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We study lower bounds of the packing density of a system of nonoverlapping equal spheres in R n , n ≥ 2, as a function of the maximal circumradius of its Voronoi cells. Our viewpoint is that of Delone sets which allows to investigate the gap between the upper bounds of Rogers or Kabatjanski ȋ-Levenstein and the Minkowski-Hlawka type lower bounds for the density of lattice-packings, without entering the fundamental problem of constructing Delone sets with Delone constants between 2 -0.401 and 1. As a consequence we provide explicit asymptotic lower bounds of the covering radii (holes) of the Barnes-Wall, Craig and Mordell-Weil lattices, respectively BW n , A (r) n and M W n , and of the Delone constants of the BCH packings, when n goes to infinity.

INTRODUCTION

The maximal packing density of equal spheres in R n has received a lot of attention [Rogers 1964], [Handbook 1997], [Cassels 1959], [Martinet 1996], [START_REF] Providence | [END_REF], [Oesterlé 1989/90], [Gruber -Lekkerkerker 1987], [Zong 1999]. Similar problems are encountered in coding theory, data transmission, combinatorial geometry and cryptology [START_REF] Hoffstein | [END_REF]]. We will consider it by the notion of Delone set for which we will give explicit lower bounds of the density of a Delone set as a function of n and its so-called Delone constant R expressing the maximal size of its holes. Blichfeldt, Rogers, Levenstein, Sidel'nikov, Kabatjanski ȋ andLevenstein [Handbook 1997] [Gruber -Lekkerkerker 1987] [ [START_REF] Providence | [END_REF] have given upper bounds while lower bounds were given by Minkowski, Davenport-Rogers, Ball [START_REF] Ball | A lower bound for the optimal density of lattice packings[END_REF]], etc, in the lattice-packing case (see Section 2). In between the situation is considered as fairly vague. The present note is a contribution to the range between both types of bounds though the fundamental problem, far from obvious, of constructing Delone sets of very small Delone constant, namely less than 1 is not considered here.

1 For this we will recall the language of uniformly discrete sets and Delone sets instead of that of systems of spheres. A discrete subset Λ of R n is said to be uniformly discrete if there exists a constant r > 0 such that x, y ∈ Λ, x = y implies x -y ≥ r. Thus a uniformly discrete set is either the empty set, a subset {x} reduced to one element or, if it contains at least two points, they satisfy such an inequality; if r is equal to the minimal interpoint distance inf{ x -y | x, y ∈ Λ, x = y}, Λ is said to a uniformly discrete set of constant r of R n . Uniformly discrete sets of constant 1 will be called UD-sets and the set of UD-sets will be denoted by UD (without mentioning the dimension n of the ambiant space). There is a one-to-one correspondence between the set SS of systems of equal spheres of radius 1/2 and the set UD : Λ = (a i ) i∈N ∈ UD is the set of sphere centres of B(Λ) = {a i + B | i ∈ N} ∈ SS where B(z, t) denotes generically the closed ball centred at z ∈ R n of radius t > 0, and B := B(0, 1/2). We will take 1/2 in the sequel for the common radius of spheres to be packed and will consider UD-sets instead of systems of equal spheres of radius 1/2.

Let Λ ∈ UD. The density of the system of spheres B(Λ) is defined by

δ(B(Λ)) := lim sup R→+∞ vol i∈N (a i + B) B(0, R) /vol(B(0, R))
Let us denote by L the space of (n-dimensional) lattices of R n . We will denote

δ := sup Λ∈U D δ(B(Λ)) , resp. δ L := sup Λ∈L∩U D δ(B(Λ))
and will call them respectively the packing density and the lattice-packing density.

A UD-set Λ is said to be a Delone set if there exists a constant R > 0 such that, for all z ∈ R n , there exists an element

λ ∈ Λ such that z -λ ≤ R (property of relative denseness of Besicovitch). If Λ is a Delone set, then R(Λ) := sup z∈R n inf λ∈Λ z -λ is called the Delone constant of Λ. Let R c = R c (n) := inf{R(Λ) | Λ ∈ UD}.
This lower bound is an invariant of the ambiant space which is only a function of n and the Euclidean metric on R n . We will call it the Delone covering constant.

In Section 2 we will recall the asymptotic expressions of the classical upper bounds of the packing density and the lower bounds of the latticepacking density, when n goes to infinity.

In Section 3 we will recall known lower bounds of the minimal hole constant, in the case of lattice packings, and state some results concerning lower bounds of R c in the general case of arbitrary packings.

The Delone constant of a Delone set Λ ∈ UD is the maximal circumradius of the Voronoi cells in the Voronoi decomposition of space by Λ (Section 3); if Λ is a lattice, it is the covering radius of the lattice, if Λ is a non periodic UD-set, it is the "maximal size of the holes in Λ". In Section 4, we will prove

Theorem 1.1 Let n ≥ 2. If Λ is a Delone set of R n of Delone constant R, then (2R) -n ≤ δ(B(Λ)) ≤ δ for all R c ≤ R. (1) 
Let us denote µ n (R) := (2R) -n . The (2R) -n dependence of the expression of µ n (R) with n is very important and constitutes a key result. It allows to study the minimal asymptotic values of the Delone covering constant R c (n) when n tends to infinity. Namely, we will prove Theorem 1.2 For all > 0 there exists n( ) such that for n > n( ), R c (n) ≥ 2 -0.401 -.

Remark.-Theorem 1.2 asserts the existence of an infinite collection of middle-sized Voronoi cells in any densest or saturated packing of equal spheres of R n of radius 1/2 of circumradii greater than 2 -0.401 + o(1) = 0.757333... + o(1).

The small values of R between the bound √ 2 2 n n+1 and 1 are discussed in Section 3.

In Section 5, as an application of Theorem 1.1, we will obtain explicit lower bounds as a function of n of the covering radii (holes) of known lattices, namely Barnes-Wall BW n , Craig A (r) n , Mordell-Weil M W n , and of the Delone constants of BCH packings.

In Section 6 we will show the pertinency of the lower bound µ n (R) , and "its continuity with R", by comparing it to known classical asymptotic bounds. The construction of Delone sets of very small Delone constants is a difficult problem which is not considered here. Concerning lattice packings, our results give credit to the Conjecture stating that: for all > 0, there exists n L ( ) such that for n > n L ( ), for all ( n-dimensional) lattice L ∈ UD, R(L) ≥ 1 -.

ASYMPTOTIC BEHAVIOUR OF THE UPPER

BOUNDS OF δ AND OF THE LOWER BOUNDS OF δ L

The upper bounds of δ, as a function of n, are recalled in Table 1, the best one being the one of Kabatjanski ȋ and Levenstein ([Rogers 1964], [Gruber -Lekkerkerker 1987], §19 and §38, p 390-391, [START_REF] Providence | [END_REF],

Chap. 1 and 9, [Zong 1999], Chap. 3).

Table 1 cn 2 -n/2 (c a const.) Blichfeldt [Blichfeldt 1929]

n e 2 -n/2
Rogers [Rogers 1958] 2 (-0.5096+o(1))n

Sidel'nikov [Sidel'nikov 1973] 2 (-0.5237+o(1))n

Levenstein [Levenstein 1979] 2 (-0.5990+o(1))n Kabatjanski ȋ and Levenstein [Kabatjanski ȋ -Levenstein 1978] Their asymptotic expressions, when n goes to infinity, all exhibit a dominant exponential term of the type 2 -αn where α is close to 1/2. As for lower bounds, non-trivial lower bounds of the packing constant δ do not seem to exist yet (see Section 6; [ElkiesI 2000]). The basic result is concerned with lattice packings: the Conjecture of Minkowski (1905) proved by Hlawka [Cassels 1959] [Gruber -Lekkerkerker 1987] states

ζ(n) 2 n-1 ≤ δ L (2)
where

ζ(n) = ∞ k=1 k -n denotes the Riemann ζ-function.
This lower bound is non-effective since its proof does not allow explicit constructions of very dense lattices. This lower bound was improved by [START_REF] Davenport | Hlawka's Theorem in the geometry of numbers[END_REF] who gave: (ln √ 2 + o(1)) n 2 -n , for n sufficiently large, and by Ball [START_REF] Ball | A lower bound for the optimal density of lattice packings[END_REF]] who recently obtained better: 2(n -1)ζ(n)2 -n . For details, see [Handbook 1997], Chap. VI in Cassels [Cassels 1959], [START_REF] Providence | [END_REF] Chap. 9, [Gruber -Lekkerkerker 1987], or [Zong 1999]. One can remark that these asymptotic expressions all exhibit a dominant exponential term in 2 -α n with α = 1, and that there exists a close similarity between the asymptotic expressions of the lower and upper bounds and Theorem 1.1. Theorem 1.1 will allow to "go continuously" in some sense from the first type ( "α 1/2" case) to the second type ( "α = 1" case) of bounds; see Section 6.

LOWER BOUNDS OF THE MINIMAL HOLE

CONSTANT R L (n) AND OF THE DELONE COVERING CONSTANT R c (n)

Bounds for the (lattice-)packing density are obviously linked to holes. Let us recall some definitions.

If a lattice Λ ∈ UD of R n is a Delone set of Delone constant R, then classically the quantity R is called the covering radius of Λ. Given a UD-set Λ := {λ i }, to each element λ i ∈ Λ is associated its local cell C(λ i , Λ), also denoted by C(λ i , B(Λ))
, defined by the closed subset (not necessarily bounded), called Voronoi cell at λ i ,

C(λ i , Λ) := {x ∈ R n | x -λ i ≤ x -λ j for all j = i}.
As soon as Λ is a Delone set of Delone constant R > 0(R < +∞), all the Voronoi cells at its points are bounded closed convex polyhedra. In this case, for all λ i ∈ Λ, we have

C(λ i , Λ) := {x ∈ R n | x-λ i ≤ x-λ j for all j = i with λ j -λ i < 2R}.
By definition the circumradius of the Voronoi cell at λ i is ρ i := max v λ iv where the supremum (reached) is taken over all the vertices v of the Voronoi cell C(λ i , Λ) at λ i and the Delone constant R of Λ is equal to max i ρ i . The elements z ∈ R n lying at a distance R(Λ) of Λ will be called (spherical) deep holes (or deepest holes) of Λ. The other vertices of Voronoi cells will be called holes.

In the particular case of a lattice L the covering radius R(L) is the circumradius of the Voronoi cell of the lattice L at the origin. Any vertex of this Voronoi cell at a distance of L less than R(L) from L is called shallow hole [START_REF] Providence | [END_REF]. All the vertices of the Voronoi cell of a lattice at the origin may be simultaneously deepest holes when this Voronoi cell is highly symmetrical [Verger-Gaugry 1997].

Let us define the minimal hole constant by

R L = R L (n) := min L∈U D∩L R(L)
over all lattices L of R n which are UD-sets. Its determination is an important problem, already mentioned by Fejes-Toth [Fejes-Toth 1979]. It corresponds to the smallest possible holes in lattice packings L + B. Our knowledge about it is comparatively limited and the lattices for which the covering radius is equal to the minimal hole constant are unknown as soon as n is large enough. In Table 2 we summarize some values and known upper bounds of R L (n). Butler [Butler 1972]

≤ n (log 2 ln n+c)/n = 1 + o(1) ( c is a constant)
The following Theorem is fundamental but non-constructive.

Theorem 3.1 ( Butler )

R L (n) ≤ 1 + o(1)
when n is sufficiently large.

This leads to the following question: (Q 1 ) For all > 0, does there exist n 0 ( ) such that the inequality R L (n) ≥ 1 -holds for all n ≥ n 0 ( ) ?

If the answer to this fundamental question is yes, then Butler's Theorem [Butler 1972] would imply that R L (n) = 1 + o(1). Then this result would be a very important step towards a proof of the Conjecture stating that the strict inequality " δ > δ L " holds for n large enough. The affirmative answer to question (Q 1 ) is a Conjecture [START_REF] Providence | [END_REF]. Consequently, the search for lower bounds of R L (n) is crucial.

The lower bound √ 2/2 + o(1) for R L (n) was given by Blichfeldt (Butler [Butler 1972] p 722), when n is large enough. Let us note that the normalized (see Section 5) Leech lattice Λ 24 / N (Λ 24 ) [ElkiesII 2000] has a small value of its covering radius by the Theorem of Conway, Parker and Sloane (in [START_REF] Providence | [END_REF] Chap. 23): R(Λ 24 / N (Λ 24 )) = √ 2/2. In low dimension, this value is rarely reached [START_REF] Providence | [END_REF]. In general, for lattices, the information about its holes is limited Chap. 22 by Norton in [START_REF] Providence | [END_REF]) because of the difficulty of computing explicitely the Voronoi cells of a lattice from the lattice itself when n is large.

Let us now turn to the notion of saturation, linked to the possible filling of holes. We will say that a UD-set Λ is saturated, or maximal, if it is impossible to add a sphere to B(Λ) without destroying the fact that it is a packing of spheres, i.e. without creating an overlap of spheres. The set SS of systems of spheres of radius 1/2, is partially ordered by the relation ≺ defined by

Λ 1 , Λ 2 ∈ UD, B(Λ 1 ) ≺ B(Λ 2 ) ⇐⇒ Λ 1 ⊂ Λ 2 .
By Zorn's Lemma, maximal sphere packings exist. The saturation operation of a sphere packing consists in adding spheres to obtain a maximal sphere packing. It is fairly arbitrary and may be finite or infinite. Note that it is not because a sphere packing is maximal (saturated) that its density is equal to δ.

Let X R ⊂ UD be the subset of Delone sets of Delone constant R > 0 of R n . By saturating a Delone set of Delone constant R > 0 we will always obtain a Delone set of constant less than 1, but not a Delone set of Delone

constant = R c in general. Let R (s) := sup{R(Λ) | Λ saturated}. It is obvious that 1/2 ≤ R c < R (s) ≤ 1, R c (n) ≤ R L (n)
and that the subset of saturated Delone sets of R n is included in Rc≤R≤R (s) X R . More precisely we have the following facts.

Lemma 3.2 i) R (s) = 1; ii) R c (n) ≥ √ 2 2 n n+1 = √ 2 2 (1+O(1/n))
for n large.

Proof : i) Let us assume R (s) < 1 and that R (s) is the Delone constant of a saturated Delone set Λ. We will obtain a contradiction. Then there exists z ∈ R n such that inf λ∈Λ z -λ = R (s) . Up to a translation, we may assume z = 0. Let > 0 be small enough such that (1 + )R (s) < 1. Let η ∈ (3, 4) such that the system of spheres B Λ ∩ B(0, ηR (s) ) := {B(c 1 , 1/2), . . . , B(c m , 1/2)} (with m ≥ 1) is such that hc j < ηR (s) for all j = 1, 2, . . . , m and all h ∈ [1, 1 + ). Now let h ∈ (1, 1+ ) and let us create the new Delone set Λ h from Λ as follows: first, Λ h ∩B(0, ηR (s) ) is exactly equal to the set {hc 1 , hc 2 , . . . , hc m } so that, "inside" the ball B(0, ηR (s) ), B Λ h ∩ B(0, ηR (s) ) = {B(hc 1 , 1/2), . . . , B(hc m , 1/2)}. For constructing B Λ h ∩ R n \ B(0, ηR (s) ) , we take any infinite packing B 1 of balls of radius 1/2 centred at points which lie in R n \ B(0, ηR (s) ) so that: i) B 1 ∪ B Λ h ∩ B(0, ηR (s) ) is a packing of balls of R n , and ii) B 1 is saturated. We obtain the Delone set Λ h ∈ UD defined by B(Λ h ) := B 1 ∪ B Λ h ∩ B(0, ηR (s) ) .

We will take small enough such that all the Voronoi cells at the points hc j , with j = 1, 2, . . . , m and h ∈ [1, 1 + ), have a circumradius always strictly less than 1 (this is always possible because of the continuity of the maps defining the vertices of Voronoi cells as functions of the centres of balls). Since the restriction of the system of balls B(Λ h ) to the portion of space outside the cluster {B(hc 1 , 1/2), . . . , B(hc m , 1/2)} ∪ B(0, ηR (s) ), is saturated, all the Voronoi cells at the centres of the balls of B 1 have a circumradius ≤ R (s) < 1.

Then, on one hand, since the distance between 0 and Λ h is hR (s) > R (s) , for h > 1, the Delone set Λ h has a Delone constant strictly greater than R (s) . Hence it is not saturated, by definition of R (s) . On the other hand, since all the Voronoi cells of Λ h , at the centres of balls located "outside" and "inside" B(0, ηR (s) ), have a circumradius strictly less than 1, it is impossible to add a sphere at any of their vertices to saturate Λ h , and therefore there is no place in R n where to add a ball of radius 1/2 to saturate Λ h . Contradiction.

In the case where the supremum R (s) = sup{R(Λ) | Λ saturated} is not reached, let us still assume that R (s) < 1 and let us show the contradiction. Then, necessarily [Verger-Gaugry 2001], there exist a sequence of points (z i ) i≥1 and a sequence of Delone sets (Λ i ) i≥1 such that: z i tends to +∞ when i goes to infinity with the property that, for all > 0 there exists i 0 ( ) such that i ≥ i 0 ( ) implies R (s) -≤ inf λ∈Λ i z i -λ ≤ R (s) . Let R i be the Delone constant of Λ i . We now take small enough in order to have 1/R (s) > 1/(1 -/R (s) ). It corresponds to values of i large enough. Then, as above, we will consider a new Delone set Λ h,i created from Λ i by a local dilation of scalar factor h about the point s) . As above, we obtain a Delone set Λ h,i which is such that its Delone constant is strictly greater than R (s) and strictly smaller than 1, then not saturated and impossible to saturate. Contradiction.

z i . When 1/R (s) > h > 1/(1 -/R (s) ) then hR i ≤ hR (s) < 1 and hR i ≥ h(R (s) -) > (R (s) -)/(1 -/R (s) ) = R (
ii

) Let us show that, if Λ is a Delone set of R n of constant R, n ≥ 1, then √ 2 2 n n+1 ≤ R.
This inequality comes from an inequality of Blichfeldt (Lemma 1 in [Rogers 1964] p 79; or [Blichfeldt 1929]) since the distance from the centre of a Voronoi cell to any point of its (n -i)-dimensional plane, in the Voronoi decomposition of space by Λ, is at least 1 2 2i i+1 for all 1 ≤ i ≤ n. Taking i = n in the above inequality gives the result. Note that in the constructions of Rogers, packings of equal ball of radius 1, and not 1/2, are considered; this justifies the factor 1/2 in front of the expression.

We will call √ 2/2 the Blichfeldt bound.

If n = 1, X Rc = X 1/2 is not empty since it contains Z. If n = 2 , the set X Rc = X 1 √ 3
is not empty since it contains the lattice generated by the points of coordinates (1, 0) and (1/2, √ 3/2) in the plane (extreme lattice) in an orthonormal basis [Kerschner 1939]. What happens for n ≥ 3 ? The set X √ 2 2 √ n n+1 is certainly empty since the minimal Voronoi cell is not tiling periodically the ambiant space as soon as n ≥ 3 [Rogers 1964] (McLaughlin's Theorem cited in [Hales 2000], Hales [HalesI 1997] [HalesII 1997] for n = 3, [Oesterlé 1998/9], [Verger-Gaugry 2001]).

(Q 2 ) For which values of n and R is X R not empty ? This fairly old question [Ryshkov 1975] is partially answered by Theorem 1.2.

PROOFS OF THEOREMS

1.1 AND 1.2 Proof of Theorem 1.1: Let R c ≤ R and T > R be a real number. If Λ is a Delone set of constant R of R n , then (B(0, R) + Λ) ∩ B(0, T ) covers the ball B(0, T -R).
Hence, the number of elements of Λ ∩ B(0, T ) is at least ((T -R)/R) n . On the other hand, since all the balls of radius 1/2 centred at the elements of Λ ∩ B(0, T ) lie within B(0, T + 1/2), the proportion of space they occupy in B(0, T + 1/2) is at least

T -R R n vol(B(0, 1/2)) vol(B(0, T + 1/2)) = T -R 2R(T + 1/2) n .
When T tends to infinity the above quantity tends to (2R) -n which is a lower bound of the density δ(B(Λ)). Proof of Theorem 1.2: Let σ KL (n) = 2 -0.599n be the upper bound of Kabatjanski ȋ-Levenstein of the packing density δ. By Theorem 1.1 we deduce that, with

R c ≤ R ≤ 1, µ n (R) ≤ δ ≤ 2 -0.599n .
Raising this equation to the power 1/n gives readily 2R ≥ 2 0.599 +o(1) that is R ≥ 2 -0.401 + o(1).

ASYMPTOTIC BEHAVIOUR OF HOLES IN SEQUENCES OF LATTICES AND PACKINGS

The expression of the bound µ n (R) will be used to compute a lower bound of the Delone constant of a Delone set, or a lower bound of the covering radius of a given lattice L ∈ UD ∩ L, when its density and its minimal interpoint distance are known.

In the case of a lattice L, the minimal interpoint distance of L is the square root of the norm N (L) of the lattice [Martinet 1996]. We will consider the normalized lattice

1 √ N (L)
L instead of the lattice L to apply the preceding considerations with packings of spheres of common radius 1/2. The situation is similar for a Delone set which will be normalized by its minimal interpoint distance. We will denote by dens(L) := δ(B(L/ N (L))) (Theorem 1.7 in [Rogers 1964]) the density of the system of spheres L + B(0, N (L)/2) if L is a lattice and by dens(Λ) := δ(B(Λ/n(Λ))) (Theorem 1.7 in [Rogers 1964]) the density of the system of spheres Λ + B(0, n(Λ)/2) if Λ is a Delone set of minimal interpoint distance n(Λ).

Let us observe that, for all Delone set Λ and all nonnegative scalar factor λ such that Λ ∈ UD and λΛ ∈ UD, the equality R(λΛ) = λR(Λ) holds. Then, from Theorem 1.1, we readily obtain the following inequalities: i) n(Λ) 2 dens(Λ) -1/n ≤ R(Λ), for all Delone set Λ ∈ UD of minimal interpoint distance n(Λ),

and ii) N (L) 2 dens(L) -1/n ≤ R(L), for all lattice L ∈ UD∩L of norm N (L).

In the sequel the following notations will be used: t L := N (L) tL with tL := 1 2 dens(L) -1/n ; and t Λ := n(Λ) tΛ with tΛ := 1 2 dens(Λ) -1/n for L and Λ as above.

Let us now apply these inequalities to some known sequences of lattices and packings, as given by [START_REF] Providence | [END_REF] Chap. 5 and 8, and [Martinet 1996] Chap. V, to obtain an estimation of the size of the deep holes.

LEECH LATTICE

For the Leech lattice Λ 24 in R 24 the density δ(Λ 24 ) = π 12 /479001600 = 0.001930... and the covering radius R(Λ 24 / N (Λ 24 )) = √ 2/2 are both known [START_REF] Providence | [END_REF]] [ElkiesI 2000]. We obtain t Λ 24 = 0.6487.... This numerical value is less than 10% far from the true value 0.707.... This estimation of the size of the deep hole in Λ 24 is fairly realistic.

BARNES-WALL LATTICES

The density of the Barnes-Wall lattice BW n ( [Leech 1964], [START_REF] Providence | [END_REF] p 234 or p 151), in R n , n = 2 m , m ≥ 2, is equal to 2 -5n/4 n n/4 π n/2 /Γ(1 + n/2). The norm N (BW n ) is equal to n ( [Leech 1964] p 678).

Proposition 5.1 Let n = 2 m with m ≥ 2. The covering radius R(BW n ) ≥ t BWn of the Barnes-Wall lattice BW n is such that the size of its (deepest) hole tends to infinity as (and better than)

t BWn := 2 -1/4 √ πe n 3/4 (1 + o(1))
when n goes to infinity.

with equality if the norm of the lattice is 2r. The norm of Craig lattices is not known in general and lower bounds of N (A

n ) were obtained by Craig [Martinet 1996[START_REF] Bachoc | Etude algorithmique de réseaux construits avec la forme trace[END_REF]] [Craig 1978]. The determination of N (A (r) n ) is equivalent to the so-called Tarry-Escott problem in combinatorics and does not seem to be solved yet. However, for some values of n and r this norm is known.

Theorem 5.3 Let n ≥ 2. (i) (Craig) If n + 1 is a prime number p and r < n/2, then N (A (r) n ) ≥ 2r. (ii) (Bachoc and Batut) If n + 1 is a prime number p with r a strict divisor of n = p -1, then N (A (r) n ) = 2r.
Bachoc and Batut [START_REF] Bachoc | Etude algorithmique de réseaux construits avec la forme trace[END_REF]] made an exhaustive investigation of Craig lattices for the prime numbers p ≤ 23. The equality N (A (r) p-1 ) = 2r holds for r = 1, r = 2, r = 3 and also for r = (p + 1)/4 with p ≡ 3 mod 4. This last case was proved by Elkies (cited in Gross [Gross 1990]), from the general theory of Mordell-Weil lattices developped by Elkies and Shioda concerning the groups of rational points of elliptic curves over function fields [Shioda 1992]. The equality N (A (r) p-1 ) = 2r was also proved to be true for p ≤ 37 and r ∈ [1, p+1 4 ] ( [Martinet 1996] p 169), but wrong for higher values of p.

Using the assertion (ii) in Theorem 5.3 we obtain the following Proposition.

Proposition 5.4 let n ≥ 2 such that n + 1 is a prime number and r a strict divisor of n. Then, the covering radius R(A

(r) n ) ≥ t A (r) n of the Craig lattice A (r) n
is such that the size of its (deepest) hole tends to infinity as (and better than)

t A (r) n := 1 √ 2πe √ n(1 + o(1))
when n goes to infinity.

Let us remark that t A (r)

n is independent of r when n is large enough. As shown by Propositions 5.1 and 5.4 the deep holes of the Barnes-Wall and Craig lattices BW n and A (r) n have a size which goes to infinity with n (r fixed). In order to allow comparison between them and with Butler's Theorem (Theorem 3.1), we have to consider the normalized lattices 1 √ n BW n and 1 √ 2r

A (r)
n assuming that n is such that n + 1 is a prime number. In the first case, the covering radius tends to infinity with n leaving no hope to obtain very dense packings of spheres from the lattices BW n when n is large enough.

In the second case, since 

MORDELL-WEIL LATTICES

We will refer here to the class of Mordell-Weil lattices given by the following Theorem of Shioda ([Shioda 1991] Theorem 1.1).

Theorem 5.5 ( Shioda ) Let p be a prime number such that p+1 ≡ 0 (mod 6) and k any field containing F p 2 . The Mordell-Weil lattice E(K) of the elliptic curve E y 2 = x 3 + 1 + u p+1

(3) defined over the rational function field K, where K = k(u), is a positive-question Q 1 for a precise formulation) that lattices do not exhibit a covering radius less than 1 when n is sufficiently large.

  Let us recall, from Theorem 3.1, that the existence of very dense lattices (of minimal interpoint distance one) of covering radius as close as 1 is expected. Therefore we can expect to find very dense Craig lattices satisfying this condition when r = r(n) is a suitable function of n and large enough, namely: r(n) > 1 4πe n for which the lower bound t A (r) then less than unity.On the other hand, the density dens(A (r) n ) reaches its maximum when r is the integer the closest to n 2 ln(n+1) (obtained by cancelling the derivative of dens(A (r) n ) with respect to r, with n fixed, assuming that the norm of the lattice A n+1) ≤ 1 4πe n as soon as n is large enough (for n ≥ e 2πe -1), a good compromise for the value of r, assuming that the norm of the lattice A (r) n is exactly 2r, would be r := the smallest integer > 1 4πe n. (Q 3 ) Does there exist normalized Craig lattices A general n and r) which exhibit a Delone constant (covering radius) smaller than 1 ?

Table 2 :

 2 Minimal hole constant R L (n) for lattice-packings of spheres of radius 1/2 in R n .

	n = 3 n = 4 n = 5	Böröczky [Böröczky 1986] = Horvath [Horvath 1982] = ( √ √ 5/(2 3 -1)3 1/4 / √ 3) Horvath [Horvath 1982] = 9 + √ 13/(2 √ √ 6) 0.645497... 2 0.68125... 0.72473...
	n ≥ 2 n ≥ 2 n >> 1	Rogers [Rogers 1950] Henk [Henk 1995]	< 1.5 √ 21/4 ≤	1.1456...
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Proof : Raising to the power 1/n the equation 2 -5n/4 n n/4 π n/2 /Γ(1

and allowing n to tend to infinity leads easily to the claimed asymptotic expression of t BWn/ √ n as a function of n. The multiplication of t BWn/

√ n = tBWn by the minimal interpoint distance √ n gives the claimed lower bound t BWn of the covering radius R(BW n ) of BW n .

BCH PACKINGS

In this subsection, the reference will be [ [START_REF] Providence | [END_REF] 

when n goes to infinity.

The proof can be made with the same arguments as in the proof of Proposition 5.1.

CRAIG LATTICES

These lattices are known to be among the densest ones (Martinet [Martinet 1996] p 163-171, Conway and Sloane [START_REF] Providence | [END_REF] p 222-224). The density dens(A

definite even integral lattice with the following invariants:

kissing number ≥ 6p(p -1)

Recall that the centre density ∆ is the quotient of the density of the lattice by the volume π n/2 /Γ(1+n/2) of the unit ball of R n . Such a lattice in R 2p-2 , denoted by M W n with n = 2p -2, has a minimal interpoint distance equal to (p + 1)/3 and a density equal to dens(M

This value goes to zero while

goes to infinity when p (or n) tends to infinity. This result indicates that the deep holes of the normalized Mordell-Weil lattice M W n / N (M W n ) are in fact very shallow, and may be probably bounded above independently of n. This leads to the following question. (Q 4 ) Does there exist normalized Mordell-Weil lattices M W n / N (M W n ) which exhibit a Delone constant (covering radius) smaller than 1 ?

COMMENTS AND CONJECTURE

The lower bound µ n (R) of δ is particularly interesting for Delone sets of Delone constant R of R n which are saturated, that is for R ≤ R (s) . Since R (s) = 1 by Lemma 3.2, we readily obtain a lower bound for δ which is 2 -n [ElkiesI 2000] [ElkiesII 2000]. More generally, the lower bound µ n (R) exhibits a dependence with n which is in

Now taking R = R (s) = 1 gives a 2 -n dependence typical of the Minkowski-Hlawka type lower bounds of δ L while taking R = √ 2/2 (the Blichfeldt bound, Lemma 3.2) provides a 2 -n/2 dependence typical of the Rogers bound σ n . Inbetween all values of R are formally possible but the range is limited (Theorem 1.2).

Here the viewpoint is not that of explicit constructions. Working with packings of spheres arising from Delone sets for which we only control the constant R would seem a priori to give more freedom to the constructions. Very dense packings are likely to occur with 'almost-touching' spheres everywhere, that is from Delone sets of Delone constants R, as small as possible, close to R c (n). The corresponding kissing numbers deduced from all the local clusters of spheres would lie between the Coxeter-Böröczky/ Kabatjanski ȋ-Levenstein upper bounds [Böröczky 1978] [Kabatjanski ȋ -Levenstein 1978] and the lower bound of Wyner [Wyner 1965] and probably closer to their upper bounds. Local arrangements of spheres in a densest sphere packing can be extremely diversified ( [Hales 2000] [HalesI 1997] [HalesII 1997] on Hales-Ferguson Theorem, for n = 3).

In this sense, Theorem 1.1 gives a partial answer to old expectations when R lies between R c (n) and 1. Indeed, recall [Gruber -Lekkerkerker 1987] p 391 : "the best known upper and lower bounds for δ differ by a factor which is approximately 2 n/2 . This means that the problem of closest packing of spheres is still far from its solution (except for low values of n)".; and [Rogers 1964] p 9 : we were still up till now in the situation where "There remains a wide gap between the results of the Minkowski-Hlawka type, ..., and the results of Blichfeldt type, ...". In Figure 1 are plotted the R-dependent bound µ n (R) for several values of R, the upper bounds of Rogers, Sidel'nikov, Levenstein, Kabatjanski ȋ-Levenstein, the lower bounds of Davenport-Rogers, Ball and of Minkowski-Hlawka, as a function of the dimension n. All values between these two types of bounds can be reached by µ n (R) when R is suitably chosen below 1.

The curve n → µ n (R) for R = 1 is slightly below the Minkowski-Hlawka bound. When R is greater than 1, the curves n → µ n (R) are entirely below the Minkowski-Hlawka bound. On the contrary, when R < 1 is close to unity, the curve µ n (R) lies below the Minkowski-Hlawka bound up till a certain value of n and then dominates it, as expected asymptotically. When 2 -0.401 < R < 1 lies far enough from 1 the entire curve n → µ n (R) lies strictly between the two types of bounds (Kabatjanski ȋ-Levenstein and Minkowki-Hlawka).

Theorem 1.2 does not say anything about the frequency and the density of such middle-sized Voronoi cells of circumradius R approximately equal to 2 -0.401 in a general saturated Delone set of R n of constant R when n is sufficiently large, in particular in the densest ones. 1.4 of [START_REF] Providence | [END_REF] Chap. 1 to which we have added the lower bounds µ 65536 (R) for different values of R (the values of the centre density log 2 ∆ are recomputed from the original references).

To allow comparison with known results in literature and to follow Conway and Sloane [START_REF] Providence | [END_REF] we have taken n fairly large, namely n = 65536. To appreciate the pertinency of the formula given by Theorem 1.1 we have reproduced in Table 3 the Table 1.4 of [START_REF] Providence | [END_REF] Chap. 1 and added therein the values of the centre density ∆ deduced from µ 65536 (R) for R = 2 -0.401 , 0.8, 0.85, 0.90, 0.95, 0.99, 1.0, 1.5. The value of (the logarithm in base 2 of) the centre density ∆ computed from µ 65536 (R) now sticks to the Kabatjanski ȋ-Levenstein's bound when R is at its asymptotic maximum R = 2 -0.401 . Is this value reached by the Delone constant of a Delone set?

When n is large enough, the sensitivity of µ n (R) to the Delone constant R can be perceived by the following comparison (see Table 3): the centre density 324602 relative to the bound µ 65536 (1) is slightly below the lower bound 324603 of Minkowski-Hlawka, as expected, whereas the centre density 325553 relative to µ 65536 (0.99) is slightly above the best lower bound 324620 of Ball. This gives credit to the Conjecture (see