,

which precisely means that η = γg. We conclude by gathering that information with (5.8). ⊓⊔

Theorem 5.2 Consider three sequences (gn), (En) and (Gn) which satisfy, for all β ∈ B4 the
class of functions of W 2,∞

loc (R) such that |β′(s)| (1 + s)−1 ∈ L∞(R) and |β′′(s)| (1 + s)−2 ∈ L∞(R),

gn → g strongly in L1((0, T ) ×O) and is uniformly bounded in L∞(0, T ;L1(O)),(5.13)

En ⇀ E weakly in L1(0, T ;W 1,1
loc (Ō)),(5.14)

β′(gn)Gn ⇀ β′(g)G weakly in L1((0, T ) ×OR) ∀β ∈ B4, ∀R ≥ 0,(5.15)
∫ T

0

∫

O

|∇vgn|2
1 + gn

dvdxdt ≤ CT ,(5.16)

as well as the renormalized Vlasov-Fokker-Planck equation

ΛEn β(gn) = β′(gn)Gn − ν β′′(gn) |∇vgn|2 in D′((0, T ) ×O),(5.17)

for which clearly each term makes sense thanks to (5.13)–(5.16). Then g ∈ L∞(0, T ;L1(O)) is a
solution of

ΛE β(g) = β′(g)G− ν β′′(g) |∇vg|2 in D′((0, T ) ×O)(5.18)

for all β ∈ B4. Furthermore, the traces γgn and γg defined thanks to the Theorem 4.5 satisfy

γgn
r
⇀γg in the renormalized sense, and γ+gn → γ+g a.e.(5.19)

We shall need the following auxiliary results in the proof of Theorem 5.2.

Lemma 5.3 Let (un) be a bounded sequence of L2(Y ) such that un ⇀ u weakly in L2(Y ). Then,
there exists µ ∈ (Cc(Y ))′, a nonnegative measure, such that, up to the extraction of a subsequence,

|un|2 ⇀ |u|2 + µ weakly in (Cc(Y ))′.

Lemma 5.4 For any θ ∈ (0, 1) and M ∈ (0,∞) we set

Φ(s) = ΦM,θ(s) :=

{
1/θ (eθ s − 1) if s ≤M
(s−M) eθ M + 1/θ (eθ M − 1) if s ≥M,

and β(s) := β1(s) = log(1 + s). Then





Φ′(s) ≥ 1, Φ ◦ β(s) ր s when M ր ∞, θ ր 1,

and 0 ≤ −(Φ ◦ β)′′(s) ≤ 1 − θ + e(θ−1) M

1 + s

∀s ≥ 0.
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Lemma 5.5 Let g ∈ L∞(0, T ;Lp
loc(O)) be a solution to the Vlasov-Fokker-Planck equation

ΛE g = G+ µ in D′((0, T ) ×O),(5.20)

with E ∈ L1(0, T ;W 1,p′

loc (O)), G ∈ L1
loc((0, T ) × O)) and µ ∈ D′((0, T ) × O), µ ≥ 0. For a given

mollifer ρk in RN , we set

gk := g ∗t ρk ∗x ρk ∗v ρk and µk := µ ∗t ρk ∗x ρk ∗v ρk.

Then gk satisfies the Vlasov-Fokker-Planck equation

ΛE gk = Gk + µk in all compact set of (0, T )×O,

with Gk → G strongly in L1
loc([0, T ] ×O)).

The proof of Lemma 5.3 is classical, the one of Lemma 5.4 is elementary, and we refer to [35] for
the proof of Lemma 5.5.

Proof of the Theorem 5.2. Step 1: Proof of (5.18). This step is inspired from [35] and it is clear from
the theory of renormalized solution [36] that it is enough to prove (5.18) only for β(s) := log(1+s).
With the notation hn := β(gn) and h = β(g) we have ∇vhn =

√
−β′′(gn)∇vgn ⇀

√
−β′′(g)∇vg =

∇vh weakly in L2((0, T ) × O) so that, thanks to Lemma 5.3, there is a bounded measure µ ≥ 0
such that, up to the extraction of a subsequence, |∇vhn|2 ⇀ |∇vh|2 + µ weakly in D′([0, T ]× Ō).
Passing to the limit n→ ∞ in (5.17) we get

ΛE β(g) = β′(g)G− β′′(g) |∇vg|2 + µ in D′((0, T ) ×O).

We just point out that

En β(gn) ⇀ E β(g) weakly in L1((0, T ) ×O),

since β(gn) → β(g) strongly in L2(0, T ;Lp(O)) for all p <∞ andEn ⇀ E weakly in L2(0, T ;Lq(O))
for every q ∈ [1, N/(N − 1)). We prove now that µ = 0 in (0, T ) ×O.

With the notations introduced in Lemma 5.4 and Lemma 5.5 we have

ΛE Φ(hk) = Φ′(hk)
(
β′(g)G− β′′(g) |∇vg|2

)
∗t,x,v ρk − Φ′′(hk) |∇vhk|2 + Φ′(hk)µk.

Using that Φ′ ≥ 1 (thanks to Lemma 5.4) and passing to the limit k → ∞ (thanks to Lemma 5.5),
we get

ΛE (Φ ◦ β)(g) ≥ Φ′(β(g))β′(g)G− (Φ′(β(g))β′′(g) + Φ′′(β(g)) (β′(g))2) |∇vg|2 + µ

and then

ΛE (Φ ◦ β)(g) − (Φ ◦ β)′(g)G ≥ (Φ ◦ β)′′(g) |∇vg|2 + µ in D′((0, T ) ×O).(5.21)

In order to have an estimate of the left hand side we come back to equation (5.17), and we write

ΛEn Φ ◦ β(gn) = (Φ ◦ β)′(gn)Gn − (Φ ◦ β)′′(gn) |∇vgn|2 in D′((0, T ) ×O)

since Φ◦β ∈ B4. Then, for all χ ∈ D((0, T )×O such that 0 ≤ χ ≤ 1 we have (thanks to Lemma 5.4)

∣∣∣
∫ T

0

∫

O

(
Φ ◦ β(gn) ΛEn χ+ (Φ ◦ β)′(gn)Gn χ

)
dvdxdt

∣∣∣ =

= −
∫ T

0

∫

O

(Φ ◦ β)′′(gn) |∇vgn|2 χdvdxdt

≤ [1 − θ + e(θ−1) M ]

∫ T

0

∫

O

|∇vgn|2
1 + gn

dvdxdt.
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Passing to the limit n→ ∞ we get, thanks to (5.16),

∣∣∣
∫ T

0

∫

O

(
Φ ◦ β(g) ΛE χ+ (Φ ◦ β)′(g)Gχ

)
dvdxdt

∣∣∣ ≤ [1 − θ + e(θ−1)M ]CT .

Then, coming back to (5.21), we have (thanks to Lemma 5.4 again)

∫ T

0

∫

O

χdµ ≤ −
∫ T

0

∫

O

(
Φ ◦ β(g) ΛE χ+ (Φ ◦ β)′(g)Gχ+ (Φ ◦ β)′′(g) |∇vg|2

)
dvdxdt

≤ 2 [1 − θ + e(θ−1)M ]CT ∀θ ∈ [0, 1], M > 0,

and letting M → ∞ and then θ → 1 we obtain µ = 0 on suppχ, which is precisely saying that
µ = 0 in (0, T ) ×O.

Step 2: Proof of (5.19). We fix φ ∈ D((0, T ) × Ō) such that 0 ≤ φ ≤ 1. By definition of γgn we
have

∣∣∣
∫ T

0

∫∫

Σ

Φ ◦ β(γ gn)φ n(x) · v dvdσxdt

−
∫ T

0

∫

O

(
Φ ◦ β(gn) ΛEn χ+ (Φ ◦ β)′(gn)Gn χ

)
dvdxdt

∣∣∣ =

=

∫ T

0

∫

O

(Φ ◦ β)′′(gn) |∇vgn|2 χdvdxdt ≤ [1 − θ + e(θ−1)M ]

∫ T

0

∫

O

|∇vgn|2
1 + gn

dvdxdt.

We note Φ ◦ β the L1-weak limit of Φ ◦ β(γ gn). Passing to the limit n→ ∞ we get

∣∣∣
∫ T

0

∫∫

Σ

Φ ◦ β φ n(x) · v dvdσxdt−
∫ T

0

∫

O

(
Φ ◦ β(g) ΛE χ+ (Φ ◦ β)′(g)Gχ

)
dvdxdt

∣∣∣ ≤

≤ [1 − θ + e(θ−1)M ]CT ,

and thus

∣∣∣
∫ T

0

∫∫

Σ

Φ ◦ β φ n(x) · v dvdσxdt−
∫ T

0

∫

O

[
Φ ◦ β(g) ΛE χ

+
(
(Φ ◦ β)′(g)G− (Φ ◦ β)′′(g) |∇vg|2

)
χ
]
dvdxdt

∣∣∣ ≤ 2 [1 − θ + e(θ−1)M ]CT .

Once again, by definition of γg, we obtain

∣∣∣
∫ T

0

∫∫

Σ

(
Φ ◦ β − Φ ◦ β(γ g)

)
φ n(x) · v dvdσxdt

∣∣∣ ≤ 2 [1 − θ + e(θ−1)M ]CT −→
M→∞,θ→1

0,

and Φ ◦ β ր r-lim γgn since Φ ◦ β(s) ր s when M ր ∞, θ ց 1, so that γg = r-lim γgn.

In order to prove the a.e. convergence we only have to show, thanks to Proposition 3.5.3, that,
up to the extraction of a subsequence,

r-liminf β(γ+gn) ≥ β(γ+g).(5.22)

Using Lemma 5.3 and the first step, we can pass to the limit in (5.17), up to the extraction of a
subsequence, and we get

∫ T

0

∫∫

Σ

β φ n(x) · v dvdσxdt =

∫ T

0

∫

O

(
β(g) ΛE χ+ (β′(g)G+ β′′(g) |∇vg|2 + µ)χ

)
dvdxdt

=

∫ T

0

∫∫

Σ

(β(γg) n(x) · v + µ)φ dvdσxdt,
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where β = w-limβ(γgn) is the weak limit in L1((0, T )×Σ) of β(γgn). We deduce that β n(x) ·v =
β(γg) n(x) · v + µ on (0, T )× Σ, and in particular

β ≥ β(γ+g) on (0, T )× Σ+.

Since r-liminf β(γ+gn) = β̄, that ends the proof of (5.22). ⊓⊔

6 Boltzmann, Vlasov-Poisson and Fokker-Planck equations

In this section we derive the a priori physical bound, then make precise the exact meaning of
renormalized solution we deal with and finally state and present a proof of the corresponding
stability results. In order to do not repeat many times the exposition, we consider the full Vlasov-
Poisson-Fokker-Planck-Boltzmann system (VPFPB in short)

∂f

∂t
+ v · ∇xf − divv

(
(∇xVf + λ v) f

)
− ν∆vf = Q(f, f) in (0,∞) ×O,(6.1)

where ν ≥ 0, λ ∈ R, Q(f, f) stands for the bilinear Boltzmann collision operator and Vf is given
by the mean of the Poisson equation

− ∆Vf = ρf :=

∫

RN

f dv in (0,∞) × Ω, Vf = 0 on (0,∞) × ∂Ω.(6.2)

We do not give the explicit expression for Q(f, f) that we may find in [26, 37] for example. The
precise assumptions we make on the cross section are those introduced in [37]. We only recall that
the collision operator splits into a gain term and a loss term, Q(f, f) = Q+(f, f) −Q−(f, f), that
it has the following collision invariants

∫

R3

Q(f, f)




1
v

|v|2


 dv = 0,(6.3)

and that the so-called entropy production term e(f) ≥ 0 satisfies

∫

R3

e(f) dv = −
∫

R3

Q(f, f) log f dv.(6.4)

Moreover, it has been established in [37] the following estimate

∀R > 0 ∃CR <∞
∫

BR

Q±(f, f)

1 + f
dv ≤ CR

∫

RN

[
(1 + |v|2) f + e(f)

]
dv,(6.5)

and in [65] (we also refer to [52] for a related result) the more accurate estimate

∀R > 0 ∃CR <∞
∫

BR

|Q(f, f)|√
1 + f

dv ≤ CR

∫

RN

[
(1 + |v|2) f + e(f)

]
dv.(6.6)

We assume furthermore that f satisfies the boundary condition (1.1) and the initial condition
(1.8), where fin is assumed to verify (1.9) and

∫

Ω

|∇xVfin |2 dx <∞ with − ∆xVfin =

∫

R3

fin(x, v) dv on Ω, Vfin = 0 on ∂Ω.(6.7)

Lemma 6.1 For any nonnegative initial datum fin such that (1.9)-(6.7) holds and any time T ∈
(0,∞) there exists a constant CT ∈ (0,∞) (only depending on T and on fin through the quantities
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C0 and |∇xVfin‖L2) such that any solution f to the initial boundary value problem (6.1)-(6.2)-
(1.1)-(1.8) satisfies (at least formally)

sup
[0,T ]

{∫∫

O

f
(
1 + |v|2 + | log f |

)
dvdx+

∫

Ω

|∇xVf |2 dx
}

(6.8)

+

∫ T

0

∫∫

O

(
e(f) + ν

|∇vf |2
f

)
dvdxdt ≤ CT ,

as well as ∫ T

0

∫

∂Ω

{
E
(
γ+f

M

)
+

√
γ̃
+
f
}
dσxdt ≤ CT ,(6.9)

where E is defined in (1.13). It is worth mentioning that the second estimate in (6.9) is an ”a
posteriori” estimate which we deduce from the interior estimate (6.8) and a Green formula.

Proof of (6.8) in Lemma 6.1. We claim that for f sufficiently regular and decreasing at the infinity
all the integrations (by parts) that we shall perform are allowed.

First, we simply integrate the equation (6.1) over all variables, and we get the conservation of mass

∫∫

O

f(t, .) dvdx =

∫∫

O

fin dvdx ∀t ≥ 0.

Next, setting hM (s) = s log(s/M) and E = ∇xVf , we compute

∂

∂t
hM (f) + v · ∇xhM (f) + divv

(
(E + λ v)hM (f)

)
− ν∆vhM (f) =

= h′M (f)Q(f, f) − ν h′′M (f) |∇vf |2 − f (E + λ v) · ∇v(logM)

+λ (hM (f) − f h′M (f)) + 2 ν∇vf · ∇v(logM) + ν f ∆v(logM),

where h′M (s) = 1+ log (s/M). We integrate this equation over the x, v variables using the collision
invariants (6.3) and the entropy production identity (6.4), to obtain

d

dt

∫∫

O

hM (f) dvdx +

∫∫

O

(
e(f) + ν

|∇vf |2
f

)
dvdx+

∫ ∫

Σ

hM (γf) v · n(x) dvdσx =(6.10)

=

∫

Ω

E · j
Θ
dx+

∫∫

O

{
λ
( |v|2

Θ
− 1) +

ν

Θ

}
f dvdx,

where

j(t, x) =

∫

R3

v f(t, x, v) dv.

We first remark that integrating equation (6.1) in the velocity variable we have

∂

∂t
ρ+ divx j = 0 on (0,∞) × Ω,

and therefore

−
∫

Ω

E · j
Θ
dx =

∫

Ω

∇Vf · j
Θ
dx =

∫

Ω

Vf

Θ

∂ρ

∂t
dx =

d

dt

∫

Ω

|∇xVf |2
2 Θ

dx.(6.11)

Next, combining (6.10), (6.11) and the boundary estimate (2.5) we obtain

d

dt

{∫∫

O

hM (f) dvdx+

∫

Ω

|∇xVf |2
2 Θ

dx
}

+

∫∫

O

[
e(f) + ν

|∇vf |2
f

]
dvdx

+ᾱ

∫

∂Ω

E(γ+ f) dσx ≤ Cλ,ν

∫∫

O

(1 + |v|2) f dvdx.
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Here and below, we set ᾱ = α in the case of the constant accommodation coefficient (1.2) and ᾱ
is defined just after equation (1.6) in the case of mass flux dependent accommodation coefficient.
Using the elementary estimate (2.6) and (2.7) we conclude that (6.8) holds, as well as the first
estimate in (6.9).

In order to prove the second estimate in (6.9), we fix χ ∈ D(RN ) such that 0 ≤ χ ≤ 1, χ = 1
on B1 and suppχ ⊂ B2 and we apply the Green formula (4.9) written with φ = n(x) · v χ(v) and
β(s) =

√
1 + s. We get

∫ T

0

∫∫

Σ

√
1 + γf (n(x) · v)2 χdvdσxdt =

[ ∫∫

O

√
1 + γf φ dvdx

]0
T

(6.12)

+

∫ T

0

∫∫

O

(√
1 + f

(
v · ∇x + (∇xVf + λ v) · ∇v + ν∆v +N λ

)
φdvdxdt

+

∫ T

0

∫∫

O

( Q(f, f)

2 (1 + f)1/2
+
ν

4

|∇vf |2
(1 + f)3/2

)
φdvdxdt.

Thanks to (6.8) and (6.6) and because ∇xφ ∈ L∞, D2
vφ ∈ L∞, we see that the right hand side

term in (6.12) is bounded by a constant denoted by C′
T and which only depends on CT defined

in (6.8). On the other hand, from the boundary condition (1.1)-(1.2) or (1.1)-(1.6), we have

γ−f ≥ ᾱM(v) γ̃
+
f on (0, T ) × Σ−. Therefore there is a constant Cχ > 0 such that

Cχ

∫ T

0

∫

∂Ω

√
γ̃
+
f dσxdt ≤

∫ T

0

∫∫

Σ−

√
γ̃
+
f ᾱ1/2M1/2(v)χ (n(x) · v)2 dvdσxdt

≤
∫ T

0

∫∫

Σ−

√
γ−f χ (n(x) · v)2 dvdσxdt ≤ C′

T ,

which ends the proof of (6.9). ⊓⊔
We can now specify the sense of the solution we deal with. With DiPerna and Lions [35], [37, 38],

[52] we say that 0 ≤ f ∈ C([0,∞);L1(O)) is a renormalized solution of (6.1)-(6.2)-(1.1)-(1.8) if
first f satisfies the a priori physical bound (6.8) and is a solution of

∂

∂t
β(f) + v · ∇xβ(f) + (∇xVf + λ v) · ∇vβ(f) − ν∆vβ(f) =(6.13)

= β′(f) (Q(f, f) + λN f) − ν β′′(f) |∇vf |2 in D′((0, T )×O),

for all time T > 0, and all β ∈ B5, the class of all functions β ∈ C2(R) such that |β′′(s)| ≤ C/(1+s),
|β′(s)| ≤ C/

√
1 + s, ∀s ≥ 0. Thanks to (6.8) (and (6.6)) we see that each term in equation (6.13)

makes sense. Next, the trace functions f(0, .) and γf defined by Theorem 4.5 through the Green
formula (4.9) must satisfy (1.8) and (1.1), say almost everywhere. Finally, we will always assume
that γf satisfies the additional bound (6.9).

Our main result is the following stability or compactness result. Once again, in order to do not
repeat several times the proof, we establish our result for the full VPFPB system and the full VPB
system, the same holds for the same equation with less terms.

Theorem 6.2 Let (fn) be a sequence of renormalized solutions to equation (6.1)-(6.2) such that
the associated trace functions γfn satisfy (1.1), with the linear reflexion operator (1.2) when ν = 0
and a possibly mass flux depending accommodation coefficient (1.6) when ν > 0 (FP type models).
Let furthermore assume that both the sequence of solutions (fn) and the trace sequence (γfn) satisfy
(uniformly in n) the natural physical a priori bounds

sup
[0,T ]

{∫∫

O

fn

(
1 + |v|2 + | log fn|

)
dvdx +

∫

Ω

|∇xVfn |2 dx
}

(6.14)

+

∫ T

0

∫∫

O

(
e(fn) + ν

|∇vfn|2
fn

)
dvdxdt +

∫ T

0

∫

∂Ω

E
(
γ+fn

M

)
dσxdt ≤ CT .
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If fn(0, .) converges to fin weakly in L1(O) then, up to the extraction of a subsequence, fn converges
weakly in Lp(0, T ;L1(O)) for all T > 0 and p ∈ [1,∞) (the convergence being strong in the FP type
models case) to a renormalized solution f to (6.1)-(6.2) with initial value fin and which satisfies
the physical estimates (6.8). Furthermore, for any ε > 0 and T > 0, there exists a measurable set
A ⊂ (0, T ) × ∂Ω such that meas ((0, T ) × ∂Ω \A) < ε and

γ
+
fn ⇀ γ

+
f weakly in L1(A× RN , dλ1),

the convergence being strong in the case of the Fokker-Planck type equations. As a consequence we
can pass to the limit in the boundary reflection condition (1.1) (and (1.6) in the case of the FP
type equations), so that the trace condition is fulfilled and the trace estimate (6.9) holds.

Proof of the Theorem 6.2. From (6.14) we deduce, extracting a subsequence if necessary, that fn

converges weakly in Lp(0, T ;L1(O)) (∀p ∈ [1,∞)) to a function f and that the local mass density
ρn = ρfn satisfies (see [52])

sup
[0,T ]

∫

Ω

ρn(1 + | log ρn|) dx ≤ CT .

In the case ν = 0, using the velocity averaging lemma of [42, 39] and the standard properties
of the Poisson equation, we also show (see for instance [52] and [62])

ρn −→
n→∞

ρf in Lp(0, T ;L1(Ω)) and ∇xVfn −→
n→∞

∇xVf in Lp(0, T ;W 1,1 ∩ La(Ω))

for all T ∈ (0,∞), p ∈ [1,∞) and a ∈ [1, 2). It is also shown in [52] that

Q±(fn, fn)

1 + δ fn
⇀

n→∞
Q̄±

δ weakly in L1((0, T ) ×OR) and Q̄±
δ ր Q±(f, f) a.e.

In the case ν > 0, since the term on the right hand side of equation (6.13) is bounded in L1,
thanks to the uniform estimate (6.14), and since ΛEfn

is an hypoelliptic operator (see [35], [15],
[49]), we obtain that, say, log(1 + fn) and next fn converge a.e. (see [14] and [35]). We conclude
that fn → f strongly in Lp(0, T ;L1(O)), ∀p ∈ [1,∞). It is also shown in [35] that

Q(fn, fn)

1 + fn
→ Q(f, f)

1 + f
strongly in L1((0, T )×OR).

Therefore, using Theorem 5.1 or Theorem 5.2, we obtain that f satisfies the renormalized equation
(6.13) (first for renormalizing function β ∈ B4 and next β ∈ B5) and that

γfn
r
⇀γf in the renormalized sense on (0, T )× Σ,

as well as
γfn → γf a.e. on (0, T ) × Σ,

when ν > 0. It is worth mentioning that f also satisfies the physical estimate (6.8), see [35, 38, 52]
Next, from (1.1) we have

γ̃
+
fn ≤ ᾱ−1M−1(v) γ−fn on (0, T )× Σ−,

so that
γ̃
+
fn

r
⇀ψ in (0, T ) × ∂Ω, with ψ ≤ ᾱ−1M−1(v) γ−f.

Furthermore, repeating the proof of Lemma 6.1 we get that ψ ∈ L1/2((0, T ) × ∂Ω). Now, we
can apply Theorem 3.9 (with m(v) = M(v), y = (t, x), d̟y(v) = 1Σx

+
|n(x) · v| dv, φn = γ+fn

and dν(y) = dσxdt), which says that for every ε > 0 there is A = Aε ⊂ (0, T ) × ∂Ω such that
meas ((0, T )× ∂Ω\A) < ε and

γ
+
fn ⇀ γ

+
f weakly in L1(A× RN ).
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In the case ν > 0, since we already know the a.e. convergence, this convergence is in fact strong
in L1(A× RN ). There is no difficulty in passing to the limit in the boundary condition so that f
satisfies (1.1) and f satisfies the same physical estimate (6.9) thanks to the convexity argument of
Theorem 2.5. ⊓⊔

Remark 6.3 For the Boltzmann equation and the FPB equation, as well as for the VP system
and the VPFP system when the Poisson equation (6.2) is provided with Neumann condition, we
can prove the additional a priori estimate (2.3) on the trace function. As a consequence, we may
also establish the a priori physical bound (6.8) for a time and position dependent wall temperature
Θ = Θ(t, x) which satisfies

0 < Θ0 ≤ Θ(t, x) ≤ Θ1 <∞.

Therefore, the stability result and the corresponding existence result can be generalized to these kind
of boundary conditions. We refer to [6] and [56] for more details.

Remark 6.4 Let consider the general reflection operator

Rφ =

∫

v′·n(x)>0

k(v, v′)φ(v′) v′ · n(x) dv′(6.15)

where the measurable function k satisfies the usual non-negativity, normalization and reciprocity
conditions

k ≥ 0,

∫

v·n(x)<0

k(v, v′) dv = 1, RM = M,(6.16)

where M is the normalized Maxwellian (1.3). For that reflection operator (6.15), we can prove
that a solution f to equations (6.1)-(6.2)-(1.1) formally satisfies the a priori physical estimate
(6.8)-(6.9) with E replaced by

Ek(φ/M) :=

∫

v·n(x)>0

[
h
( φ
M

)
− h
(Rφ

M

) ]
M v · n(x) dv.

By Jensen inequality one can prove that Ek is non negative, see [40], [30], [43]. However, we do
not know if our analysis can be adapted to this general kernel. Nevertheless, considering a sequence
(fn) of solutions which satisfies the uniform interior estimate in (6.14), we can pass to the limit
in (1.1) with the help of Theorem 5.1 or Theorem 5.2 and of Proposition 3.5.4, and we get that
the limit function f is a solution which trace γf satisfies the relaxed boundary condition (1.10).
That extends and generalizes previous results known for the Boltzmann equation, see for instance
[6], [29], [56].

A Appendix: More about the renormalized convergence

We come back to the notions of renormalized convergence and mainly discuss its relationship with
the biting-L1 weak convergence.

Remark A.1 1. Hypothesis ψ ∈ L0(Y ) in Theorem 3.7 (and (3.4)) is fundamental, since for
example, the sequence (ψn) defined by ψn = ψ ≡ +∞ ∀n does converge in the renormalized sense
to ψ, but (ψn) does not converge (and none of its subsequence!) in the biting L1-weak sense.

2. The (asymptotically) boundedness of (ψn) in L0 does not guarantee that (ψn) satisfies, up to
the extraction of a subsequence, (3.3) or (3.4). An instructive example is the following: we define
u(y) = 1/y on Y = [0, 1] that we extend by 1-periodicity to R, and we set ψn(y) = u(n y) for y ∈ Y .
Therefore, (ψn) is obviously bounded in La(Y ) for all a ∈ [0, 1) and converges to ψ ≡ +∞ in the
renormalized sense.
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Proposition A.2 1. There exists (φn) which r-converges but does not b-converges.
2. There exists (φn) which b-converges but does not r-converges.
3. Given a sequence (φn), the property

for any sub-sequence (φn′ ) there exists a sub-sequence (φn′′ ) of (φn′ ) such that φn′′
ww
⇀φ(A.1)

does not imply φn
ww
⇀φ, where

ww
⇀ denotes either the b-convergence or the r-convergence As a con-

sequence, the b-convergence and the r-convergence are not associated to any Hausdorff (separated)
topological structure.

Proof of Proposition A.2. Points 1 & 3. Let (φn) be the sequence defined by φn = φp,k =
p1[k/p,(k+1)/p] where p ∈ N∗, 0 ≤ k ≤ p− 1 and n = 1 + 2 + ...+ p+ k. Then (φn) is bounded in
L1 and clearly r-converges to 0, but does not b-converge. Moreover, for any subsequence (φn′ ) we
can find a second subsequence (φn′′ ) such that φn′′ b-converges to 0.

Points 2 & 3. Let consider µy = µ and νy = ν two Young measures on Y = [0, 1] such that

∫

R

λµ(λ) =

∫

R

λ ν(λ) =: φ ∈ L1(Y ),

∫

R

TM (λ)µ(λ) 6=
∫

R

TM (λ) ν(λ) ∀M > 0,

and define (un) (resp. (vn)) a sequence of L1 associated to µ (resp. ν), such that for any f ∈ C(R)

f(un) ⇀ f̄ :=

∫

R

f(λ)µy(dλ)
(
resp. f(vn) ⇀ f̃ :=

∫

R

f(λ) νy(dλ)
)
,

see [63, Theorem 5], [69]. Then define (φn) by setting φ2 n = un, φ2 n+1 = vn. In such a way,
we have constructed a sequence (φn) which does not r-converge (for instance does not (TM )-
renormalized converge) but converges to φ in the weak L1 sense, and thus b-converges to φ.
Moreover, for any sub-sequence (φn′), there exists a sub-sequence (φn′′ ) which either converges to
T̄M (if {n′} contain an infinity of even integer numbers) or to T̃M (if {n′} contain an infinity of
odd integer numbers). Because T̄M ր φ and T̃M ր φ when M ր ∞, in both case φn′′ r-converges
to φ, and (A.1) holds. ⊓⊔
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Birkhäuser Verlag (1987)

[46] Y. Guo, Global weak solutions of the Vlasov Poisson system with boundary conditions, Commun. Math.

Phys. 154, 154-263 (1993)

[47] K. Hamdache, Weak solutions of the Boltzmann equation, Arch. Rat. Mech. Anal. 119, 309-353 (1992)

[48] A. Heintz, Boundary value problems for nonlinear Boltzmann equation in domains with irregular boundaries,
Ph. D. Thesis of Leningrad State University (1986)

[49] L. Hörmander, Hypoelliptic second order differential equations, Acta. Math. 119, 147-171 (1967)
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