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Abstract - We prove global stability results of DiPerna-Lions renormalized solutions to the
initial boundary value problem for kinetic equations. The (possibly nonlinear) boundary con-
ditions are completely or partially diffuse, which include the so-called Maxwell boundary con-
dition, and we prove that it is realized (it is not relaxed!). The techniques are illustrated
with the Fokker-Planck-Boltzmann equation and with the Vlasov-Poisson-Fokker-Planck sys-
tem, but can be readily extended to the Boltzmann equation and to the Vlasov-Poisson system
when linear and diffuse boundary condition are imposed. The proof uses some trace theorems of
the kind previously introduced by the author for the Vlasov equations, new results concerning
weak-weak convergence (the renormalized convergence and the biting L' weak convergence),
as well as the Darroes-Guiraud information in a crucial way:.

Keywords - Vlasov-Poisson, Boltzmann and Fokker-Planck equations, Maxwell or diffuse re-
flection, nonlinear gas-surface reflection laws, Darrozes-Guiraud information, trace Theorems,
renomalized convergence, Biting Lemma, Dunford-Pettis Lemma.

1. Introduction and main results.

This paper deals with the initial boundary value problem for kinetic equations with general
diffuse boundary conditions, which include the so-called Maxwell boundary condition. We
treat in detail the Fokker-Planck equation type, in particular the Fokker-Planck-Boltzmann
equation (FPB in short) and the Vlasov-Poisson-Fokker-Planck system (VPFP in short) for
which nonlinear boundary condition can be considered. Our results extend easily to the Vlasov
equation type such as the Boltzmann equation and the Vlasov-Poisson system (VP in short)
with linear boundary conditions. In fact, our result can be extend to very general kinetic
equation.

Our main result is a stability result from which one can deduce, in a very classical way, an
existence result. Precisely, considering a sequence f" of DiPerna-Lions renormalized solutions
to our equation which satisfies a physical a priori estimate and the boundary conditions, we
prove that, extracting a subsequence if necessary, f™ converges to a function f which is also a
renormalized solution of the equation and satisfies the exact boundary condition.

The difficulty here is to pass to the limit at the boundary and to prove that the exact
boundary condition holds (until now only relazed boundary condition had been obtained).
This difficulty is due to the very poor a priori estimate on the trace sequence (vf,). The
a priori estimate that one can derive on (vf,) does not guarantee the L!-weak convergence
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and worse, in the VP and VPFP cases, no L' a priori bound can be get. In this work, we
are not able to prove any L!-weak convergence for the sequence (v f,), but, and this is our
main result, we are able to prove a weak L'-weak convergence in the velocity variable for the
sequence (7, fn). This gives a strong enough information in order to pass to the limit at the
boundary.

The aim of this work is thus to introduce some efficient tools to deal with this boundary
value problem and to establish the above convergence. On one hand we develop a trace theory
adapted to the weak regularity of the force field and to the renormalized formulation of the
equation in the continuity of the previous works of the author [53], [54]. This allows us to give
sense to the trace function and thus to the boundary condition. As a back product, we obtain
the weak-weak convergence of the sequence (v f,). Our second tool is precisely the weak-weak
type convergence (namely the biting L-weak convergence and the renormalized convergence)
that we introduce in a L setting. We say weak-weak convergence in order to express the
fact that they are extremely weak sense of convergence: weaker, for instance, to the L!'-weak
convergence and to the a.e. convergence, which moreover are not associated to any topogical
structure. We establish new Functional Analysis results. In particular, our main convergence
result mentioned above follows from this analysis, using in a crucial way the Darrozes-Guiraud
information.

Let Q be a smooth, open and bounded subset of RY and set O = Q x RY. We consider a
gas confined in Q C RY. The state of the gas is given by the distribution function f(¢,z,&) > 0
of particles, which at time ¢t > 0 and at the position x € Q, move with the velocity ¢ € RY.
The evolution of f is governed by a kinetic equation that we complement with boundary
conditions which take into account how the particles are reflected by the wall. We assume that
the boundary 0f is sufficiently smooth; the exact regularity that we need is that there exists
a vector field n € (Wl"x’(Q))N such that n(x) coincides with the outward unit normal vector
at x € 092. We denote by do, the Lebesgue surface measure on 92 and by d\; the measure
on (0,T) x ¥4 defined by d\; = |n(z) - £|* dédo,dt, where the incoming/outgoing sets Y1 are
defined by

(1.1) Y ={(z,&) € T;En(x)- £ >0} with =00 xRV,

The boundary conditions take then the form of a balance between the values of the traces
v+ f :=1x, vf of f on these sets. In order to describe the interaction between particles and
wall, J.-C. Maxwell [52] proposed in 1879 the following phenomenological law which splits into
a local reflection and a diffuse (or Maxwell) reflection

(1.2) v f = Ry f) = (1= a) Lysf+aDyif on (0,00) x S

Here a € [0,1] is a constant, called the accommodation coefficient, the local reflection operator
L is defined by

(L) (t,2,8) = o(t, z, R §),

with R, £ = —¢& (inverse reflection) or R, £ = £ —2 (€ -n(x)) n(z) (specular reflection), and the
diffuse reflection operator D is

(Do)t = M) dlt.0), Jea)= [ ot O na)de



with M the normalized Maxwellian with temperature (of the wall) © > 0

(1.3)  M(¢&) = N}; _ %5 o that M@En-£dé=1 VYne SV
(27)" 7 ©2 £n>0

This was the only model for the gas/surface interaction that appeared in the literature before
the late 1960s. In order to describe with more accuracy the interaction between molecules
and wall, other models have been proposed [26], [27], [49]. The boundary condition is then
written v f = R (v, f) where R is a general integral operator satisfying the so-called non-
negativity, normalization and reciprocity conditions, see [30] and Remark 4.2. We do not
know if our analysis can be adapted to this general kernel; however, the boundary condition
can be generalized in an other direction [31], [12], and we will assume that the following non
linear boundary condition holds

(1.4) Rop=(1—-a) Lo+aD o, & = a(e),

where a : R — R is continuous and satisfies 0 < & < a(s) <1 for all s € R.

We focus our analysis on the two following situations. In the FPB model, the evolution
of f is governed by the equation

of .
(15) E”_vaf_VAff:Q(faf) IH(0,00)XO,
where Q(f, f) is the quadratic Boltzmann collision operator describing the collision interactions
of the particles by binary elastic shock and v > 0. We refer to [26] and [35], and the reference

therein, for a physical description of the Boltzmann collision operator and of the FPB model.

In the VPFP model, the evolution of f is governed by the system of equations

0
(1.6) a—J; +&- Vo f —divg ((Vme + A¢) f)—l/Agf =0 in (0,00) x O,
where A € R, v > 0 and —V, V¥ is a self-induced force (or mean field) which describes the fact
that particles interact by the way of the two-body long range Coulomb force, so that Vy is the

solution of the Poisson equation with the Dirichlet condition
(1.7) —AVy =py = / flt,x,§)dE on  (0,00) x €, V=0 on (0,00) x 0.
R3

We refer to S. Chandreasekahar [20] for a physical presentation. Finally, we complement these
equations with a given initial condition

(1.8) f(0,.)=fo>0 onO.

We have in mind to adapt the DiPerna-Lions stability theory to the boundary value
problem (1.2) or (1.4). In order to do so we have to collect a priori bounds that one can
obtain for this kind of problem. We study them in the simplest case: we assume that f is
governed by the free transport equation

of

(1.9) E+§~fo:0 in (0,00) x O.



In this case, one can verify, using the Darrozeés-Guiraud inequality [39], that

(1.10) i /O /M) Mo = - [ /E JOuf /M) ME - n(z) dédo, <0,

for any given j : R — R convex. This gives the only Lyapunov functionals which are compatible
with the diffuse boundary condition (1.2) and (1.4). Since we want to deal with the Vlasov-
Poisson term or the Boltzmann collision term, the chose of j reduces to j(s) = s and j(s) =
h(s) := s logs. Taking j(s) = s we get the conservation of mass, and taking j(s) = h(s) we
obtain, coming back to (1.10),

[ HesADME s = [ D /) <R /M) ME - ni) de

L) > / [h(ys £/M) = (1 — &) h(L s f/M) = Gh(D s f/M)] M€ - n(x) d
{&n(x)>0}
Y+ f
>ag(+)

with

/£ PO/ = DO/ da©

K
Ln(m)>0 ( &n(z)>0 M )

where dp,(§) := M & - n(z)d is a measure of probability for any x € 0€, thanks to (1.3).
We obviously deduce, by the Jensen inequality, that £ is a nonnegative functional. When we
assume that fy satisfies the following natural bounds

(1.12) / ; fo (1 + €)% + | log f0|) dédx < o,

i.e. fo has finite mass, energy and entropy, we obtain from (1.10) and (1.11) that, at least
formally, a solution of (1.9)-(1.4)-(1.8) satisfies the ”physical” a priori bound

(1.13) sup //O (14 |€* + [log f]) d§dx—|—/ / E( 7+f )dopdt < Cr.

[0,T]

Of course when we consider the FPB model or the VPFP model the a priori bound is
slightly different (additional terms in (1.13) appear due to the additional terms in (1.5) and
(1.6)), but it is fundamentally of the same kind. In particular, we do not have any global a
priori estimate on the LP norm with p > 1. This is an important difference with what happen
for the VP and VPFP models written in the all space or provided with purely locally boundary
conditions (« = 0). This implies that we must deal with the weaker sense of solution, namely
the renormalized DiPerna-Lions solutions.

Our main result is the following stability or compactness result.
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Theorem 1.1. Let (f,) be a sequence of renormalized solutions to the FPB equation (or to
the VPFP system) which satisfies the physical bound (uniformly in n) and such that the trace
v, fn satisfies the boundary condition (1.4) and the uniform bound

Tt
(1.14) // E(—2")dopdt < Cr ¥n > 0.
0o Joao = M

Then, up to the extraction of a subsequence, f, — f strongly in LP(0,T; LY(O)) for all T >0
and p € [1,00), and f is a renormalized solution to the FPB equation (or to the VPFP
system) which satisfies the physical a priori estimate. Furthermore, for all € > 0 there exists

a measurable set A C (0,T) x 02 such that meas((0,T) x 02\ A) < € and
(1.15) Yo Jn — [ stongly in LY (A xRN, d\y).

As a consequence we can pass to the limit in the boundary condition (1.4), so that the trace
condition holds.

This result can be adapted to the VP system and to the Boltzmann equation with the linear
boundary conditions (1.2).

Theorem 1.2. Let (f,) be a sequence of renormalized solutions to the Boltzmann equation
(or to the VP system) which satisfies the physical bound (uniformly in n) and such the trace
v, [n satisfies the boundary condition (1.2) and the uniform bound (1.14). Then, up to the
extraction of a subsequence, fn, — f weakly in LP(0,T; L*(O)) for all T > 0 and p € [1,00),
and f is a renormalized solution to the Boltzmann equation (or to the VP system) which
satisfies the physical a priori estimate. Furthermore, for all € > 0 there exists a measurable
set A C (0,T) x 02 such that meas((0,T) x 0N\ A) < e and

(1.16) Yofn = [ weakly in LY (A xRN, d\y).

Then, we can pass to the limit in the linear boundary condition (1.2), so that the trace condition
holds.

We do not present the proof of this second stability result since the arguments are similar
to the ones we use in the proof of Theorem 1.1. We just have to combine the trace Theorem
and arguments introduced in [54] with the weak convergence result presented in the section 2
(Corollary 2.4). As a standard consequence of Theorem 1.1 and 1.2, we obtain the existence
of a global renormalized solution to the boundary value problem for initial data satisfying the
natural ”physical” bound.

The Boltzmann equation and the FPB equation for initial data satisfying the natural
bound (1.12) was first studied by R. DiPerna and P.-L. Lions [35,37,38] who proved stability and
existence results for weak global solutions in the case of the entire space (2 = RY). Afterwards,
the corresponding boundary value problem with (partially) diffuse boundary conditions has
been extensively studied in the case of the Boltzmann model [45], [4], [5], [6], [7], [28], [41], [46],
[29], [54]. It has been proved, in the partial absorption case v f = 6 R, f with 6 € [0,1) and
in the completely local reflection case (i.e. (1.2) holds with av = 0), that there exists a global
renormalized solution. But in the most interesting physical case (when § = 1 and « € (0, 1]),
it has only been proved that the boundary condition (1.2) hold in the relaxed form

(1.17) v_f = R(y+f)  on (0,00) x E_.



With regard to existence results for the initial value problem for the VPFP system set in
the whole space, we refer to [14], [15], [16], [19], [22], [23], [34], [57], [64] and [24], [59]. The
initial boundary value problem has been addressed by [13], [21]. We also refer to [6] [3], [11],
[44], [56], [66] for the initial boundary value problem for the VP system and to [56] for the
corresponding stationary problem. We emphasize that in all these works only local reflection
or prescribed incoming data are treated, and to our knowledge, there is no result concerning
the diffuse boundary condition for the VP system or for the VPFP system.

We also mention that there is a great deal of information for the boundary value problem
in an abstract setting in [65], [43] with possibly non linear conditions [10], [55]. Finally, the
Boltzmann equation with non linear boundary conditions has been treated in the setting of a
strong but non global solution framework in [42].

Before explaining the main ideas behind our stability result, Theorem 1.1, we want to
emphasize that a first fundamental question is the sense we give to the trace. The so-called
trace problem has been studied by [9], [32], [2], [62], [43], [18] for the Vlasov equation with a
Lipschitz force field and extended to the Vlasov-Fokker-Planck equation in [21]. In the case
of the VP and the VPFP systems, the a priori estimate on the force field does not guarantee
Lipschitz regularity but only Sobolev regularity. We follow the trace theory developed in [53],
[54] for the solutions of the Vlasov equation with a force field in Sobolev space that we extend
to the solutions of the Vlasov-Fokker-Planck equation. The trace is then defined by a Green
formula written on the renormalized equation.

The main difficulty when we deal with this problem is the lack of a good a priori bound
on the trace. Additionally to the a priori bound of the Darozés-Guiraud information (1.13),
we can prove an L' a priori bound in the case of the Boltzmann equation and an L/2 a priori
bound in the case of the VP system: in both cases, we do not have an a priori information
on the local equi-integrability of the trace. In other words, considering a sequence of solution
(fn) satisfying the uniform natural bound, we can not say that v f, is weakly compact in
L'((0,T) x X,dA1). In order to prove (1.16), which clearly implies that vz\f/n — ;J”, and then
allows to pass to the limit in the boundary condition (at least in the linear case), we proceed in
several steps. First, we deduce from our trace theory that ~f,, converges, up to the extraction
of a subsequence, to vf in the renormalized sense. Let emphasize that this convergence yet
ensures that the relazed boundary condition (1.17) holds. Using the boundary condition and

the a priori boundary estimate we deduce that (v, f,) converges in the renormalized sense
and that its limit belongs to L°. Next, we extend the so-called Biting Lemma to this context,
namely we prove that vz\f/n also converges in the biting L'-weak sense. Last, using the uniform
boundedness of the Darozés-Guiraud information and some convexity argument we prove a
kind of Dunford-Pettis Lemma in the ¢ variable; namely, we obtain the weak L! convergence
in the ¢ variable of (v, f,), which precisely states (1.16). Finally, for Fokker-Planck type
equations we propagate the a.e. convergence in the interior due to the hypoelipticity of the
equation up to the outgoing boundary set. We obtain that v_f, — 7, f a.e. and then deduce
(1.15).

The paper is organized as follows. In section 2, we introduce the weak-weak convergence
and prove the main compactness results concerning renomalized convergence and the biting
L'-weak convergence. In section 3, we state some trace theorems and prove a general stability
result in the interior and ”up to the boundary” for sequence of solutions to the Vlasov-Fokker-
Planck equation. In section 4, we state the a priori estimates, make precise the notion of

6



solution we deal with, and then prove Theorem 1.1. Section 5 is devoted to the proof of
the trace theorems. In the Appendix we state and prove some elementary results concerning
renormalized convergence which are used through away this paper.

2. From weak-weak convergence to weak convergence.

In this section we present some Functional Analysis results which make possible to gain
L'-weak convergence in the ¢ variable from weak-weak convergence and boundedness of the
Darrozés-Guiraud information. The first notion of weak-weak convergence we deal with is
the biting L'-weak convergence. It seems to have been introduced by Kadec and Pelzytiski
[48] and rediscovered and developed in a L' and bounded measure framework by Chacon and
Rosenthal in the end of the 1970’s, see [40], [17]. Let us first recall the definition of biting
L'-weak convergence that we extend to an L° framework.

In the following Y stands for a closed and o-compact topological space, i.e. Y = UgYx
where (Y}) is an increasing sequence of compact sets, that we provide with its o-ring of Borel
sets and with v a Borel measure. We denote by L(Y') the space of all measurable functions
¢:Y — R and by L°(Y) the subset of all measurable and almost everywhere finite functions.
In order to simplify the exposition, we are only concerned with nonnegative functions of L and
L. Thus, in this section, we also denote by L and L° the cone of nonnegative functions in
these spaces, and we do not anymore specify it.

Definition 2.1. We say that a sequence (¢,) of L(Y) converges in the biting L*-weak sense

to € L(Y), and we write 1, i¢7 if for every k € N we can find A = A, C Yy in such a
way that (Ay) is increasing, v(Yp\Ax) < 1/k, ¥, € L*(A) for all n large enough and 1), — 1)
weakly in L'(A). In particular, this implies 1 € L°(Y).

The fundamental result concerning the biting L!-weak convergence is the so-called Biting
Lemma that we recall know. We refer to [25], [8], [17], [40] and [48] for a proof of this Lemma.
We also refer to [1] and [33] for other developments related to the biting L'-weak convergence.
Extension of this theory to multivalued function has been done by Balder, Castaing, Valadier
and others; we refer to [58] for precise references.

Theorem 2.1 (Biting Lemma). Let (1) be a bounded sequence of L*(Y). Then, there
exists 1 € LY (Y) and a subsequence (1) such that 1, Y in the biting L'-weak sense.

Our first result is a kind of intermediate result between the Biting Lemma and the
Dunford-Pettis Lemma. More precisely, we prove a Dunford-Pettis Lemma in the £ vari-
able for bounded sequences (¢,,) of L' which has a Darrozés-Guiraud information uniformly
(in n) bounded. It is based on the Biting Lemma and a convexity argument.

Theorem 2.2. Let consider j : Ry — R a convex function of class C?(0,00) such that
j(s)/s — 400 when s /' +oo and such that the application J from (Ry)? to R defined by
J(s,t) = (j(t) — 4(s)) (t — 8) is conver, w a non negative function of RN such that w(€) — oo
when |£| — oo and, for any y € Y, a probability measure p,, on RN. Assume that (¢,,) is a
sequence of non negative measurable functions on' Y x RN such that

21) 160006 (5 (€ + E0n(3.)] diy ) d0) < s < .
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where € = &; ,, is the non negative Jensen information functional defined by

e e0)= [ i@ -i([ sdw) ¥ 0=6e L@ .du)

Then, there exists ¢ € L1 (Y x RY) and a subsequence (¢,) such that for every k € N we can
find A= Ay C Yy in such a way that (Ay) is increasing, v(Yp\Ar) < 1/k and

(2.3) G — ¢ weakly in  L'(A x RY).

Furthermore, € is a convex and weakly L' l.s.c. functional, and thus

(2.4) [ [ 16006 (14 () + £l )] day (€ dvty) < O,

As we say in the introduction, in general, the sequence of traces (7f,) does not satisfy a
L' a priori bound, but only an L° a priori bound (for instance L'/?), so that Theorem 2.2 can
not be applied (with ¢, = vf,). Of course, the L a priori bound is a very weak information
which do not imply compactness of any kind for the sequence (v f,). But, as we shall see in the
next section, we have one more key information about our sequence of traces (v f,) due to the
fact that precisely ~yf,, is the trace of a solution f,, of a VFP equation and that (f,) converges.
This additional information is that (yf,) converges in the renormalized sense, another weak
weak convergence, that we define now.

Definition 2.2. We define Th(s) := s A M = min(s, M), for any M € N. We say that a

sequence (¢n) of L(Y') converges in the renormalized sense to ¢ € L(Y'), and we write ¢, Ny
or ¢ = r-lim ¢, if there exists a sequence (Thy) of L>°(Y') such that

(2.5) Tr(dn) =Ty o(L®°Y),LYY)) « and Ty /¢ ae inY.

We refer to the Appendix for the definitions of the lim inf and lim sup in the renormalized
sense as well as basic properties concerning the renormalized convergence.

Combining renormalized convergence with the LY a priori bound, we can prove that
Y n =~ f withf € L°, and we can then deduce Y [ L9p with4p € L°. Our second Functional
Analysis result gives a extension of the Biting Lemma in the LY framework.

Theorem 2.3. Let (¢,,) be a sequence of L°(Y) and assume that 1), —~ in the renormalized
sense with 1 € LY(Y). Then, there exists a subsequence (/) which converges in the biting
L'-weak sense to 1 and moreover (1) is asymptotically bounded in L°(Y): for any k € N
there exists 6y, : Ry — Ry such that 0 (M) \, 0 when M /" 400 and for any M there is ni
such that

(2.6) meas{y € Yk, ¥n(y) > M} < (M) Vk e N, Vn > ng .

Remark 2.1. In the L! framework, J. Ball & F. Murat [8] have already proved that the biting
L'-weak convergence implies, up to the extraction of a subsequence, the convergence in the
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renormalized sense. Their proof readily extends to the L° framework. As a consequence,
combining Ball & Murat’s result with Theorem 2.3 we get the equivalence between the biting
L'-weak convergence and the renormalized convergence. More precisely, considering a sequence
(1) of L(Y), it is equivalent to say that, up to the extraction of a subsequence,

Un i\w in the biting L'-weak sense (so that ¢ € L°(Y)),
(2.8) ¥, —1 in the renormalised sense and ¢ € L(Y).

Furthermore, in both cases, the full sequence (v,,) is asymptotically bounded in L°.

Remark 2.2. Let emphasize that, if (1,,) satisfies (2.8) then there is a subsequence ()
which biting L'-weak converges to 1, but in general, the full sequence do not biting L'-weak
converges. A similarly situation holds for the implication (2.7) to (2.8) and we refer to the
Appendix for details.

Let also emphasize that the hypothesis 1 € L°(Y) in (2.8) is fundamental, since for
example, the sequence (1),,) defined by 1, = +00 Vn does converge in the renormalized sense
to ¢ = 400, but (¢,,) does not converge (and none of its subsequence!) in the biting L!-weak
sense.

Let emphasize once more, that the (asymptotically) boundedness of (3,) in L° does
not guarantee that (v,,) satisfies, up to the extraction of a subsequence, (2.7) or (2.8). An
instructive example is the following: we define u(y) = 1/y on Y = [0, 1] that we extend by
1-periodicity to R, and we set ¢, (y) = u(ny) for y € Y. Therefore, (1) is obviously bounded
in L*(Y) for all a € [0,1) and converges to 1) = +oc in the renormalized sense.

A simple consequence of the two preceding results is the following.

Corollary 2.4. Consider a function m : RN — R and a family of measures dw, on RN such
that

20 [ m©dm© =1, [ m©"dm,©<Civy and m(0) = m(e) — o

|§]—o00

Let (¢,,) be a sequence of L°(Y x RYN) which satisfies

(2.10) /Y5<¢T;é?’)'>) dv(y) < O < oo,

with € just like in Theorem 2.2 with du,(§) = m(§) dwy(€), and assume that

(2.11) i) = [ 0u0.dmy () S v with e LY.

Then, there exists ¢ € L*(Y x RN dvdw) and a subsequence (¢,/) such that for every k € N
we can find A = A, C Yy in such a way that (Ay) is increasing, v(Yi\Ax) < 1/k and

(2.12) b — ¢ weakly in  L'(A x RY, dvdw).
As a consequence 1) = / ¢dww and E(p/m) € L1 (Y).
RN
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Proof of Theorem 2.2. From bound (2.1) and the Biting Lemma we know that there exists
a subsequence n’ such that for every ¥ € N we can find a Borel set A = A, C Y, with
v(Yi\A) < 1/k such that

(2.13) / Gnr dpiy(€)  weakly converges in  L'(A).
RN

Thanks to the Dunford Pettis Lemma and (2.13) there is a convex function ® = ®;, such
that ®(s)/s — oo when s — oo and

(2.14) /A(I)</RN O d;@(f)) dv(y) < Oy = Cy(k) < 0.

Furthermore, we can assume that ®(0) = 0, ® = a,, in [m,m + 1] with j'(so) < an, / +0o0,
where sg € N* is such that j(so) > 0 and j'(so) > 0.

Then we define ¥ = ¥y by ¥(s) = j(s) for s € [0, s9] and by induction on m € N, we
consider t,, such that j'(t,,) = am — V' (sm) + j'(sm) and we set s;41 = [tn] + 1, ¥ 1= 57
on [Sp,tm] and ¥ := 0 on [ty,, Sm1] so that ¢, > sp, > m and ¥ (s;41) > am > ¥ (spm).
Therefore, we have built a convex function ¥ such that the function s — j(s) — ¥(s) is convex,
U(s)/s / oo since ¥/ (s) / oo, and ¥ < ® since ¥’ < &', so that

(2.15) /A\IJ( [ ow du) dv < Cs.

The Jensen inequality, written for the function s — j(s) — ¥(s), gives
[ vemdn—v(| oudn) <€)
RN RN

and combining it with (2.1) and (2.15) we get

// \If((bn/)dudngl-l-Cg,
AxXRN

and thus

// UF (¢ ) dpy dv < C1 + Co + // U™ (¢ ) dpiy dv
(2.16) AXRN AXRN
< Cs(k):=C1+Cy+v(A) supj~ < 0.

Therefore, thanks to estimates (2.1) and (2.16) and thanks to the Dunford-Pettis Lemma we
get that (¢,) falls in a relatively weakly compact set of L'(A; x RY) for any k¥ € N. We
conclude, by a diagonal process, that there is a function ¢ € L*(Y x R¥) and a subsequence
(¢n) which converges to ¢ in the sense stated in Theorem 2.2.

In order to prove that £ is a convex functional, we begin by assuming that j € C*(R,,R),
so that £ is Gateaux differentiable. By definition of the G-differential

t—0 t

~ [ d@vdu=i'([ odu) [ wdn
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for any 0 < ¢,% € L>(RY). Therefore, by the Jensen inequality, we have
< VW) - Ve v-0 > = [ Jewydu-J([ sdu [ wau)=zo

so that V& is monotone and thus & is convex on L>®(RY): for any 0 < ¢,9 € L>®(RY) and
any t € (0,1)

(2.17) Elo+ (1 —-t)y) <t&(P)+ (1 —1)EW).

When j ¢ C'(R;,R) we define, for any ¢ > 0, the function j.(s) = j(s + €) — j(¢) which
belongs to C* (R, ,R), and the above computations for the associated functional &. are correct,
so that inequality (2.17) holds for € replaced by &£.. Then, writing inequality (2.17) for £. and
fixed 0 < ¢, € L¥(RY), t € (0,1) and passing to the limit ¢ — 0 we obtain that & is
convex on L®(RY). Now let 0 < ¢, € LY(RY), t € (0,1). If j(¢) or j(¢) ¢ L' (RY) then
tE(p)+(1—t) E(Y) = +o00 and the convex inequality (2.17) obviously holds. In the other case,
we have j(¢), j(1) € L'(RY), we can choose two sequences 0 < (¢,,), (¢n) of L% (RY) such
that ¢, /' ¢ and 1, /" ¥ a.e., and passing to the limit £ — 0 in the convex inequality (2.17)
written for ¢. and . we get, by the Lebesgue convergence dominated Theorem and the Fatou
Lemma,

[ it a=nw) <timint [ o+ -w)

e—0

gt5<¢)+<1—t>5(¢>+j<ANt¢+(1‘t>¢>’

which exactly means that £ is a convex functional in L' (RY). Finally, if 0 < ¢, ¢ € L*(Y xRY)
and t € (0,1), then ¢(y,.), ¥(y,.) € LY(RY) for almost every y € Y and, integrating the convex
inequality (2.17), we obtain that the functional

0<¢ec L} (Y xRY) — F(op) :/YS(¢)dy

is convex. Furthermore, by Fatou Lemma, F is l.s.c. and then F is Ls.c. for the biting L!-weak
convergence, so that (2.4) holds. \

Proof of Theorem 2.3. We first prove the asymptotic L° bound. To do so, we argue by
contradiction. For an arbitrary ¢ > 0 we know that there exists B C Y}, such that v(Y;\B) <
e/2 and v € LY(B). If there is no m € N such that meas {1, > m} < &/2 for all n large
enough, this means that there exists an increasing sequence (n.,) such that

meas {¢,,, > m} >¢e/2 Ym > 0.

Therefore, for any ¢ € N and any m > £ we have

/ Tv(vn,,) > meas {1, > L}0> %E,
B

11



and passing to the limit m — co we get

/?,DZ/TZZEE Ve > 0.
B B 2

Letting £ /' 0o we get a contradiction with the fact that ¢ € L1(B).

Next, we pass to the convergence in the biting L!-weak sense. For any k € N we can

choose A" such that v(Y;\A") < 1/3k and ¢ € L'(A”). Setting / Y dy = Cy we construct
A//
a first subsequence (ny) such that

1
/ Ty(¢n,) dy < Co + 7

Then, for any M € N we have Tas(¥n,) < To(thn,) for £ > M so that Ty < liminf Ty (1, ) and
thus
W < liminf Ty (¢, ).

Here, the lim inf of Ty(1,, ) is taken in the biting L!-weak sense, what we can do since (Ty(1,))e
is a bounded sequence of L'. But since

/ ) lim sup Ty(1y,, ) dy < lim sup / Ty(n,) < / Y dy,

2 1

we see that Ty(¢n,) L in LY(A"). Using Theorem 2.1 there is A’ such that |A"\ A’| < 1/3k
and
Ty(n,) — 1  weakly in L*(A").

Furthermore, since (1,,) is asymptotically bounded in L°(Y") we have, up to the extraction of
a subsequence again,

meas{tn, # Ty(Yn,)} = meas{yy, > £} < 6,(¢) — 0.

L—o0

Therefore, we can choose an other subsequence, still noted (¢,,), such that Z; = {V/ >
L /4y, # Ty(¢n,)} and satisfies

meas(Z,) < Z meas{t,, > (} P 0.
> —00

Finally, choosing L large enough such that meas (Z1) < 1/3k and setting Ay := A’ N Z§, we
have |Y;\A| < 1/k, ¥, € L*(A) for all £ > L and

Vn, = To(Pn,) — 1 weakly in L'(A).
We conclude thanks to a diagonal process. 7

Proof of Corollary 2.4. Thanks to Theorem 2.3 we know that there exists a subsequence
(1n) such that for every k € N we can find A = Ay C Y} satisfying (Ag) is increasing,
Z/(Yk\Ak) < 1/k and

(2.18) Yy is weakly compact in  L'(A).

12



Next, we come back to the proof of Theorem 2.2, and estimates (2.16). Written with the new
notation, we have

(2.19) //AXRN o E(%) dww,dv < Cs,

where we have set U (s) = sZ(s). Of course we can assume, without loss of generality, that
= is not decreasing, Z(s) /" oo when s /" 0o and Z(s) < s'/2. Then, we deduce from (2.19)

— (bn’
(2.20) //AX]RN O H(m(O)) dw, dv < Cs,

and

/ b E(m(€)™Y?) dew, dv <

AxXRN

(2.21) //A D B ™) (L, mier sy + Lo, zmiepray) demy dv

xRN

S //AxRTJ\r’L<5>1/4 dwy dV+/ ¢n H<7’f§€§)) dwy 1% < 04 ’Yk| + 03

AXRN

Combining (2.18), (2.20) and (2.21), we deduce by the Dunford-Pettis Lemma that (¢,,)
belongs to a weak compact set of L'(A x RY, dvdw), and we conclude as in the end of the
proof of Theorem 2.2. m

3. Trace theorems for solutions of the Vlasov-Fokker-Planck equation.

In this section we extend to the VFP equation the trace results established in [53], [54
for the Vlasov equation. Given a vector field F = E(t,x,§), a source term G = G(t,z,§), a
constant v € R and a solution g = g(t, z, ) of the Vlasov-Fokker-Planck equation

_Jg
t+£ Veg+E-Veg—vAegg=G in D,

we show that g has a trace yg on the boundary (0,7') x ¥ and a trace 7:g on the section
{t} x O for all t € [0,T]. These trace functions are defined thanks to a Green formula. We
note indifferently v:g = g(¢, .).

The meaning of equation (3.1) is of two kinds. In the first case, we assume that g €
L>(0,T; LP (O)) with p € [1,00] is a solution of (3.1) in the sense of distributions, i.e.,

loc

(3.2) /// (g Aho + G ¢) dedadt = 0,

for all test functions ¢ € D(D), where we have set

99

(3.3) ANpo=

FE-Vap+ E-Ved+ v Acg + (diveE) ¢,
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In this case we assume

E e L'(0,T; W5 (0)nWhHO) N LL,(0)),

loc

diveE € L'(0,T; L¥ (0)), G e L}, .([0,T] x O),

loc

(3.4)

where p’ € [1, 0] stands for the conjugate exponent of p, given by 1/p + 1/p’ = 1, and we
make one of the two additional hypothesis

T
(35) / / |V§g|2 dﬁdmdt < CT,R
0 JORr
or
T
0 JORr

Remark 3.1. The bound (3.6) is the natural bound that appears when we consider, for example,
the initial value problem with initial datum go € LP(O) when Q = RY or when  is an open

subset of RV and specular reflections are imposed at the boundary.

In the second case, we assume that g is a renormalized solution of (3.1). In order to
make precise the meaning of such a solution, we must define some notation. We denote by
Bj the class of all functions 3 € W2 (R) such that 3 has a compact support and by By the
class of all functions 3 € I/Vfocoo (R) such that 3” has a compact support. Remark that for
every u € L(Y) and 8 € By one has B(u) € L*(Y). We shall write g € C([0,T]; L(O)) if
B(g) € C([0,T); L}, .(O)) for every 3 € By.

We say that g € L((0,7) x O) is a renormalized solution of (3.1) if for all 5 € B; we have
(87 EeL'0,T:W,;(0)), 8(9)G € Lige([0,T] x 0), 8"(9)[Ve gl € Lioe([0,T] x O),

loc

and f((g) is solution of
(3.8) Mg Blg) =08'(9) G —vp"(9)[Vegl® inD'(D).

We can now state the trace Theorems that we use in this paper and that we prove in
section 5.

Theorem 3.1. (The case p = ). Let g € L>°([0,T] x O) be a solution of equation (3.2)-
(3.4)-(3.5). Then for every t € [0,T] there exists v1g € L>°(O) and g defined on (0,T) x X)
such that

(3.9) g € C([0,T]; Lf,.(0)) Vae[l,00) and ~ge L>([0,T] x2),

and satisfying the Green formula
t1
| [ @850+ 506 v 5"0) Ve g 0) decit =

=[] setrpoda] + [ J[ 01900 nta) ¢ dedoir

14
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for all to, t, € [0,T], all B € W22(R) and all test function ¢ € D([0,T] x O).

loc
Remark 3.2. A fundamental point, which is a consequence of Green formula (3.10), is the
possibility of renormalizing the trace function, i.e.

(3.11) v B(9) = B(vg)

for all 3 € W%>(R). More generally, (3.11) holds as soon as v 3(g) is defined. This is the
property that will allow us to define the trace of a renormalized solution.

Theorem 3.2. (The case p € [1,00)). Let g € L>(0,T; LY (0)) be a solution of equation

(3.2)-(3.4)-(3.6). Then for everyt € [0,T] there exists y.g € LP(O) and g defined on (0,T") x
Y such that

(3.12) 19 € C([0,T]; Ljpe(0))  and g € Liy ([0, T] x 3, dAa),

and which satisfies the Green formula (3.10) for every to, t1 € [0,T], every 5 € By and every
test function ¢ € D([0,T] x O), and also for every to, t; € [0,T], every 3 € By and every test
functions ¢ € Do([0,T] x O), the space of functions ¢ € D([0,T] x O) such that ¢ = 0 on
(O,T) X 20.

Theorem 3.3. (The renormalized case). Let g € L((0,7) x O) satisfy (3.7) and the
equation (3.8). Then for everyt € [0,T] there exists vrg € C([0,T]; L(O)) and vg € L([0,T] x
Y)), satisfying the Green formula (3.10) for all to, t1 € [0,T], all 5 € By and all test functions
¢ € D([0,T] x O). Furthermore, if (3.8) make sense for at least one function (3 such that
B(s) / 0o when s / oo, then of course vig € L°(O) for anyt € [0,T] and vg € L°([0, T] xX).

We present now a quite general stability result in both the interior and at the boundary
for a sequence of renormalized solutions to the Vlasov-Fokker-Planck equation on a bounded
domain. This will be a key argument in the proof of Theorem 1.1. In some sense, this result
says that renormalized convergence, as well as a.e. convergence, can be propagated from the
interior to the boundary. Notice that this propagation property does not obviously hold for
the L'-weak convergence.

Theorem 3.4. Consider three sequences (gn), (Ey) and (G,) which satisfy, for all B € Bs
the class of functions of W2 >°(R) such that |3'(s)| (1+s)~1 € L>®(R) and |3"(s)] (1+5)"2 €
L>(R),

(3.13) gn — g strongly in L*(0,T) x ©O) and is uniformly bounded in L°°(0,T; L'(0)),

(3.14) E, —~ E weakly in L'(0,T; I/Vllocl((’))),

(3.15) B (gn) Gn — B'(9) G weakly in L*((0,T) x Or) VB3 € Bs, VR >0,

T 2

’vﬁgn’
3.16 ——— dfdxdt < Crp,
( ) /0 o 1+ gn Edxdt < Cr

and the renormalized Vlasov-Fokker-Planck equation
(3.17) Ap, Bgn) = 8'(g9n) G = 8"(9n) [Vegnl®  in D'((0,T) x 0),

for which clearly each term make sense thanks to (3.13)-(3.16). Then g € L>(0,T; L*(0)) is
a solution of

(3.18) A B(g) =6'(9)G—B"(9) [Veygl>  inD'((0,T) x O)
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for all B € Bs. Furthermore, the traces vg, and g defined thanks to the Theorem 3.3 satisfy

(3.19) Ygn =g in the renormalized sens, and Yign — Y+g a.e.

We shall need the following auxiliary results in the proof of Theorem 3.4.

Lemma 3.1. Let (u,) be a bounded sequence of L*(Y) such that u, — u weakly in L*(Y).
Then, there ezists u € (C.(Y'))', a nonnegative measure, such that, up to the extraction of a
subsequence,

[un|? = |ul* + p weakly in  (C.(Y))".
We note C.(Y) the space of continuous functions on Y with compact support and Cy(Y") the
space of continuous and bounded functions on Y.
Lemma 3.2. For any 0 € (0,1) and M € (0,00) we set

_ _J1/0(efs—1) if s< M
@(5)—(1)M,9(3) .—{(S_M)€9M+1/9(66M_1) ZfSZM

Then
P'(s) > 1, ®ofB(s) /s when M /o0, 6 /1,
L= 4 e0-DM Vs > 0.
14+ s

and 0< —(Pof)’(s) <

Lemma 3.3. Let g € L>(0,T; LY (O)) be a solution to the Viasov-Fokker-Planck equation

loc

Apg=G+pu inD'((0,T)x O),

with B € LY0,T; WP (0)), G € LL ((0,T) x 0)) and p € D'((0,T) x O), u > 0. For a

loc loc
given mollifer py in RV, we set

Gk = g *t Pk *z Pk *¢ Pk and Kk = W *¢ P *g Pk *¢ Pk-

Then gy, satisfies the Viasov-Fokker-Planck equation

Ag gr = Gk + pr in all compact set of (0,T) x O,

with G, — G strongly in L}, ([0, T] x O)).
The proof of Lemma 3.1 is classical, the one of Lemma 3.2 is elementary, and we refer to [33,34]

for the proof of Lemma 3.3.

Proof of the Theorem 3.4. Step 1: Proof of (3.18). This step is inspired from [35] and it
is clear from the theory of renormalized solution [36] that it is enough to prove (3.18) only
for B(s) := log(l + s). With the notation h,, := ((g,) and h = B(g) we have V¢h, =

V=8"(gn) Vegn — /—8"(g) Veg = Veh weakly in L2((0,T) x O) so that, thanks to Lemma

3.1, there is a bounded measure p > 0 such that, up to the extraction of a subsequence,

(Vehn|? = |Veh|? + u weakly in D'([0,T] x O). Passing to the limit n — oo in (3.17) we get
ApB(g) =B'(9)G = B"(9) Vgl + 1 in D'((0,T) x O).
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We just point out that
E, B(gn) = EB(g)  weakly in L((0,T) x 0),

since ((gn) — ((g) strongly in L*°(0,7T;LP(O)) for all p < oo and E, — E weakly in
LY(0,T; LY(0O)) for every q € [1, N/(N —1)). We prove now that x =0 in (0,7) x O.

With the notation introduced in Lemma 3.3 we have

Ap ®(hi) = @' (he) (B'(9) G — B"(9) [Vegl?) *t,2.6 o — " (i) [Vehw|® + @ (hi) g
Using that ® > 1 and passing to the limit k — oo we get

Ap (2o B)(g) = '(B(g) B'(9) G — (2'(B(g)) B"(9) + " (B(g)) (6'(9))%) [Vegl* +
and then
(3.20) Ap (®oB)(g) — (208)(9)G > (®08)"(9)|Vegl* +n  inD'((0,T) x O).

In order to have an estimate of the left hand side we come back to equation (3.17), and we
write

Ap, ®0B(gn) = (20 0) (gn) Gn = (20 8)"(ga) [Vegnl®  in D'((0,T) x O)

since ® o 3 € Bs. Then, for all x € D((0,7") x O such that 0 < x <1 we have

‘/OT/O (® 0 B(gn) Az, X + (® 0 B) (gn) G X) dgdmdt‘ _

T
. / /@ (® 0 B)"(gn) [Vegnl? x dédurdt
0
T 2
<[1—0+e07DM / Md{dmdt.
0 @) 1 +gn

Passing to the limit n — oo we get, thanks to (3.16),

T
’/O /O(@oﬁ(g) A X+ (@0 B)(g)GY) dgda:dt’ <[l 940D 0y

Then, coming back to (3.20), we have

| [ xdns= [ [ (@es@nex+ @op)(e)Gx+(@00)(g)[Vegl) dedad
0JO 0JO

<2l—0+e" VM Cop Voe0,1], M >0,

and letting M — oo and then § — 1 we obtain yu = 0 on supp x, which is precisely to say that
uw=0in (0,T) x O.
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Step 2: Proof of (3.19). We fix ¢ € D((0,T) x O) such that 0 < ¢ < 1. By definition of g,
we have

’/OT//E ® o fB(vgn) ¢ n(x) - § didopdi

_ /T/ (® 0 B(gn) Ap, X + (@0 B) (9n) Gn X) d&da:dt’ _
0 JO

T T 2
— / / (@0 B)" (gn) |Vegn|? x dédzdt < [1 — 0 + =DM / Negnl® dédadt.
0o Jo 0o Jo 1+gn

We note ® o 3 the L'-weak limit of ® o 3(7 g,). Passing to the limit n — oo we get

’/OT//ECI)—C”B“f’ n(z) - € dédoydt — /OT/O(@ o B(g) A x + (20 B)(9) GX) d{dmdt’ <
<[1-0+ 6(0—1)M] Cr.

and thus

‘/ //(I)oﬂ¢ gdgdaxdt—//Qoﬁ ) Ap X

+((®05)(9)G — (®08)(9) [Vegl?) x] dedudt] < 2[1~ 0+ =DM Cp.

Once again, by definition of vg, we obtain

‘/OT//E(‘I’—W—‘I’OM’YQ))(?n(x)-édgdaxdt’§2[1_9+€(9—1)M]CT .0

M—o00,0—1

and ® o3/ r-lim~yg, since ® o 3(s) /s when M " oo, 6 \, 1, so that vg = r-lim yg,.
In order to prove the a.e. convergence we only have to show, thanks to Proposition 6.3.3,
that, up to the extraction of a subsequence,

(3.21) r-liminf B(v+9n) = B(v+9)-

Using Lemma 3.1 and the first step, we can pass to the limit in (3.17), up to the extraction of
a subsequence, and we get

/ / 56 n(z) - dédoydt / / (9) A x + (B(9) G+ B"(9) [Vegl? + ) X) dédadt

/ // (vg) n(z) - & + p) ¢ dédoydt,

where B = w-limB(vg,) is the weak limit in L'((0,T) x ) of B(vg,). We deduce that
Bn(x)-&=pP(vg) n(x) £+ pon (0,7) x 3, and in particular

B=pB(v+9) on (0,T)xX4.
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Since r-liminf 3(y+gn) = 3 this prove (3.21). 0

4. A priori estimates and proof of the main result.

In this section we derive the a priori physical bound, then make precise the exact meaning
of renormalized solution we deal with and finally present a proof of Theorem 1.1. In order to do
not repeat twice the exposition, we consider the full Vlasov-Poisson-Fokker-Planck-Boltzmann
system (VPFPB in short)

of

(41

+ 6V, f —dive (VoVy + A6 f) = v Acf = Q(f, f) in (0,00) x O,

where V; is given by the Poisson equation (1.7). We assume that f satisfies the boundary
condition (1.4) and the initial condition (1.8), where fy is assumed to verify (1.12) and

(4.2) / IVVi|2de < oo with — AV = / fo(z,&)d€ on Q, Vi =0 on 0.
Q R3

We claim that a solution f of (4.1)-(1.4)-(1.8), which is sufficiently regular and decreasing at
the infinity in such a way that all integration (by parts) that we shall perform are allowed,
satisfies

sup //f 1+ £ + |log f1) dfdm+/|V5Vf]2dx}

/// |V5f12)dgd dt+//m 7+f)daxdt<CT<+oo

where e(f) > 0 denotes the usual entropy dissipation term. We do not give the explicit
expression for the Boltzmann collision operator that we find in [26] or [37] for example. The
precise assumptions we make on the cross section are those introduced in [37]. We only recall
that the collision operator has the following remarkable properties

(4.3)

1
(4.4) QUM | € | de=0,
k2 €12
and the entropy production term e(f) satisfies
(4.5 [ etnae=~ [ atr.possas

First, simply integrate equation (4.1) in all the variables, and we get the conservation of the
mass

(4.6) //O f(t,.)dgdx:/ofo déde Wt > 0.



Next, setting hps(s) = s log(s/M), we compute

QhM(f) + &Vaha(f) + dive (B + Xha (f)) — v Achn (f) =

(
ot
= Wiy (f) QUf, f) = v hia () IVefI? = f(E+XE) - Ve(log M)
+ A (f) = f I () + 20 Vef - Ve(log M) + v f A¢(log M),

where we denote h'y,(s) = 1+ log(s/M). We integrate this equation using collision invariants
(4.4) and entropy production (4.5), to obtain

// hot (f dgda:+// |fo|2 dgdx+// hat(Vf) € - n(z) dédo, =
/E 9da:+//{A %— 6}fd§da:,

i) = [ €St e

where

We first remark that integrating equation (4.1) in the velocity variable we have

8p—|—dl?)xj =0 on (0,00) x €,
ot
and therefore

_ Vi op |V Vil®
(4.8) /QE dx = /VVf o) O ot dr = dt 56 dz.

Next, combining (4.7), (4.8) and the boundary estimate (1.11) we obtain

v e [ B e+ 5

ta [ &0y fdo, < Cn, / /O (1+ [¢?) £ deda.

o2

Finally, using the elementary estimate

2
/f('ﬂ +rlogfr)d§<cM+/ har(f) d,
RN

N

(that one can find in [51] for example), we obtain (4.3) thanks to the Gronwall Lemma.

We can now specify the sense of the solution we deal with. With DiPerna and Lions [35],
[37,38], [50] we say that 0 < f € C(]0, 00); L*(0O)) is a renormalized solution of (4.1)-(1.4)-(1.8)
if first f satisfies the a priori physical bound (4.3) and is a solution of
0
5P T EVLBf) + (VaVi +A8) - VeB(f) — v Ach(f) =

=B8N QUN+AN ) =vB"())[Vefl* in D'((0,T) x 0),

20
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for all time 7' > 0, and all 8 € By, the class of all functions 8 € C?(R) such that |3”(s)| <
C/(1+s), |0 (s) <C//1+ s, Vs> 0. Since for any R > 0 there is a constant Cr such that

QU f)
/BR md’5<0/ (L+1€°) £ + e(f)] de,

(we refer to [63] for the proof of this claim and to [50] for a related result), we see that each term
in equation (4.10) makes sense. Next, the trace functions f(0,.) and v f defined by Theorem
3.3 and the Green formula (3.10) must satisfy (1.8) and (1.4), say almost everywhere.

Before passing to the proof of Theorem 1.1, we would like to emphasize that v, f satisfies an
additional bound which is a consequence of the a priori bound (4.3), the boundary conditions
(1.4) and the Green formula (3.10).

Proposition 4.1. If f is a renormalized solution of (4.1)-(1.4) then there exists a constant
C’. which only depends on the physical bound Cr in (4.3) such that

T —_——
(4.11) / / \/ 7 f dopdt < Crp.
0 Jon

Proof of Proposition 4.1. We fix y € D(RY) such that 0 < x < 1, x = 1 on B; and supp x C Bs.
Then, the Green formula (3.10) written with ¢ = n(x) - £ x(§) and 5(s) = V1 + s gives

/OT//E VI xdra(t, z,€) < CF

with C7. which depends on Cp. But, from (1.4) we have vy f > @M({);j on (0,7) x ¥_,
and therefore there is a constant x > 0 such that

R/OT/aﬂ\/%ifdgmdtg /OT//Z \/%if@w MY2(€) x dha(t, z, €)
S/OT//E_ \/,foxdh(t,a:,g)gc;. j

Proof of the Theorem 1.1. Let (f) be a sequence of renormalized solutions to the VPFPB
system (4.1)-(1.4)-(1.8) such that for any T > 0 there is a constant Cp

sup{// Fu (14 1€ + | log fn|)d§da:+/ |vxvfn|2dx}

[0.7]
/ // Ingnl2 (fn>)d§dmdt+/ E(V4 fr)doydt < Cr;

thus, we may assume without loss of generality, and extracting a subsequence if necessary, that
fn converges weakly in LP(0,T; L'(O)) (Vp € [1,00)) to a function f. Furthermore, since the
renormalized term on the right hand side of equation (4.10) is bounded in L', thanks to the
bound (4.12), and since Ag is an hypoelliptic operator (see [35], [15], [47]), we obtain that, say,

(4.12)
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log(1 + f™) and next f" converge a.e.. We conclude that f* — f strongly in L?(0,T; L'(0)),
Vp € [1,00). Moreover, we can show from (4.12) that

sup / pn(1+ [log pn|) dz < Cr,
0,1 Ja

(see [50]) and then that V,Vy — V,Vy strongly in L'(0,7; W11(€2)) (see for instance [50]
and [60]). It is also shown in [35] that

QU fa) _ QUL

T T strongly in  L*((0,T) x O).

Therefore, we are able to apply Theorem 3.4, and we obtain that f satisfies the renormalized
equation (4.10) and that

(4.13) Yfn=~f in the renormalized sense, and v, f, — v+ f a.e. on (0,7) x 3.
Next, from (1.4) we have
(4.14) v fn <@ tMTYE A f, on (0,T)x ¥,

so that -
Y fa=t in (0,7)x0Q, with ¢ <a 'M ') f.

Furthermore, repeating the proof of Proposition 4.1 we get v € LY/2((0,T) x 09). Now, we
can apply Corollary 2.4, which says that for every € > 0 there is A = A, C (0,7) x 092 such
that meas ((0,7") x 0Q\A) < € and

Yy fo =7, f weakly in L'(A x RY).

Since we already know the a.e. convergence, this convergence is in fact strong in L!(A x RY).
There is no difficulty in passing to the limit in the boundary condition so that f satisfies (1.4)
and f satisfies the same physical estimate (4.3) thanks the convexity argument of Corollary
2.4, [35], [38]. |

Remark 4.1. For the Boltzmann equation and the FPB equation, as well as for the VP system

and the VPFP system when the Poisson equation (1.7) is provided with Neumann condition,
we can prove the following additional a priori estimate on the trace

(4.15) [ [+ 16 nwagaonar < o

As a consequence, we also establish the a priori physical bound (4.3) for time and position
dependent wall temperature © = ©(t, z) which satisfies

0< 0y <O(tzr) <O <o

Therefore, the stability result and the corresponding existence result can be generalized to
these kind of boundary conditions. We refer to [6] and [54] for more details.
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Also notice that thanks to estimate (4.15) we can propose, in this case, a simpler proof of
Theorem 1.1, using directly Theorem 2.2 instead of the Corollary 2.4.

Remark 4.2. Just a word about the general reflection operator

(4.16) R¢ = k(€ €) o(€) € - n(x) dE’

& n(x)>0

when k satisfies the usual properties

(i k>0,

i k(&€ dE =1,
@ /5 PRCUL
(44 RM = M,

where M is the normalized Maxwellian (1.3). In this case, we can prove that a solution f
of (4.1)-(1.2) provided with the reflection condition (1.1)-(4.15) formally satisfies the a priori
physical estimate (4.3) with £ replaced by

Ex(¢/M) = /5 ( )>O[h(%) —h(%)] M ¢ -n(z)de.

By Jensen inequality one can prove that & is non negative, see [39], [30], [41]. It is not
so clear how to adapt the analysis of section 2 in order to get weak L' convergence in the
¢ variable for sequence (¢,) such that £ (¢,) is bounded in L'((0,7) x 9€2). Nevertheless,
considering a sequence (fy,) of solutions of one of the kinetic equations (Boltzmann, VP, FPB
or VPFP) just like in Theorem 1.1 and without assuming that (1.14) holds, we obtain, using
Proposition 3.4, that vf, —~f. Passing to the limit n — +o0o thanks to Proposition 6.3.4
we have that +f satisfies the relaxed boundary condition (1.17). As a conclusion, with the
analysis presented here, we are able to prove existence result with relaxed boundary condition
(1.17) for all theses equations and for general collision operator k satisfying (i), (ii), (iii). This
extends and generalizes previous results known for the Boltzmann equation, see for instance

(6], [29], [54].

5. Proof of the trace theorems.

We begin with some notation. For a given real R > 0, we define B = {y € RY / |y| < R},
Or=0QNBgr, Or =QrxBgr, Dr = (O,T) XOgr, Xp = (3QQBR> X BrandI'g = <O,T> X YR.
We also denote by L%" the spaces L*(0,T; LY(Og)) or L(0,T; L*(Qg)), and L*" the spaces
La(O,T; Lb (@)) or La(O’T; Lloc(Q))'

loc
Proof of Theorem 3.1. First step: a priori bounds. In this step we assume that g is a solution of
(3.1) and is "smooth”. Precisely, g € W1(0,T; W1°°(Q; W2 (RY))), in such a way that the
Green formula (3.10) holds. The trace yg in (3.10) is defined thanks to the usual trace theorem
in the Sobolev spaces. We shall prove two a priori bounds on g. Let define 3 € W2’°°(R) by

loc

. 1 ifs>1 .
Jls|—1/2 if|s|>1 i el ven O ifs| >1
5(5)—{82/2 if |5 < 1 so that 3'(s) = ¢ s ¥f]s]§1 and 0" (s) = 1 fls| <1
-1 ifs<-1
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and thus 8 € B;. Fix R > 0 and consider x € D(O) such that 0 < x <1, x = 1 on Or and
supp X C Op4+1. We set ¢ = x n(x) - £. The Green formula (3.10) is then written

// B(vg) x (n(z) - €)? dedopdr = — //5 ¢dxdgr
/// 9) Mg+ (8'(9) G — v B"(9) Ve gI?) ¢) dedudt.

We deduce from it a first a priori bound: there are some constants vz and Cr such that

e | / / gl (n(e) - dedogir < / / [ 80r0) (n(e) € dedondn

(5.1) gCR///O (9> A+ |E|) + |G| + v |Ve g?) dédadt

e [ /O + gA(T,.)) dade,

where we have used the fact that for u € L°°(Yg) with Yz = Op or X i one has

fm/ W < [ B < ’ml/ 2.

Let K C O be a compact set and consider ¢ € D(O) such that 0 < ¢ <1, ¢ =1on K
and R > 0 such that supp ¢ C Or. We fix ¢y € [0,T]. The Green formula (3.10) becomes

//5 (t1,.)) & dad€ = //ﬁ (to,.)) ¢ dade
/ // 9) Apé + (8'(9) G — v 3"(9) Ve gI?) ¢) dédadt,

and we get a second a priori bound

fyR//K|g|(t1,.)d:Ed§§CR//OR g*(to,.) dzdé¢

OR t

Second step: regularization and passing to the limit. Let us now consider a function g which
satisfies the assumption of Theorem 3.1. We define the mollifer p; by

pk<z> = kN p<k Z) >0, ke N*7 pE D<RN)7 supp p C B17 /N p(Z) dz = L,
R

and we introduce the regularized functions gi = g %1 pr *¢ px, Where * stands for the usual
convolution and %, j for the convolution-translation defined by

(1t 1) (@) = 2o h))(@) = [ ulo) e = £ nla) =) o,
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for all uw € L, () and hy, € L*(RY) with supp hy, C By .

loc

Lemma 5.1. With this notation one has gy € W (0,T; Whoe(Q; W2°(RY))) and
(5.4) Aggr = Gy dans D'(D),

with Gy, € L}, .((0,T) x O) for all k € N. Moreover, the sequences (gi) and (Gy) satisfy

loc

(5.5) (gx) is bounded in L*°((0,T) x O), gr — g a.e. in (0,T) x O,
' Vegr — Veg in L7 .([0,T] x O) and Gy — G in L,.([0,T] x O).

The proof of Lemma 5.1 is similar to the proof of Lemma 1 in [53] and of Lemma II.1 in [36].
We refer to [53] and [36] for details.

From Lemma 5.1 we have that for all k, ¢ € N* the difference g, — g¢ belongs to W1t (0, T;
Whee(Q; W2°(RN))) and is a solution of

(56) AE(gk — ge) = Gk — Ge n D’(D)

We know, thanks to (5.5), that gx(t,.) converges to g(t,.) in L? (O) for a.e. t € [0,T]; we fix
to such that gx(to,.) — g(to,.). Moreover, up to a choice for the continuous representation of
gk, we can assume that g € C([0,T], L}, .(O)). Therefore, the estimate (5.2) applied to gi —ge

in to and the convergence (5.5) imply that for all compact sets K C O we have

(5.7) sup [[(gx — 90)(t, v (xy — 0.
t€[0,T] k,4—4oc0

We deduce from this, that there exists, for any time ¢ € [0, 7], a function ~g such that gx (¢, .)
converges to ;g in C([0,T]; L, (O)); in particular,

loc

g(t,x, &) = vg(x,§) for ae. (t,x,§) € D.

Thus, we also have gi(t,.) = (1 9) *z.k Pk *¢ pi a.e. in D, and since these two functions are
continuous, the equality holds for all (¢,z,£) € [0,T] x O and k € N*, so that gi(¢,.) — 79 in

LY (O) for all t € [0,T7].
Using now the estimate (5.1), applied to gx — gr, and the convergence (5.5) and (5.7) we

get that
T
/ // vgr — vge| (n(x) - €)* dédo,dt — 0,

for all R > 0. We deduce that there exists a function vg € L}, ([0,T] x Z, (n(z) - £)* d¢do,dt),
which is the limit of ygy in this space. Moreover, since ||Ygx|/z~ < ||gk|/z~ is bounded, we
have yg € L*>((0,T) x O).

Finally, we obtain the Green formula (3.10) writing it first for g5 and then passing to the
limit £ — oo thanks to the convergence previously obtained. Uniqueness of the trace function

follows from the Green formula. 7
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Proof of Theorem 3.3. The proof is based on Theorem 1 and on an monotony argument. This
is exactly the same as the one presented in [54] in the case of Vlasov equation. Let (8ar)ar>1
be a sequence of odd functions of B; such that

Bu(s) = 4 ° if s € [0, M]
MW ZAIM+1/2 ifs>M+1,

and |Bar(s)] < |s| for all s € R. The function ap(s) := 5M(5]T41+1(5>) is well defined, with
the convention ap(s) = M +1/2if s > M +3/2 and ap(s) = —M —1/2if s < —M — 3/2,
and also belongs to By. Furthermore, one has aps(s) < s for all s > 0 and ay,(s) > s for all
s < 0. We will construct the trace function vg as the limit of (y8a(g)) when M — oo, that
one being defined thanks to Theorem 3.1. Indeed, the condition (3.6) implies that

Veg gz € Line((0,T] x O),

and then V¢Ba(g) = Bi,(9) Veg € L2 ([0,T] x O) in such a way that Ba(g) satisfies the

loc
assumption on Theorem 3.1. We define ng) ={(t,x,&) € (0,T) x X, £vBm(g)(t,z,&) > 0}
and I‘E\(/p = {(t,x,§) € (0,T) x X,v0nm(g)(t,x,§) = 0}. Thanks to the definition of oy,
and the renormalization property (3.11) of the trace, one has v Gy (9) = vam(Bu+1(9)) =
an (v Bam+1(g)). We deduce that, up to a set of measure zero,

r0 =M () =r" and 10 =r? forall M>1.
Therefore the sequence (v Oar(g))ar>1 is not decreasing on I‘gﬂ and not increasing on Fg_).
This implies that By (g) converges a.e. to a limit denoted by g and which belongs to
L(]0,T] x%). Obviously, if (3.8) holds for one function 3 such that 8(s) /" +oo when s / £oo,
then ((vg) € LY((0,T) x 3,d\2) and vg € L°((0,T) x ¥). In order to establish the Green
formula (3.10) we fix 3 € By and ¢ € D((0,7] x O). We write the Green formula for the
function B(B(g)), and using the fact that v[3 o Ba(9)] = B(vBum(g)), we find

/0 //O(ﬁoﬂM(g)(% +&-Ved+E-Vep) + (B0 Bu) (9) G ¢) dédadt =

- /O ' / /E By Bur(9)) 6 n(x) - € dedods.

We get (3.10) by letting M — oo and noting that 5o By (s) — ((s) for all s € R.

Remark 5.1. Theorem 3.2 is now a quite simple consequence of Theorem 3.3 using the a priori
bounds stated in the proof of Theorem 3.1. We emphasize that with the additional assumption
(3.5), it is possible to give a "direct” proof of Theorem 3.2 (following the proof of Theorem
3.1) instead of passing by the renormalization step. See [53]for details.

Proof of Theorem 3.2. For all 3 € By it is clear that 8(g) € L™, V¢3(g) € L? and that 3(g) is
solution of (1.6) using Lemma 3.3 (we just have to multiply equation (5.9), in the case u =0,
by 3'(gx) and pass to the limit & — 0o). Thanks to Theorem 3.3, we already know that g has
a trace g € L(O) and vg € L((0,T) x O) which satisfies the Green formula (3.10) for all
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B € By and ¢ € D([0,T] x O). We just have to prove that vg and ;g belong to the appropriate
space. On one hand, for all § € B; such that |3(s)| < |s| one has

)

18(reg)l Ly, < sup sup [|5(gn(t, )Lz, < sup [lgrt, ey < gl
k [0,7T] [0,7]

and thus, choosing G = (), defined in the proof of Theorem 3.3, one gets, passing to the limit
M — oo,

sup [vegllze, < llgllpoer < oo.

)

In the same way and using (5.1), we show that

”’YQHLl([o,T]xER,dAz) < Q.

We still have to prove that v,g € C([0,T], L}, .(O)), which is an immediate consequence of the

loc
following Lemma. 3

Lemma 5.2. Let (uy,) be a bounded sequence of Ly, (O) such that B(uy,) — B(u) in (C’C(O))/
for all B € By. Then u, — u in L} _(O).

loc
Proof of Lemma 5.2. We fix j : R — R a nonnegative function of class C2, strictly convex on
the interval [—M, M] and such that j”(¢) = 0 for all ¢ ¢ [-M, M]; in particular j € By. We
also consider y € C.(O) such that 0 < y < 1. By assumption

(5.10) /O jun) x — /O j(u) x

and by convexity of j one also has

(5.11) 1inrgi£f/oj(“";“) X > /Oj(u)x since 0y i (C,(0)))
Remarking that

(5.12) %j(t)Jr%j(s)—j(t;S) >0 Vi scR,

we deduce from (5.10) and (5.11) that

(51 gt + 5 i = i(5)] =0

From the fact that in (5.12) the inequality is strict whenever ¢, s € [-M, M] and ¢t # s,
we obtain from (5.13) that there exists a subsequence (uy,) such that w,, — u a.e. on
supp x N[ |u| < M]. The preceding argument being valuable for arbitrary M and x, we obtain,
by a diagonal process, a subsequence of (uy,), still denoted by (uy, ), such that u,, — u a.e.
in O.

We now set ji(s) = si. We first remark that we can write j4+ = ji 1+j+ 2 with j1 1 € By
and j1 o € W3*(R) in such a way that

/Ojiwnk)xe/oji(mx.
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On the other hand, the elementary inequality | b—la—10| ‘ <a Va, b> 0 and the dominated
convergence Theorem imply j (un, ) — |+ (tun,) — j+(u)| — j(u) in L}, (O). Tt follows that

loc

limsup/|ji(unk)—ji(u)|xz/ji(u)x—klim/ji(unk)XZO.
o (@] —>xJo

k—oo

We conclude that w,, = ji(un,)—j—(Un,) — ji(u)—j—(u) = u strongly in L}, (O) and that,
in fact, it is the entire sequence (u,,) which converges. |

6. Appendix: on the convergence in the renormalized sense.

The main basic properties concerning the notion of convergence in the renormalized sense
are presented in this Appendix. Once again, we only deal with nonnegative functions of
L:=L(Y) and L° := L°(Y), but we do not specify it anymore in what follows.

Definition 6.1. We say that « is a renormalizing function if o € Cy(R) is not decreasing
and 0 < a(s) < s for any s > 0. We say that (ays) is a renormalizing sequence if ay is a
renormalizing function for any M € N and a,(s) " s for all s > 0 when M " co. Given any
renormalizing sequence (ayy), we say that (¢,) (aps)-renormalized converges if there exists a
sequence (@) of L*°(Y') such that

(6.1) ar(¢n) = ay o(L=®Y),L'Y)) » and ay /¢ ae inY.

Notice that the renormalized convergence is nothing but the (7/)-renormalized convergence.

Proposition 6.1. 1. The (aar)-renormalized limit in the definition 6.1 does not depend on
the renormalizing sequence (apr), but only on the sequence (¢n,).

2. For any sequence (¢y,) of L and any renormalizing sequence () there exists a subse-
quence (¢n') of (¢n) and ¢ € L such that (¢,) (apr)-renormalized converges to ¢. Of course
m general, we can not exclude that ¢ = +oo, see Remark 2.2.

3. As a consequence, given two renormalized sequences () and (Bar), if (¢n) (anr)-
renormalized converges, then (¢,) also (Bar)-renormalized converges to the same limit, up to
the extraction of a subsequence.

4. In fact, if for a given renormalized sequence (ay), the sequence (¢y) (anr)-renormalized
converges to ¢ then
(6.2)

for any sub-sequence () there exists a sub-sequence (¢nr) of (¢ns) such that ¢pm — ¢.

The inverse implication if false, even with apny = Thr. In particular, the renormalized conver-
gence s not associated to any topological structure.

5. Finally, assume that ¢, — ¢. We can construct a subsequence (¢n) in such a way that
for any renormalizing function « there exists & € L™ such that a(¢,) — &. As a consequence,
(¢ns) (anr)-renormalized converges to ¢ for any renormalizing sequence (ay).

Remark 6.1. Instead of Definition 2.2 there is a lot of possible definition for the notion of renor-
malized convergence of (¢,,) to ¢. We should take, as a definition, the assertion (6.2) or also
the fact that (¢, ) (aar)-renormalized converges to ¢ for an other fixed renormalizing sequence
(aar), for at least one renormalizing sequence (aps) or for every renormalizing sequence (ay).
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But since all these definitions are equivalent, up to the extraction of a subsequence, there is
no importance to specify which one we choose.

Let emphasize that the definition of (as)-renormalized convergence with aps # Thy is
important in order to obtain the renormalized convergence of the trace sequence in Theorem
3.4. Indeed, T is not smooth enough in order to be taken as a renormalizing function for the
VEP equation and we have to introduce the "smooth” renormalizing function a := ® /6.

We come back to the link between renormalized convergence and biting L!-weak converge.

Proposition 6.2. 1. Let (¢,) be a sequence which converge to ¢ a.e., strongly or weakly in
LP, p € [1,00], or in the biting L' -weak sense. Then, there is a subsequence (¢pnr) of (¢r) such
that ¢, — ¢. In general, the all sequence (¢,,) does not renormalized converge.

2. Coming back to Theorem 2.3. There exists (¢y,) which renormalized converges but does
not biting L'-weak converge.

3. The biting L'-weak convergence is not associated to any topological structure.

Let now define the limit superior and the limit inferior in the renormalized sense.

Definition 6.2. Let (¢,,) be a sequence of L. Consider I the set of all the increasing applica-
tions 1 : N — N such that the subsequence (¢,x))k>0 of (¢n)n>0 converges in the renormalized
sense and note ¢, = r-lim ¢,y. Thanks to the Proposition 6.1.2, we know that I is not empty.
We defined the limit sup and the limit inf of (¢,,) in the renormalized sense by

(6.3) r-limsup ¢, :==sup¢, and r-liminf ¢, = ing O, .
el 1€

Proposition 6.3. 1. If ¢, =&, ¥ — % and A, — X in RY then ¢n + Ay, — ¢+ A If
An — 0 and (¢y,) is bounded in L° then \, ¢, —0. As a consequence, if ¢, —¢ € L° and
vy — ¥ € LY a.e., then ¢, ¥p — ¢ ).
2. Let ¢, — ¢ and 8 be a nonnegative and concave function. Then B3(¢) > r-limsup B(¢n).
3. Let B be a strictly concave function, and (¢,) be a sequence such that ¢, — ¢ and
B(p) < r-liminf B(¢py). Then, up to extraction a subsequence, ¢, — ¢ a.e. in Y.

4. Let ¢, ¢ and let S be a bounded and nonnegative operator of L'. Then we have
S < r-liminf S oy,.

Proof of the Proposition 6.1. 2. Considering a renormalizing sequence (aps) we can find a
subsequence (n') = (nl);, and @y such that ap(¢n) — an weakly in L. By a diagonal
process we can obtain a unique subsequence (n”) such that the weak convergence holds for
any M € N. Furthermore, since (ay) is not decreasing, we get that (@) is a not decreasing
sequence of non negative measurable functions, so that it converges. The limit ¢ belongs to L.

1. Let assume that for a renormalizing sequence (o) we have ax(¢,) — ax /" 1. Thanks
to part 2., there exits a sub-sequence (¢,/), a sequence Ty € L* and a function ¢ € L
such that Tas(¢n:) — Tar / ¢. It is clear that VK, M € N Ve > 0 there is kae,mrg € N
such that ax < Ty, and Ty < ag,, . + €. Therefore, writing ax(¢n) < Ty (Pn) and
T (¢n) < aky, . (¢n) + €, and passing to the limit n — +oo, we get

ag STy <¢ and Ty <@g, +e <1 +e.
Then passing to the limit M, K / oo and € — 0 we obtain that ¢ = ¢.
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Point 3 and the first part of Point 4 are immediate consequences of points 1 and 2. Let consider
i, = p and v, = v two Young measures on Y = [0, 1] such that

JRYC R REOEY

[ T ) = [ Teas ) v3) = To

/BmdMMM%/BMHWMM-
R R

For instance, take

oo

1 1
u()\):—z dr=¢ and v

oo
92 ¢ 2(228 222+1> 5>‘:94’

(=0 £=0

N>|>i

with 6, € [24,2 (¢ + 1)[ well chosen. Now define (uy) (resp. (vy)) a sequence of L! associated
to p (resp. v), see [61], [67], and define ¢, = up, G2py1 = v,. In such a way, we have
constructed a sequence (¢,) which does not converge in the renormalized sense but (7% as)-
renormalized converge, since Ts p7(¢y,) — Topr /' ¢. Moreover, thanks to part 3, (¢,,) satisfies
(6.2). As a conclusion, (6.2) does not imply the renormalized convergence and therefore the
renormalized convergence is not associated to any topology.

5. Let remark that the class of renormalizing functions is separable for the uniform norm of
C(R,). For instance, the family A = {a*} of functions a such that

J
0< a(S) <s and O/(S) = ZHJ 1[ai7ai+1[(s)’ Qs ez € Q+
j=1

is countable and dense. By a diagonal process, we can find a subsequence (¢,/) in such a
way that for any a € A there exists @ € L* such that a(¢,/) — @ On one hand, for any
renormalizing sequence « there exists a sequence (ay) of A such that oy < o < oy, + 1/k for
any k € N and oy, /" a. We yet know that ay(¢,) — ag. Since (@) is not decreasing, it
converges a.e. and we set o = limay. On the other hand, thanks to part 3, there exists a
subsequence (¢,,~) and a function & such that a(¢p,») — &. This implies ay < & < ay + 1/k.
Passing to the limit £ — +o0o we get @ = a*. Therefore, by uniqueness of the limit, it is the
all sequence «a(¢,/) which converges to a. B

Proof of the Proposition 6.2. 1. If ¢,, — ¢ a.e. then clearly an(¢p,) — ap(¢) L>-weak and
m(9) /¢, so that ¢, = ¢.

If (¢,,) converges strongly or weakly in LP p € [1, 00| then it obviously converges in the

biting L!-weak sense. We now follow the proof of [8]. Assuming that ¢, i(b, there exists
for any k € N a Borel set Ay, such that meas (Y;\Ax) < 1/k and ¢,, — ¢ weakly in L'(Ay).
Thanks to Dunford-Pettis Lemma there is a function d; : R — R such that §x (M) — 0 when
M — +o0 and

bn L{p,>my dy < 0 (M).
Ak
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Therefore, up to the extraction of a subsequence, we have Ths (¢, ) — Tar weakly in L>(Ay),
so that

[ 16~ Tuldy < timint [ 16, ~ Tig(on)|dy < 5.(01),

Ap

This implies that Ths " ¢ a.e. in Ay, and thus a.e. in Y, when M — +o0.
The sequence (¢,,) constructed in Proposition 6.1.4 clearly converges L'-weak and there-
fore biting L!-weak, but does not converge in the renormalized sense.

2. & 3. Let ¢, be the sequence defined by ¢, = ¢p x = p Lix/p,(k+1)/p) Where n = 14+2+...+p+k.
Then (¢,,) is bounded in L' and clearly converges to 0 in the renormalized sense, but does
not converge in the biting L!-weak sense. Moreover, for any subsequence (¢,/) we can find a

second subsequence (¢p) of (¢,/) such that ¢, 20: the biting L'-weak convergence is not
associated to any topology. ]

Proof of the Proposition 6.3. 1. For any A\, M, s,t > 0 the elementary inequalities
MA(GB+t) <MAs+MANt<(2M)AN(s+t) and AX(MAs)=(AM)A(As)
holds. We first deduce
w-lim [M A (én + ¢n)] < w-lim [M A ¢p] + w-lm [M A ] < w-lim [(2 M) A (¢n + )]

so that r-lim (¢, + 1) = ¢ + 1. Next, since for n large enough 0 < a < \,, < A < 00, we can
write

(@ M)A (An @n) < (An M)A (An @n) = M (An A pn) < (AM) A (An Pn)-

Then passing to the limit n — 400, M — 400 we obtain
r-limsup (Ap, ¢n) < A < r-liminf (A, ¢n).

We assume now that A\, — 0. We define Y, ., :== {y € Y%, #(y) < m}, so that Y., / Yk
when m ,* +00. Since (¢,,) is bounded in L?, for all fixed k and m and all sequences (M,,)
tending to +o0o we have meas{Yj m, ¢n > My} — 0 when n — oco. Let ¢ > 0 and set
en = en(k,m) :=mes{Yi m, ¢n > c/A,}. Up to the extraction of a subsequence

, Y& > L}, satisfies meas(Z;) — 0.

L—oo

e

ZL = {Yk;, (Z5 S my, )\me ¢me Z

Therefore, we have

lim sup/ Trr(Amy, Om,) < lim sup/ Ty Ay, Om,) + lim sup/ Trr( Ay Omy)
Yi ( {

{—o0 l— 00 Yk\Yk’L)UZ;&L {— 00 )\mz (meSl/L}
1
<M (V(Y\Yk> + I/(Zk’L)) + E I/(Yk),

for all L € N*. Thus Ths(Am, &m,) — 0 in L1(Yy).
2. We know that

(6.3) B(s) = inf {(s),

23
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where the inf is taken over all affine applications ¢(t) = at + b which satisfy a,b > 0 and
B(t) < £(t) for any t > 0. Furthermore, for any ¢ and m, there clearly exists Kj such that

T (€(s)) < U(Tk(s)) and 0Ty (s)) < Tk (l(s)) for all K > Ky, s> 0.
We deduce that for any £ > 3 we have

Thus
limnsup Trn(B(¢n)) < LAUM Tk (6n)) < €(9).

Finally, thanks to (6.2),

limsup Tar (B(¢n)) < B(¢)  for any M,

n

which exactly means that r-limsup 5(¢,) < B(¢).
3. For any subsequence (n’) such that 8(¢, ), B(¢dn /2+¢/2)) and B(¢n /2+0/2)) —B(Pnr)/2—

B(¢)/2 > 0 converge in the renormalized sense we have, thanks to c),

rtim [3(%52) = PG B2 B i PG i (2510,
so that
0= rolim [ﬂ(%/; ¢) B ﬁ@gnl) B ﬁ<2¢)] - T'limﬁ(%/; ¢) N ﬁ(j)) — r-lim %
<o) - 220 20,

thanks to the point 2. and since ¢, /2 + ¢/2 = ¢. Therefore, for any k, we have

b+ o\ Blon)  B()
2 )" T T )d“g

< /Yk r-limsup [ﬂ(¢"; qb) _ 5(;25”) _ 5(2¢>]

0< 1im | Ty (8(

n—oo Yk

dp =0,

so that, up to extraction a subsequence,

but o) Blon) PO

ﬁ( 5 5 5 —0 ae. onY and ¢, —¢ ae. onV.

4. Fix x € C.(Y) such that 0 <y < 1. Since Tas(¢y) x — Tas X weakly in L', we have
(6.4) S(Tar(¢n)x) — S(Tarx) weakly in L.
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Furthermore, we have Tx (S(Ta(én) X)) < Tk (S(¢n)), and using (6.4) and part 2 it follows

S(Tar x) = r-liminf S(Tar(én) x) < r-liminf ().

n—oo n—oo

We conclude letting x 1 and M — /oo. 7
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