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Abstract. Ramanujan sums are exponential sums with exponent defined over the

irreducible fractions. Until now, they have been used to provide converging expansions

to some arithmetical functions appearing in the context of number theory. In this

paper, we provide an application of Ramanujan sum expansions to periodic, quasi-

periodic and complex time series, as a vital alternative to the Fourier transform. The

Ramanujan-Fourier spectrum of the Dow Jones index over 13 years and of the coronal

index of solar activity over 69 years are taken as illustrative examples. Distinct long

periods may be discriminated in place of the 1/fα spectra of the Fourier transform.

PACS numbers: 02.10.De, 05.45.Tp, 89.20-a

1. Introduction

Signal processing of complex time-varying series is becoming more and more fashionable

in modern science and technology. Indices arising from the stock market, changing

global climate, communication networks such as the Internet etc. are widely used tools

for business managers or governmental representatives. There already exists a plethora

of useful approaches for signal processing of complex data. The oldest and perhaps most

widely used method is a Fourier analysis and its “fast” implementation: the fast Fourier

transform (or FFT). Other complementary techniques such as wavelet transforms,

fractal analysis and autoregressive moving average models (ARIMA) were developed

with the aim of identifying useful patterns and statistics in otherwise seemingly random

sequences [1].

Ramanujan sums are defined as power sums over primitive roots of unity. One can

use an orthogonal property of these sums (closely related to the orthogonal property

of trigonometric sums) to form convergent expansions of some arithmetical functions

related to prime number theory [2, 3]. Following the ideas of Gadiyar and Padma

[4], the first author proposed to expand the domain of application of Ramanujan sum

analysis from number theory to arbitrary real time series and introduced the concept

of a Ramanujan-Fourier transform [5]. This earlier work remained quite ambiguous



2

about the detection of isolated periods. Ramanujan sum expansions of divisor sums,

sums of squares, and the Mangoldt function are well known. Surprisingly, the detection

of a singly periodic signal by the Ramanujan sum analysis has not been considered

before. But the Ramanujan-Fourier amplitude corresponding to a single cosine function

of period q is extremely simple: as we shall see, the amplitude of the cosine function is

simply scaled by the cosine of the delay and the inverse of the Euler totient function

φ(n0). Similarly to the standard discrete Fourier transform, there are spurious signals

of magnitude O(n0/t), depending of the length t of the averaging spectrum.

In the discrete Fourier transform, a sample to be analyzed is discretized into pieces

of length 1/q and the expansion is performed over the q-th complex dimensional vectors

of the orthogonal basis e
(p)
q (n) := exp (2iπp

q
n), (p = 1, . . . , q). The orthogonal property

reads
∑

p e
(r)
q (n)e

(s)
q (n) = qδ(r, s), where δ(r, s) is the Kronecker symbol. The expansion

of a time series is a(n) =
∑

p ape
(p)
q (n) with Fourier coefficients ap = 1

q

∑
n a(n)e

(p)
q (−n),

where the summation runs from 0 to q − 1. In the Ramanujan-Fourier transform, the

expansion a(n) =
∑

q aqcq(n) over the Ramanujan sums cq(n) =
∑′

p e
(p)
q (n) (see Sec. 2)

involves the resolution 1
q

at every single scale from q = 1 to t → ∞. The deep principle

behind rests on a very intricate link between the properties of irreducible fractions p

q

and prime numbers [2]-[5]. As a result, one finds a much finer structure of time series,

with a variety of novel features.

The paper is organized as follows. In Sec. 2, we remind the reader with the

arithmetical properties of Ramanujan sums, provide the definition of the Ramanujan-

Fourier transform and examine the detection of a cosine signal. In Sec. 3, the use of the

method is illustrated on the data from the stock market and solar activity.

2. Ramanujan sums and the Ramanujan-Fourier transform

Ramanujan sums are real sums defined as n-th powers of q-th primitive roots of the

unity,

cq(n) =
′∑

p

exp (2iπ
p

q
n),

where the summation runs through the p’s that are coprime to q (hence the use of the

symbol “′”), being first introduced in the context of number theory [2, 3] for obtaining

convergent expansions of some arithmetical functions such as the relative sum of divisors

σ(n)/n of an integer number n,

σn/n =
∞∑

q=1

π2

6q2
cq(n).

They are multiplicative when considered as a function of q for a fixed value of n, which

can be used to prove an important relation



3

cq(n) = µ(q/q1)
φ(q)

φ(q/q1)
, q1 = (q, n).

In the above relation, the Euler totient function φ(q) is the number of positive integers

less than q and coprime to it. The Möbius function, µ(n), vanishes if q contains a square

in its (unique) prime number decomposition
∏

i q
αi

i (qi a prime number), and is equal

to (−1)k if q is the product of k distinct primes. One can readily checks the following

orthogonal property

rs∑

n=1

cr(n)cs(n) = 1 if r = s and

q∑

n=1

c2
q(n) = qφ(q) otherwise.

For an arithmetical function a(n) possessing a Ramanujan-Fourier expansion

a(n) =
∞∑

q=1

aqcq(n),

with Ramanujan-Fourier coefficients aq, one can write a Wiener-Khintchine formula,

relating the autocorrelation function of a(n) and its Ramanujan-Fourier power spectrum,

limN→∞

1

N

∑

n≤N

a(n)a(n + h) =
∞∑

q=1

a2
qcq(h).

This relation was used for counting the number of prime pairs within a given interval

[4]. A similar formula has been proposed for the convolution and cross-correlation [6].

Clearly, the Ramanujan sum analysis of an arithmetical function looks like the

Fourier signal processing of a time series a(n) at discrete time intervals n. This

formal analogy was developed in [5] for the processing of time series with a rich low

frequency spectrum [7]. Ramanujan signal processing was further developed in the

context of quantum information theory [8] eventually leading to an original approach

of quantum complementarity [9]. The Ramanujan-Fourier transform was also used for

processing time series of the shear component of the wind at airports [10], the structure

of amino-acid sequences [11] and in relation to the fast Fourier transform [12]. All these

applications make use of the property that for arithmetical functions possessing a mean

value

Av(x) = limt→∞

1

t

t∑

n=1

a(n),

one can write the inversion formula

aq =
1

φ(q)
Av(a(n)cq(n)).
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Figure 1. Ramanujan-Fourier spectrum for three different cosine functions of periods

n0 = 10, 14 and 30, computed from a sample of length t = 100. The amplitude at

q = n0 equals 1/φ(n0) = 1/4, 1/6 and 1/8, respectively.
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Figure 2. Ramanujan-Fourier spectrum for the cosine function of period n0 = 38,

with delays δ = 0, π/2 and π, and sample length t = 100. The amplitudes of the peaks

for δ = 0 and π is 1/6.
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Figure 3. Ramanujan-Fourier spectrum for the cosine function of period n0 = 18,

with sample lengths t = 100 and 500. One clearly observes the compression of the

lines when t increases.

Ramanujan-Fourier transform of a cosine function

Let us consider now the Ramanujan signal processing of a periodic (cosine) function of

period n0

a(n) = a0 cos(2π
n

n0
+ δ).
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The Ramanujan-Fourier coefficients read

aq = limt→∞

a0 exp(iδ)

2φ(q)t

′∑

p

t∑

n=1

exp[2iπn(
p

q
+

1

n0
)] + c.c.

in which the order of summations is reversed and “c.c.” stands for the complex conjugate.

Assume first that t is a multiple of the period n0. Then the n-th summation is zero

unless k = p

q
+ 1

n0

is a positive integer. For instance, aq can be non-zero if q = n0 under

the conditions that n0 divides p + 1 and k = 1, i. e. p = n0 − 1 (otherwise p > q, which

is outside the range of summation of the p sum). One then gets

an0
= limt→∞

a0 exp(iδ)

2φ(n0)t

t∑

n=1

exp(2iπ
n

n0
) + c.c.

The n-th summation equals zero unless n0 divides n, otherwise it equals to t. As a

result, the amplitude of the n0-th line reflects the amplitude of the periodic signal as

an0
=

a0

φ(n0)
cos(δ).

In general, t is not a multiple of n0 so that there exists an extra contribution to the

amplitude, of order of magnitude O(n0

t
). As long as the period n0 is much smaller than

the length t of the sample, i. e. n0 ≪ t, one observes a single line at n0; otherwise bursts

of non-zero amplitudes emerge in the vicinity of the lines kn0 — see Figs. 1–3.

Thus, there are two significant differences when compared to a period analysis by

the standard discrete Fourier transform. First, the amplitude of the line at the period

n0 is scaled by a factor of φ(n0). Second, the Ramanujan-Fourier analysis is sensitive

to the delay δ. The latter feature may, at first sight, seem as a drawback since some

period of the signal to be analyzed may be hidden by the dephasing effect. One method

to circumvent this difficulty is to average the spectra corresponding to several shifted

samples of the signal.

Ramanujan-Fourier transform of a period modulated cosine function

Let us now apply the approach to a period modulated cosine function. We intentionally

select a period modulation with a large index (equal to 1). The selected modulation is

n0 = n0[1 + sin(2π
n

n1
)],

with n0 = 10 and n1 = 14. The sample length is t = 2000. Due to a high modulation

index, the FFT analysis (shown in Fig. 4) does not easily allow to recover the constituent

integer periods 10 and 14. In contrast, the Ramanujan sum analysis is very powerful in

this context. From Fig. 5 one clearly identifies (positive) large amplitudes at the periods

10, 12, 2 × 12 and LCM(10, 12) = 70 (LCM being the least common multiple). Thus,

for an input signal of the period n0 and period modulation n1, the FFT exhausts all
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lines at ln0 + mn1 (l and m integers), eventually leading to a continuous spectrum in

the limit of incommensurate periods n0 and n1. In contrast, the Ramanujan-Fourier

transform is straightforward in identifying the input modulation.
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Figure 4. FFT spectrum of a period modulated cosine: n0 = 10 and n1 = 14.
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Figure 5. Ramanujan-Fourier transform of a period modulated cosine function:

n0 = 10 and n1 = 14.

3. Ramanujan sums analysis of some complex systems

As a nice illustration of the above-outlined properties the Ramanujan sum analysis, we

shall analyze a couple of complex time series taken form the stock market and solar

activity.

The Dow Jones index of the stock market

The first time series deals with the Dow Jones index and has been downloaded from

http : // www.optiontradingtips.com/resources/historical - data/dow-jones30.html.

Fig. 6 depicts the evolution of Dow Jones 30 Industrials stock price over about 13

years. The power spectral density of the prices (Fig. 8) approximately follows a 1/f 2

law versus the Fourier frequency f = n−1, compatible with a Brownian-motion-based

model [13, 14]. The Ramanujan-Fourier analysis shown in Fig. 7 yields a more detailed

structure with many (positive or negative) peaks centered at well-identified frequencies.
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There exists a sensitivity of the amplitude of the peaks (not shown) on the number t

of data, but the position of the peaks, as well as their statistics, is not dependent on

t. Since both spectra in Figs. 6 and 7 are given in a logarithmic time-scale, it follows

that the Ramanujan sum analysis provides a clear advantage over the standard Fourier

analysis in offering a rich and structured signature. Here, we shall not delve any further

into the origin of this structure, which will be a topic of a separate paper.
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Figure 6. The Dow Jones 30 Industrials from 03.01.1995 to 30.05.2008.
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Figure 7. The Ramanujan sums analysis of the Dow Jones 30 Industrials. Periods in

the range n = 100 to n = 1000 were selected. One clearly sees (positive and negative)

peaks centered about non-equally-spaced periods.
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Figure 8. The FFT analysis of the Dow Jones 30 Industrials in a log-log scale.

The standard 1/f2 dependence of the power spectrum, which is characteristic of a

Brownian-like motion, is clearly visible.
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The coronal index of the solar activity

The second time series has been picked up from

http : // www.ngdc.noaa.gov/stp/SOLAR/ftpsolarcorona.html#index.

It represents the Green Line (FeXIV 530.3 nm) Coronal Index of solar activity from

1939 to 2008. One easily recognizes from Figs. 9 and 10 that the coronal index

is approximately periodic, with a period about 10 years. The whole FFT spectrum

shown in Fig 11 exhibits a 1/f dependence characteristic of many physical, biological,

arithmetical [7, 5, 15] and other complex systems [15].
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Figure 9. The temporal variation of the Coronal Index; a 10-year period is clearly

visible.
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Figure 10. The RFT of the Coronal Index. The 10-year period is clearly identified;

other longer periods of a smaller amplitude are observed as well, besides the harmonics

pn0 (p integer).
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Figure 11. The FFT of the Coronal Index. One observes a 1/f dependence of the

power spectrum; the 10-year period is quite hard to identify.

Perspectives and Conclusion

It is a widely shared belief that 1/fα noises are so random that non-statistical models

of them are currently out of reach. A counterexample to this belief can be found in [7],

in which an arithmetical approach to 1/f noise was suggested. In the present paper, we

offer another perspective by analyzing the data from an arithmetical magnifying glass

built on Ramanujan sums. The Ramanujan-Fourier transform is able to extract quasi-

periodic features which are characteristic of number theoretical functions [2]-[5], as well

as fine periodic features that the standard Fourier transform may hide. A Ramanujan

sums analysis is a multi-scale prism with scales related to each other by the properties of

irreducible fractions. It is particularly well-suited for analyzing rich time series showing

a 1/fα (0 < α < 2) FFT dependence. We selected two specific complex systems to

illustrate the power of this new method: the data from the stock market (for which

the price index FFT follows a 1/f 2-law) and those from solar cycle activity (for which

the coronal index follows a 1/f -law). A more detailed examination of the latter will be

given in a separate paper.
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