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Abstract

The objective of the European project STORMS (Software Tools for the Opti-
mization of Resources in Mobile Systems) is to develop a software tool to be used
for the design and the planning of the future Universal Mobile Telecommunication
System (UMTS). In this context the ParFlow method permits the simulation of out-
door radio wave propagation in urban environment, modeling the physical system
in terms of the motion of fictitious microscopic particles over a lattice. This paper
gives an overview of the ParFlow method, and reports the design and the imple-
mentation of ParFlow++, an object-oriented irregular parallel software for urban
outdoor radio wave propagation prediction.

Key words: Mobile telecommunications, radio wave propagation simulation,
transmission line matrix, irregular algorithm, object-oriented programming,
parallel computation.

1 Introduction

Radio wave propagation simulation is of great interest to telecommunication
operators, because of the rapid growth of radio networks, and most especially
that of mobile phone networks. This is particularly true in the context of ‘cel-
lular networks’, for radio wave propagation simulation makes it possible to
predict the shape of the cells of any potential future network. The objective
of the European project STORMS (Software Tools for the Optimization of

* Expanded version of a talk presented at the High Performance Computing and
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Resources in Mobile Systems) is to develop a software tool to be used for
the design and the planning of the future Universal Mobile Telecommunica-
tion System (UMTS). This software tool will include radio wave propagation
simulation algorithms for both urban and rural environments.

In the STORMS software tool radio wave propagation simulations must be as
fast as possible, because a single cellular network may consist of thousands of
cells, and because the tool is planned to be used mostly interactively.

The ParFlow method allows for fast bidimensional radio wave propagation
simulation, using a digitized city map, assuming infinite building height. It is
thus appropriate for simulating radio wave propagation when transmitting an-
tennas are placed below rooftops. This is the case in urban networks composed
of micro-cells.

ParFlow++ denotes an object-oriented, irregular implementation of the Par-
Flow method, targeted at MIMD-DM ! platforms. Its purpose is to be used
in the STORMS project to compute cells covered by Base Transceiver Sta-
tions (BTSs) in an urban environment. To date the use of object-oriented
programming is not very common in parallel supercomputing. For this reason
implementing the ParFlow method using object-oriented techniques appeared
to be an appealing challenge.

This paper is organized as follows. Section 2 introduces the ParFlow method,
and gives a brief overview of the theoretical foundation of this method (more
detailed information can be found in [3,4]). Section 3 reports about the design
and implementation of ParFlow++, an object-oriented, parallel implementa-
tion of this method. The performances of ParFlow++ are discussed in Sec-
tion 4, and Section 5 details how the code may evolve in the future. Section 6
concludes with a short summary of the paper.

2 The ParFlow method

In 1995, a new approach to modelling radio wave propagation in urban envi-
ronments based on a Transmission Line Matrix (TLM [3]) was designed at the
University of Geneva by Chopard, Luthi and Wagen [4]. The ParFlow method
compares with the so-called Lattice Boltzman Model (LBM), that describes
a physical system in terms of motion of fictitious microscopic particles over a
lattice [1]. According to the principle of Huygens, a radio wave front consists of
a number of spherical wavelets emitted by secondary radiators. The ParFlow
method is based on a discrete formulation of this principle. Space and time

1 Multiple Instruction stream, Multiple Data stream, Distributed Memory.



are represented in terms of finite elementary units Ar and At, related by the
velocity of light Cy in such a way that

A
At:—r

Cov/2

Space is modeled by a grid with a mesh size of length Ar, and flow values are
defined on the edges connecting neighbouring grid points. The flows entering
a grid point at time ¢ are scattered at time ¢+ At among the four neighbouring
points, according to the following expression:
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The computation proceeds until a stable state is reached, or until a predefined
number of iteration steps has been run through.

Because of the discretization of time, it is convenient to distinguish between
the flows coming into a grid point, and those going out of this point. For each
grid point, there are thus four incoming flows, and four outgoing flows, that
all obey the following rules:

e outgoing flows at time t are a linear combination of incoming flows at that
time;

e an incoming flow at time ¢ corresponds to the outgoing flow calculated on
a neighbouring grid point at time t — At;

e the field value of a grid point at time ¢ is the sum of the four flows coming
into this point at time t.

These rules apply for all grid points but those modelling the source (the trans-
mitter) and obstacles. The source point does not propagate incoming flows.
Instead, by changing its excitation function one can simulate different kinds
of output signals, such as a sinusoidal signal, a triangular pulse, an impulse,
etc. Obstacles (typically, city buildings) are modelled by two kinds of grid
points: wall points, and indoor points (see Figure 1). As, in the current Par-
Flow model, it is assumed that radio waves do not penetrate buildings, indoor
points are not involved in the computation. Wall points are perfectly reflect-
ing points that return any incident radio wave with opposite sign, and whose
reflection coefficient and matrix elements can be adapted in order to model
different kinds of walls [6]. An additional kind of point is considered in the
ParFlow method. Since the method must simulate the (theoretically) infinite
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Fig. 1. The ParFlow method operates on a city district described as a bitmap that
distinguishes between indoor points, outdoor points, and wall points.

propagation of a radio wave on a finite grid, special points are placed around
the simulation zone in order to absorb part of the incident radio wave. These
border points simulate the attenuation of radio waves propagating in open air.

3 Design and implementation

3.1 Object-oriented irreqular application

The grid structure on which the ParFlow algorithm operates, and the way each
point of the grid is updated iteratively based on its four neighbours, suggest a
very regular implementation. A language primarily dedicated to array-based
computation, such as Fortran, is perfectly suited for this kind of implementa-
tion. Yet, since the ParFlow method does not simulate radio wave propagation
through buildings, it can be most interesting not to model indoor points. In-
deed, experiments show that when modelling an urban area, buildings can
represent up to 30 % of the surface considered. Not modelling indoor points
avoids a waste of memory space and a waste of computational power. Such an
approach inevitably leads to the creation and the management of an irregular
data structure. As they provide powerful features to describe and to manip-
ulate complex, irregular data structures, object-oriented languages appear as
good candidates for an irregular implementation of the ParFlow method.

ParFlow++ was developed in C++, in an object-oriented way, and according
to the fundamental principles of software engineering. All kinds of non-indoor
points (that is, outdoor points, wall points, border points, and the source
point) are described in a hierarchy of C++ classes. Instances of these classes
can be assembled at runtime so as to constitute an irregular structure that
preserves the neighbourhood relationships: each point references any of its four



neighbours (provided they exist).

In ParFlow the amount of computation required during a simulation step is
not constant. Because of the discretization of time and space in the simulation
process, a radio wave radiated by the source point propagates step by step
throughout the simulation zone. Based on these observations, ParFlow+-+
was designed in such a way that the amount of points implied during any
computation step is always kept at a minimum. At any time, a point that has
not been reached by the radio wave yet is said to be inactive (initially, all
points are inactive but the source point). Points that have just been reached
by the radio wave (during the current simulation step) are said to be new
active points, whereas those that were reached during former simulation steps
are referred to as old active points.

At each step of the simulation flow values need only be calculated for ac-
tive points, and the propagation of outgoing flows is only required from active
points to their neighbours. To achieve these goals ParFlow++ manages several
structures internally. Every newly activated point is inserted in a list newAc-
tive, whose role is to permit an efficient propagation of the activity status after
each computation step: the only points that are in a position to be activated
are those that are neighbours to members of the newActive list, and that are
still inactive. Iterating through members of the newActive list facilitates the
identification of new active points. Once a member of newActive has activated
its neighbours, it is transferred into another list oldActive. Hence, this point
will never be considered again when looking for new active points, although it
will still participate in the computation. A sequential version of the algorithm
operating on active lists is reproduced below.

newActive = {source point};
oldActive = 0;
foreach iteration step do
foreach point € oldActive do
compute outgoing flows based on incoming flows;
update incoming flows based on neighbours’ outgoing flows;
endfor
oldActive = oldActive U newActive;
tmpActive = newActive;
newActive = () ;
foreach point € tmpActive do
compute outgoing flows based on incoming flows;
update incoming flows based on neighbours’ outgoing flows;
activate not-yet-activated neighbours;
newActive = newActive U {newly activated neighbours};
endfor
endfor

With a regular, grid-based implementation of the ParFlow method, there is no
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Fig. 2. Evolution of the workload per simulation step during a sequential simulation
on a 100 x 100 points area. The results in (a) show the workload evolution observed
when achieving a simulation on an open area (upper curve), and on a real district
of the city of Geneva (lower curve). The district actually considered in the latter
simulation is reproduced in (b). The CPU times reported in (a) were measured on
one processor of a Cray T3D supercomputer.

notion of active points. All grid points participate in the computation, so that
the workload per simulation step remains constant all along the computation.
With ParFlow++ the workload per simulation step increases dynamically, as
shown in Figure 2. This figure confirms the advantage of activating points
dynamically. It shows how the workload per simulation step increases as the
radio wave propagates and covers a growing surface, and how it reaches a
ceiling when the simulation zone is completely covered.

Figure 2 also confirms the advantage of using a data structure that does not
model indoor points. The speed at which the workload increases depends on
the amount of obstacles met by the radio wave during its propagation, and the
maximal workload depends on the amount of outdoor points in the simulation
zone. In Figure 2(a) it is interesting to notice that the gain observed in terms
of workload reduction is proportional to the amount of indoor surface.

3.2 Data parallel 1mplementation

A major advantage of the ParFlow method is that, although the calcula-
tions made during each iteration step are theoretically synchronous, updates
of points require independent computation. The ParFlow algorithm is there-
fore a good candidate to parallel implementation.

The first parallel version of the ParFlow algorithm was implemented by Chopard,



Luthi and Wagen on Thinking Machine Corporation’s CM-200, whose SIMD 2
architecture provides thousands of synchronous processors [6]. The ParFlow
method can be readily and efficiently implemented on SIMD platforms, be-
cause it is possible to take advantage of the regular grid data structure and
of the synchronous progress of the computation. However, the main disad-
vantage of such an implementation is its lack of scalability. An irregular data
structure such as that presented in Section 3.1 can hardly be mapped on the
synchronous regular architecture of the CM-200. The consequence is that, on
such a platform, many processing units (those modelling indoor points in the
case of ParFlow) remain idle throughout the entire computation. Moreover,
since each point of the grid must be allocated to one processing element, the
size of the grid is constrained by the size of the parallel machine.

MIMD platforms are more versatile than SIMD platforms when it comes to
implementing irregular applications. Actually, the ParFlow method has al-
ready been implemented on several MIMD platforms by Chopard, Luthi and
Wagen [5]. Yet, every time it was implemented as a regular algorithm, in C or
in Fortran. ParFlow++ contrasts sharply with these former implementations,
not only because of its object-orientation, but mostly because it results from
the first attempt to implement the ParFlow method for MIMD-DM platforms
while operating on an irregular data structure with an irregular algorithm.
Another characteristic of ParFlow++ is that it was developed so as to be
easily portable on any kind of MIMD-DM platform. To do so, its current im-
plementation uses the communication facilities offered by the standard PVM
library [2].

Because of the large amount of outdoor points that must be considered in
a simulation (typically, several thousands of outdoor points for a single city
district), an appropriate policy must be chosen to allocate each point to a
processing element of the target platform. Many partitioning policies can be
considered for an irregular structure such as that of ParFlow++. Yet, exotic
partitioning policies often require costly mechanisms for locating remote data,
and for ensuring efficient data exchanges. For these reasons, and in order to
obtain good load balancing, ParFlow++ relies on a static data distribution.
The simulation zone is split in horizontal stripes, which are then allocated to
processors based on a round-robin policy, as shown in Figure 3.

In ParFlow-++ a partition basically consists of a structured collection of points
and of two lists that are used to maintain references to ‘new’ and ‘old’ active
points (these are the two lists discussed in Section 3.1). Each partition also
manages two ‘frontiers’ internally. A frontier can be perceived as a collection
of references to points that are either on the northern edge or on the southern
edge of a partition. The behaviour of frontier points differs slightly from that of
other points, for they have to interact with neighbouring points that are stored

2 SIMD: Single Instruction stream, Multiple Data stream.



Fig. 3. Splitting of the simulation zone in 8 horizontal stripes, and allocation of
these stripes to 4 processors using a round-robin policy.

on remote processors. A frontier thus ensures the propagation of flows between
a partition and one of its neighbours. It also ensures the propagation of the
activity status, since a newly active point located on a frontier may activate a
point in the opposite frontier of a neighbouring partition. The parallel version
of the ParFlow algorithm is reproduced in pseudo-code below.

newActive = {source point};
oldActive = 0;
foreach iteration step do
foreach local partition do
// Same loop body as that shown in Section 3.1
send northern and southern frontiers to neighbouring partitions;
receive northern and southern frontiers from neighbouring partitions;
newActive = newActive U {new active points found in frontiers};
endfor
endfor

Partitions dimensioning. Partitioning the simulation zone in stripes has
several advantages. Mechanisms for data location and message vectorization
are readily implemented. Moreover, as adjacent stripes can be allocated to
adjacent processors, communications are only required between neighbouring
processors.

When partitioning the simulation zone in stripes, the width of these stripes
and the number of them assigned to each processor can be adjusted easily.
It is thus possible to obtain a fair distribution of the workload among the
processors, as confirmed by the results reproduced in Figure 4. These results
were observed when achieving a parallel radio wave propagation simulation on
a 128 x 128 points open area (no obstacle, source point located in the middle
of the simulation zone), on 4 processors of the Cray T3D MC 256. Figure 4
shows how the workload per processor depends on the partitioning policy. The
results reproduced in Figure 4(a) were observed with a simulation zone split in
4 partitions (one partition per processor). The workload increased rapidly on
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Fig. 4. Evolution of the workload during a parallel radio wave propagation simula-
tion achieved on 4 processors of a Cray T3D, for a 128 x 128 points open area (no
obstacle). (a) and (b) show how the workload evolves when the simulation zone is
split in 4 partitions (one partition per processor), and in 16 partitions (4 partitions
per processor) respectively.

processors 1 and 2, because the points in these partitions were activated early
during the simulation process. On the other hand, processors 0 and 3 started
working only after the 31 iteration step. This is because it took 32 iteration
steps for the radio wave to reach the partitions owned by processors 0 and 3.
Figure 4(b) shows the workload evolution when the simulation zone was split
in 16 partitions (4 partitions per processor). This time the workload increased
almost similarly on all processors. This is because of the large number of
partitions, and because these partitions were thin: all processors got their
share of work early after the radio wave started propagating.

These results show that partitioning the simulation zone in thin stripes permits
a better balancing of the workload. Yet, this approach also leads to a greater
communication overhead, for each partition must exchange data with its two
neighouring partitions after each simulation step.

4 Experimental results

On the Cray T3D we run a series of simulations for different partitioning poli-
cies, and different simulation zone sizes. Figure 5 shows the path-loss map
obtained after simulating an 800 step propagation on a 500 x 500 point zone
modelling a 1 km? district of the city of Geneva. This simulation took 1109 sec-
onds on a single PE (Processing Element) of the Cray T3D, and 42 seconds
on 32 PEs.

We also studied the influence of data partitioning on the resulting perfor-



Fig. 5. Results of a radio wave propagation simulation achieved for a 1 km? district
of the city of Geneva. The broken arrow shows the position of the transmitter.
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Fig. 6. Efficiency of parallel simulations on a Cray T3D as a function of the number
of stripes per processor. (a) shows the results observed with a 512 x 512 point
simulation zone, and (b) those observed with a 2048 x 2048 point zone.

mances. During these experiments we considered wave propagation over open
areas (no obstacle), and in each test case the source point was placed in the
middle of the simulation zone. Figure 6 shows how the number of stripes
per processor influences the global performances of the simulation. The figure
shows the efficiency observed, for different hardware configurations (from 2
to 256 processors), as a function of the number of stripes per processor, for
512 x 512 point and 2048 x 2048 point simulation zones.

Figure 6(a) shows that, for each machine size, there usually exists an optimal
partitioning policy. On the one hand, when using only two processors, there
is no point in having more than one stripe per processor. Since, in this par-
ticular simulation case, the source of the wave is located in the middle of the

10



300
512x512 zone, 752 steps <—
1024x1024 zone, 1520 steps -+--
2048x2048 zone, 3056 steps -8---
250 - Ideal
200 =
—+
1%
o
=]
B 150
9]
Q.
[
al
A
100 2
Y
50 -
,15’“
0
0 50 100 150 200 250 300

Number of processors

Fig. 7. Speedups observed on a Cray T3D, when achieving simulations for various
district sizes.

simulation zone, both processors get exactly the same share of work. Partition-
ing the zone in more than two partitions results in a greater communication
overhead, hence a lower efficiency. On the other hand, when using more than
two processors it can be interesting to have several stripes per processor (al-
though 2 or 3 stripes usually give the best efficiency). This is not true any
more, though, when using more than 32 processors. This is because, when
partitioning a 512 x 512 point zone in more than 32 processors, the height of
each stripe then gets so small that the ratio of the computation time over the
communication time is not good enough.

The advantage of allocating several stripes per processor can also be observed
with the 2048 x 2048 point simulation zone (Figure 6(b)), except that it can
then be interesting to allocate up to 8 stripes per processor.

Figure 7 shows the best speedups we observed (that is, whatever the number of
partitions) for different zone sizes®, against the number of processors. These
results confirm the scalability of the parallel implementation.

5 Future work

The performances reported in the former section are quite satisfactory. Yet,
ParFlow-++ can still be improved in many ways. For example the code shown
in Section 3 could be modified so that after a certain number of simulation

3 For the 1024 x 1024 and 2048 x 2048 zones, the simulation was not possible on a
single processor because of memory limitation, so we had to estimate the sequential
reference times.
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steps the search for still inactive points is disabled (once the radio wave has
covered the entire simulation zone, there remains no such points).

The results reported in Section 4 show that partitions dimensioning is a crucial
issue. Some work is now in progress to build a mathematical model of com-
munications and workload in ParFlow++ [7]. This model should help select
the best partitioning policy for any simulation problem case.

We would also like to experiment with a heterogeneous partitioning policy.
Since many stripes are required near the source point in order to give bet-
ter workload balancing, and since too many stripes lead to a degradation of
the communication performances, a compromise would be to allocate thinner
stripes near the source.

Once ParFlow++ has been improved satisfactorily, it will be interesting to
study how its performances compare with those of regular, grid-based im-
plementations of the ParFlow method, such as those discussed in [5]. Par-
Flow++ will also be tested more comprehensively on the Cray T3D —using up
to 256 processors— as well as on other MIMD-DM platforms (so far ParFlow++
was compiled and tested successfully on a Cray T3D, on a SGI Origin 2000,
and on a cluster of Unix workstations).

6 Conclusion

In this paper we have reported the development of ParFlow++, a new parallel
object-oriented implementation of the ParFlow method. ParFlow++ permits
the prediction of radio wave propagation in urban environments, based on a
bidimensional simulation model over a digital city map.

The most original feature of ParFlow+-+ with respect to former implemen-
tations of the ParFlow method is that it was implemented as an irregular,
distributed, application. Since the method does not allow for radio waves to
propagate through buildings, ParFlow++ does not model indoor points. Ex-
periments show that this approach permits a significant reduction of compu-
tation times.

ParFlow++ was designed in an object-oriented framework, and implemented
in C++ for MIMD-DM platforms. It was developed so as to be highly portable,
and its current implementation relies on the PVM library. Although this im-
plementation can still be improved in many ways (as discussed in Section 5),
experiments achieved on a Cray T3D show the scalability of the code and
confirm that an object-oriented irregular implementation for MIMD-DM plat-
forms does not necessarily lead to poor performances.

12



In contrast, the object-orientation of ParFlow-++ brings in much versatility.
The set of classes that constitute its source code could easily be extended or
reused in another context. For example ParFlow++ could be modified so as to
simulate tri-dimensional radio wave propagation. Its classes could also serve
as basic building blocks to develop software tools capable of simulating other
physical phenomena, such as fluid dynamics or reaction-diffusion processes.
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