N

N

Validation of distributed periodic real-time systems
using CAN protocol with finite automata
Gagélle Largeteau-Skapin, Dominique Geniet, Jean-Philippe Dubernard

» To cite this version:

Gagélle Largeteau-Skapin, Dominique Geniet, Jean-Philippe Dubernard. Validation of distributed
periodic real-time systems using CAN protocol with finite automata. World Multiconference on Sys-
temics, Cybernetics and Informatics, ISAS-SCIs, 2002, orlando, florida, United States. pp.151-155.
hal-00346370

HAL Id: hal-00346370
https://hal.science/hal-00346370
Submitted on 11 Dec 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00346370
https://hal.archives-ouvertes.fr

Validation of Distributed Periodic Real-Time Systems
Using CAN Protocol with Finite Automata*

Gaélle Largeteau
LISI, Université de Poitiers & E.N.S.M.A
Téléport 2, 1 av. C. Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cédex

Dominique Geniet
LISI, Université de Poitiers & E.N.S.M.A
Téléport 2, 1 av. C. Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cédex

Jean-Philippe Dubernard
LIFAR, Université de Rouen
Place Emile Blondel, F-76821 Mont-Saint-Aignan Cédex

Abstract

In a previous work, we define a temporal model
based on regular languages to validate periodic
real-time systems: the feasability decisional pro-
cess is expressed by means of algebraic operations
on languages, such as intersection, Hadamard
product, and language center computing. Here,
we describe how this model can be used to
validate periodic distributed real-time systems.
We base this description on the example of the
CAN network protocol.

1. INTRODUCTION

Real-time systems are reactive: they react con-
tinuously to the stimuli coming from their en-
vironment. In addition, hard real-time systems
must react in a given delay, whatever the proces-
sor load and the synchronization (resource shar-
ing, communication). To validate a hard real-
time system consists in guaranteeing firstly its al-
gorithmic correction (functional validation), and
secondly that, whatever the context, each task is
always able to react before its deadline (temporal
validation).

Two different approaches usually address this
problem: on-line or off-line policies. Using an

*A paraitre dans les actes de Systemics, Cybernet-
ics and Informatics’2001, 22-25 Juillet 2001, Orlando,
Floride (USA)

off-line policy consists in searching (by means of
simulations) a scheduling sequence that satisfies
the given temporal constraints. Once coded in
a sequencer, this sequence will drive the applica-
tion. Reversely, an on-line scheduler drives the
application by choosing, at each swap, the task
to schedule. This choice is based on heuristics
whose role is on the one hand to provide to the
scheduler a decisional capacity (the problem is
NP-hard), and on the other hand to make it the
faster possible (the processor cannot be used for
a long time for scheduling management). The use
of heuristics makes the temporal validity of such
a scheduler unprovable. Thus, its validation is
obtained by the way of an off-line analysis (by
simulation).

These two approaches have generated a great
number of works, in the real-time community.
Most of them are based on the task temporal
model proposed by Liu and Leyland in [1]. First
of all, the expressing power of the different pro-
posed methods has been studied. This leads to
the notion of optimality of an on-line sched-
uler: it gives a correct sequence, if one exists.
When the tasks are interdependent (i.e. resource
sharing or communication are concerned), it is
proved that an optimal on-line algorithm cannot
be found [2][3][4]: simulation cannot be avoided.
Since the system must be validated for any pro-
cessing duration, one must give an upper bound

for the duration of simulation (because simula-
tion must obviously operate on a finite time in-
terval). [3] gets a value for independent task sys-
tems, which is improved and generalized for dis-
tributed systems of interdependent tasks in [5].

Most of the proposed approaches solve a spe-
cific problem: task or message scheduling, load
balancing, etc. In [6], we define a new methodol-
ogy, based on regular languages, to validate peri-
odic real-time systems: each periodic task is as-
sociated with a language which collects its correct
behaviours, and we use compositional techniques
based on Arnold and Nivat synchronized prod-
ucts [7] to decide the feasability of the task sys-
tem. In [8], we extend this technique to real-time
systems composed of both periodic and sporadic
tasks.

In our technique, time is implicit. This prop-
erty leads the model to be easier than others ! to
analyse. Indeed on the one hand, the decisional
process is directly based on the finite automata
analysis toolbox, which algorithms are known to
be very efficient. For instance, the central the-
orem of [5]? is generalized to multi-CPU target
architectures as a corollary of the existence of
the automaton associated with a real-time sys-
tem. On the other hand, our approach allows
to express fine properties (like preemption varia-
tions during the life of a task, for instance). In
timed approaches, these kinds of properties may
be more complex to model, because they impose
both complex equational techniques or additional
structural definitions.

Here, we describe how our approach can be
used to validate distributed real-time systems.
Our description is based on an industrial network
protocol, CAN, that is currently used by Peugeot
(for instance), in new cars.

In part , we present the class of real-time
applications that we study. In part , we describe
the temporal model used to validate real-time
systems. In section , we show how CAN protocol
can be modeled, and we give some synchroniza-
tion techniques to validate a distributed real-time
system where tasks communicate through a CAN
network.

'timed models [9], or Petri net based models [5]
2Tt proves the cyclicity of each infinite scheduler se-
quence for a real-time system, on a 1-CPU system.

2. DISTRIBUTED
REAL-TIME SYSTEMS

A control-command system is a real-time sys-
tem when the physical driven process has to in-
teract strongly with its environment. To avoid
crash situations, the computer must run with a
speed compatible with the one of the physical
process. Then, such a system is reactive. It is
composed of elementary processes, named tasks.
These tasks may have different functions (see Fig-
ure 1.Left):

e Scanning tasks have to get the physical
datas, coming from the captors of the physi-
cal process. These captors usually send their
datas regularly, with a physical defined fre-
quence. Of course, scanning tasks have to get
the datas with the same frequency. They are
called periodic tasks. The periodic task 7;
is characterized with four timing attributes:
its period Tj, its deadline D;, its first ac-
tivation date r;, and its CPU time C;.

e Decision tasks receive datas from all the
scanning tasks (and, sometimes, from other
decisional tasks). They have to produce the
flow of driving decisions to transmit to the
process motor commands. Of course, their
speed must be in accordance with the one of
scanning tasks.

e Command tasks have to transmit command
messages to the motor driving devices.

These periodic tasks are completed with spo-
radic tasks, which are only activated when alarm
signals are received from the captors. These
tasks are characterized by two time attributes:
C; and D;. In the following, a real-time system
is supposed to be composed of two task systems:
(7i)iep1,n) 18 the periodic component of the sys-
tem, and (ai)ie[l,p] its non-periodic component.
When the physical process is complex (see,
for instance, on Figure 1.Right), the real-time
command system is often distributed: many
computers are used, which are connected to a
network bus. For real-time systems, specific
network protocols are used, to guarantee the
respect of deadlines for delivrance of critical
messages. S0, a distributed real-time system can
be viewed as presented on Figure 2.Right.

3 Scanning tesk Decision
Signals It . tesks

Physical
process

Command task RTOS
A real-Time Structure

Command

computers Pilots

computer

Central
computer

A complex physical process

Figure 1: An example of real-time system for a
complex physical process

3. MODELING REAL-TIME
TASKS WITH FINITE
AUTOMATA

Validate programs consists in proving that all
their possible behaviours are consistent with the
semantics associated with the program. For real-
time systems, this validation process must be
completed with a temporal validation, which
consists in proving that whatever the evolution
of the physical system, no task may miss its
deadline. For instance, in a plane (see Figure
1.Right), a fire alarm signal cannot be missed by
its scanning task because of the computer system
scheduling policy.

In this paper, we are interested in the temporal
validation of distributed real-time systems. Our
technique [6][8] is based on a real-time task tem-
poral model: a task is associated with a regu-
lar language that collects all its valid tempo-
ral behaviours: for ¢ € N, a t-valid temporal
behaviour of a task is an history of its proces-
sor allocation time units on [0,%[such that we
can guarantee that in the future (i.e. [t,+0o0[)
of the task, there is at least one possible pro-
cessor allocation sequence compatible with the
temporal constrainsts of the task. On an alge-
braic plan, these valid temporal behaviours are
words w € {a,e}*, where a symbolizes that ;
owns a processor for one time unit, and e that 7;
is suspended for one time unit. Hence, the word
aaa e eaq models a processor allocation sequence
where 7; runs for 3 time units, and next is sus-
pended for 2 time units, and then runs for 2 time
units.

In [6], we show that the set L (7;) of the valid

temporal behaviours of a given periodic task®
is Center (0” ((aCiH_IoDi_Ci) oTi_Di)*) . When
there is resource sharing or communication be-
tween tasks, we use the Hadamard product of
languages for model concurrency: let w and ¢ be
two temporal valid behaviours of tasks 7 and 79,
the behaviour (w,() of the system (71, 72) is the

(2)(e) ()

The vector (wf) models that 71 is in state
7

w; while 75 is in state (;. We denote this

operation wS(. This product is naturally

extended to languages in the way LOM =

{wQ(, (w, () € L x M}.

To synchronize tasks, we wuse Arnold-
Nivat’s techniques [7]: a is refined in
{a,critical statements}, and the synchro-
nization of tasks is implemented through
algebraic operations on the sets of valid temporal
behaviours. The temporal behaviours [6] of
a task system is the center of the synchro-

nized product of the L(7;)’s. This language
is L ((TZ-)Z-E[1 n]) = Center (S* N ZSzlnL (ﬁ)))
’ i=1

w1
where S collects all the corresponding
Wn,

to valid instantaneous configurations.

4. THE CAN NETWORKING
PROTOCOL

The CAN* protocol was developed from 1983. Tt
is a MAC layer based on CSMA /AMP technique.
When a node transmits datas, it follows the pro-
tocol designed on Figure 2.Left:

1. It waits for medium freeness.

2. It starts an arbitration game. Every node
concerned in a transmission will play.

3. The arbitration game winner transmits its
message, all other nodes read it (transmis-
sion follows a broadcasting protocol). If the

3here, we deal with tasks with fixed execution times.
4Controller Area Network

arbitration initiater node is not the winner,
it will try again to transmit in the future, as
soon as it can.

4. Tranmission is terminated with a FOT sig-
nal.

© [Slefefe]

@ [

%

% [[Sle| [SeltE

Network activity
[Sielefefel t] t]t EIslefel t]t t FE[S[e] t E[S[e[t [
[t] Transmit [§] Start competition Receive
[End of transmission [€ Competition
CAN Protocol

@
@ @
Node Node Node
[Net]

Structure of adistributed real-time system

Figure 2: CAN protocol

Used to transmit a set of periodic messages
whose transmission dates can be statically com-
puted, this protocol is deterministic. In periodic
real-time systems, the competition identifiers of
the nodes are messages identifiers. As far as we
know statically the relation between senders and
messages, the transmission dates can statically
be computed. Thus, we can use our technique
for this protocol.

5. MODELING
COMMUNICATION WITH
FINITE AUTOMATA

Viewing communication as tasks

Managing interdependence, like communication,
leads to garantee the corresponding properties for
the tasks: mutual exclusion, precedence etc.

In Arnold-Nivat’s model [7], this control is im-
plemented through virtual tasks, whose role is
to model physical resources or messages. Arnold
and Nivat consider the communication as a slave
task: it is associated with a regular language of
behaviors, L., i.e. to an automaton A,. The

i=n k=m
language L = (Q (L (TZ))> Q (kQI (er)) is a
set of words built on an alphabet which letters
pattern is (a1,...,ay,81,--.,Sy), where the a;’s
are the 7;’s states, and the s;’s the slave tasks
statements. A word w = (w1) (w2) . .. (w‘w‘) €L

is a valid behaviour of the task system (in the

sense where is respects the correct use of com-
munication protocols) if, foreach w;, the execu-
tion of a Ry critical statement (P or V) by one
of the 7;’s is always simultaneously performed by
the virtual task associated with Rj;. This con-
straint leads w to follow the predicate: Vi €
[1,|w]],Vk € [1,m],Vz critical statement on Ry,
wi, = ¢ <= 3j € [1,n] such that w;; = wj,.
Let us call S the set of valid vectors (i.e. that
follows the previous predicate). Each w in LN S*
is a valid behaviour: it respects both the tempo-
ral constraints and the protocol used for sharing
critical resources. Moreover, it can be infinitely
extended by respect to these constraints.

In the net communication context, we extend
this approach, according the net to a slave task.
This task must have some particular characteris-
tics :

e It is not preemptive : once a message trans-
mission starts on the medium, no other
transmission can interrupt it.

e The medium work is independent from the
sites. In our model, we consider it as a pro-
Cessor.

Thus, net communication is a non preemptive
slave task. Then, it is modeled through a finite
automaton which structure directly depends on
the followed protocol. For Can, the Net commu-
nication automaton is described in section .
Integrating CAN protocol into finite au-
tomata model
In the CAN protocol, a task can be in four states
: waiting, prepare the competition, competition
and transmission. So, it is naturally associated
with a four states automaton (see Figure 3). The
First state is the waiting state, waiting for the
medium freeness. An incoming message is rep-
resented by the SOF transition, the second state
prepares the arbitration game. Then the compe-
tition between all the messages begins: the sys-
tem in the state 3. Once the arbitration game
finishes, the automaton goes into the state 4 and
the winner starts transmitting its message. At
the end of the transmission, the automaton goes
back to the first state by the EOT transition.

A Rendez-Vous communication between
real-time tasks
The transmitter performs : Send, waiting instruc-
tions, transmission , EOT. The receiver performs:

Idle Comp Transmit

EOT

Figure 3: CAN protocol model automaton

Receive, receiving the message, EOR. The syn-
chronization mechanism consists in building the
product of the three automata (transmitter, re-
ceiver, protocol) and see whether transitions are
valid or not. A transition of the product automa-
ton is labeled with (emitter action, receiver ac-
tion, protocol action). The only valid transitions

w1
are the 3-tuples | wo

w3

that satisfy:

w1 = Send = w3 = SOF V
w9 = Receive = w3 = Win V
wy = FOR = w3 = EOT

Let S be the set of such configurations. Comput-
ing the set of valid® behaviours is implemented
by applying the technique of section for the pair
(73, Protocol).

Principles for integrating asynchronous
communication in the model

When the communication is asynchronous, send-
ing a message consists in saving it on a spool. The
network board driver starts transmissions until
this spool is empty: each transmission deletes a
message. To model such a communication, we
must express each network board driver (it is a
node of the network) as a task. A message is
tranmitted from a task to an other, via a buffer,
a driver, the network, an other driver, an other
buffer, and finally the destination task. The dy-
namics is:

1. The transmitter puts its message in the
buffer, and then the driver reads it.

2. The driver starts competition with other
drivers and when it wins, it transmits the
message and deletes it from its buffer.

3. When the reception ends, the receiver driver
stores the message in its buffer.

5in the sense of correct net use

4. Finally, the receiver task reads the message
from the buffer.

To express this process in the model, we need
first to model the driver as an automaton (a
driver is a task). This automaton (see Figure
4.Left) models the details of the communication
between the drivers (competition, transmission,
reception). There are two different synchroniza-

CANDriver

*Send S*engmd *
(i
Rec RecRec
Buffer virtual task automaton

Figure 4: CAN drivers model automaton

tions:

e First, we synchronize tasks and their driver
by the use of a classical resource sharing au-
tomaton (see Figure 4.Right): the states of
this automaton store the number of pending
messages.

e Second, the drivers have to be synchronized
by following the net protocol : the automa-
ton presented in Figure 3 is now viewed as a
synchronizer task.

To model the synchronization between a task, its
target buffer, and the network driver, we collect
the set S of valid instantaneous configurations
w = (wi,w2,ws), where w; models the activity
state of the task, wy the state of the buffer, and
w3 the activity state of the driver. The configu-
ration w belongs to the set of valid configurations
if

w1 = Send = wy = Smsg V

wg = SOF = wy = Msg V

w3 = StC = wy = Msg V

ws = NTFE = w9y = NoMsg V

w3 = EOT = ws = Rmsg V

w3 = FOR = wy = Smsg V

w1 = Receive = wy = Rmsg
On the same way, the drivers have to be synchro-

nized for the access of network medium. The vir-
tual task used for this synchronization is the CAN

protocol. So, an instantaneous configuration of
the system (Drivers, Protocol) is a (n + 1)-tuple
w: for i € [1,n], w; models the i** driver activity
state, and wy41 models the protocol state. the
configuration w is a valid instantaneous one if

wpt1 = Idle = (Vi € [1,n],w; = Idle) V
wp+1 = SOF = (Ji € [1,n], (w; = SOF)
A (V5 € [1,n]\ {i},w; = Ack)) V
wp+1 = StC = (Vi € [1,n),w; € {NTE, StC}) V
wp+1 = Comp =
(3(,) € [1,n] x ([1,n] \ 4) ,wi = w; = Comp)
- (3 € [1,n],

w; € {Idle, StC, EOR, Emit, Win, Ack, SOF})

V wpy1 = Win = (3i € [1,n], ((w; = Winner)
A (V5 € [1,n]\ i,w; € {Out, Receive}))) V

wnt1 = Transmit = (3i € [1,n], (wi = Transmit)

A (VY5 € [1,n]\ i,w; = Receive)) V
wp+1 = EOT = (i € [1,n], (w; = EOT) A
(Vi € [L,n] \4,w; = EOR))

6. CONCLUSION

So, the CAN protocol can be integrated in our
temporal model as a specific virtual task: the
model is a finite automaton. We have shown that
both synchronous and asynchronous communica-
tion can be implemented. In synchronous mode,
tasks are directly synchronized by the use of
the protocol automaton; in asynchronous mode,
buffer states and network drivers have to be ex-
pressed, and the synchronization of tasks needs
three atomic synchronizations: transmitter and
its driver, the drivers, and the target driver and
the receiver task. Here, CAN is an example, this
methodology can be used with any network pro-
tocol that can be described with a finite automa-
ton.

Then, we plan to extend this work in two di-
rections. First, we will show that all the classi-
cal industrial network protocols can be integrated
in this approach. Second, we will extend our
methodology to aperiodic network trafic (alarm
messages). Future works will explore them.

References

[1] C.L. Liu and J.W. Layland. Scheduling al-
gorithms for multiprogramming in a hard

real-time environment. Journal of the ACM,
20(1):46-61, 1973.

S.K. Baruah, L.E. Rosier, and R.R. How-
ell. Algorithms and complexity concernig the
preemptive scheduling of periodic, real-time

tasks on one processor. Real-Time Systems,
pages 301-324, 1990.

J.Y.T. Leung and M.L. Merill. A note
on preemptive scheduling of periodic real-
time tasks. Information Processing Letters,
11(3):115-118, 1980.

J. Leung and J. Whitehead. On the com-
plexity of fixed-priority scheduling of peri-
odic real-time tasks. Performance Evaluation,
pages 237-250, 1982.

E. Grolleau. Ordonnancement Temps-Réel
Hors-Ligne Optimal d I’Aide de Réseauz de
Petri en Environnement Monoprocesseur et
Multiprocesseur. PhD thesis, Univ. Poitiers,
1999.

D. Geniet. Validation d’applications temps-
réel & contraintes strictes a I’aide de langages
rationnels. In RTS’2000, pages 91-106, 2000.

A. Arnold and M. Nivat. Comportements
de processus. Technical Report 82-12, Univ.
Paris 7, 1982.

D. Geniet and J.P. Dubernard. Ordonnance-
ment de taches sporadiques & contraintes

strictes & I’aide de séries génératrices. In Proc.
of RTS’01, 2001.

L. Aceto, P. Bouyer, A. Burgue no, and
K. G. Larsen. The power of reachability
testing for timed automata. In Proc. of
18" Conf. Found. of Software Technology and
Theor. Comp. Sci., LNCS 1530, pages 245—
256. Springer-Verlag, December 1998.

