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Abstract. This paper argues that flatness appears as a central notios veri-
fication of counter automata. A counter automaton is calktdshen its control
graph can be “replaced”, equivalently w.r.t. reachahility another one with no
nested loops. From a practical view point, we show that fkgrie a necessary
and sufficient condition for termination of accelerated bgiit model check-
ing, a generic semi-algorithmic technique implementeduiccessful tools like
FAsST, LAsH or TREX. From a theoretical view point, we prove that many known
semilinear subclasses of counter automata are flat: ré\®ngaded counter ma-
chines, lossy vector addition systems with states, reverstetri nets, persis-
tent and conflict-free Petri nets, etc. Hence, for theselasbes, the semilinear
reachability set can be computed usingréformaccelerated symbolic procedure
(whereas previous algorithms were specifically designeddoh subclass).

1 Introduction

Petri netsandcounter automatare widely used formalisms to model concurrdist
tributed systems. Basically, a counter automaton is a fBtdge automaton extended
with counters that hold nonnegative integer values. Opmraion counters can be de-
fined by formulas in Presburger arithmetic. As the counteesumbounded, counter
automata are naturallpfinite-statesystems.

Various formalisms have been proposed to model desirecepiiep on systems. In
this work, we only considesafetyproperties: these properties (of the original system)
may often be expressed bgachability propertie®n the model.

Reachability properties are algorithmically checkableffioite-statesystems (and
efficient implementations exist). However, the situatisnriore complex foinfinite-
state systems: the reachability problem is undecidable evendsiricted classes of
systems, such as Minsky machines [Min67].

Dedicated algorithms for counter automataMany specialized algorithms have been
designed to solve verification problems for various clasdesounter automata. The
reachability problem for Petri nets has been proved detad@lay84, Kos82]. The
binary reachability relation is effectively semilinear fiieversible Petri nets [Tai68]

* This work was supported by the French Ministry of Researcbjéet FERsEEof the ACI
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Fig. 1. A non-flat counter automaton.

and for BPP-nets [Esp97], and the reachabilitysst* is effectively semilinear for
cyclic Petri nets [AK77], for persistent Petri nets [LR78ai81] and for regular Petri
nets [VVNB81]. The reachability sepost™ andpre* are effectively semilinear for reversal-
bounded counter machines [Iba78], for lossy VASS [BM99] &md2-dimensional
VASS [HP79]. It was later shown thabst™ / pre* are still effectively semilinear for var-
ious extensions of-dim VASS [FS00b, FS00a]. However, these methods suffen fro
serious drawbacks: (1) they cannot be easily extended obio@ah, (2) from an imple-
mentation perspective, a dedicated tool would be needezhfdr specialized algorithm,
and (3) in practice, counter automata rarely belong egticebne of these semilinear
classes. Thus, generic symbolic model-checking techsifppregeneral (undecidable)
classes have been recently developped and implemented.

Accelerated symbolic model-checkinyferification of reachability properties usually
proceeds through an iterative fixpoint computation offtrevard reachability sepost*
(resp.backward reachability seire*), starting from the initial states (resp. from the er-
ror states). When the state space is infinite, fiejitsmbolic representatiorfer sets of
states are required. To help termination of this fixpoint patation, so-callecccel-
erationtechniques (ometa-transitiongare applied [BW94, BGWW97, BH99, FIS03,
FLOZ2]. Basically, acceleration consists in computing ire atep the effect of iterating
a given loop (of the control flow graph). Accelerated symbatiodel checkers such as
LAsH [Las], TREX [ABS01], and FAsT [BFLP03] implement this approach.

Even though it behaves well in practice, accelerated symminobdel-checking is
only asemialgorithm: it does not provide any guarantee of termimatfeor instance,
iteration of loops is not sufficient to compute the whole dgvear reachability set of the
counter automata depicted in figure 1, with initial stége (0,0)) (see Examples 2.4
and 4.5). Thus, we would like to combine the best of both apgines, by integrating,
for each known semilinear class, the dedicated algorithechnology into improved
acceleration techniques that would ensure terminatiohefieneric accelerated semi-
algorithm for this class. A first step towards this objectieasists in characterizing the
classes for which the generic accelerated semi-algorithisith terminate.

Our contribution. In this work, we investigate termination of accelerated kgfit
model-checking for known semilinear classes of countesraata. A natural notion in



this framework iflatnes{FO97, CJ98]: a counter automatdris calledflat® when its
control graph can be “replaced”, equivalently w.r.t. reslity, by another one with
no nested loops. We show that (global) flatness is a neceasdrgufficient condition
for termination of (binary) reachability set computatidnsacceleration-based semi-
algorithms. In particular, we get that accelerated syntirathdel checkers terminate on
a given system iff this system is flat (and a suitable searalegly is used).

We then turn our attention to the analysis of flathess for kneamilinear classes
of counter automata. We show that most of the known semilinksses of counter
automata (in particular the ones cited above) are flat. Oum teahnical contributions
are the proofs of flatness for the following classes: revdrsanded counter machines,
reversible Petri nets and conflict-free Petri nets. In paldir, we obtain that the bi-
nary reachability relation is effectively semilinear fardlict-free Petri nets. We also
show that cyclic Petri nets, persistent Petri nets, redRédri nets and Lossy/ Inserting
counter machines are flat, and we recall that BPP-net@-ahth VASS are flat. As flat-
ness implies effective semilinearity of the forward/binagachability set, our results
give new “uniform” proofs that these classes are semilinegparticular, we obtain a
simpler semilinearity proofs for reversal-bounded countachines and reversible Petri
nets.

It is also remarkable that accelerated symbolic model airscitesigned to anal-
yse counter automata, such asdH and FAST, terminate on all these classes. From a
practical viewpoint, our approach has several benefitav€lgan apply genericalgo-
rithm, which was designed for a much larger class of (unasdate) systems, and (2) the
— forward, backward and binary — reachability sets can bepded using the same
generic algorithm.

Outline. The paper is organized as follows. Section 2 presents decauater au-
tomata. We introduce the notion of flatness in Section 3 andghesv that flatness is
a necessary and sufficient condition for termination of krated symbolic model-
checking. In the last two sections, we show that many knownilsear restricted
classes of counter automata are flat: Section 4 deals wissedeof counter machines,
and Section 5 deals with classes of Petri nets.

Proofs. For the sake of completeness, all results are proved inldstene proofs are
in appendix). This paper is the long version of our ATVA 20Gper.

2 General Counter Automata

This section is devoted to the presentation of general evantomata. We will consider
in section 4 a more effective subclass of counter automadb@sguarded commands.
We first give basic definitions and notations that will be ugedughout the paper.

3 Our notion of flatness is actually more general than in [CJ88]re, a system is called flat
when it contains no nested loops.



2.1 Numbers, Vectors, Relations

Let Z (resp.N, Z—, Q, Q) denotes the set ahtegers(resp.nonnegative integers
nonpositive integergational numbersnonnegative rational numbersWe denote by
< theusual total order orQ. Givenk,! € N, we write [k ..{] (resp.[k .. oc[) for the
interval of integers{i € N/ k < i <} (resp.{i € N/ k < i}). We write| X| the
cardinal of any finite setX .

Given a sefX andn € N, we write X™ for the set of.-dim vectorsx of elements in
X. Forany index € [1 .. n], we denote by[i] thei** componenbf ann-dim vectorx.

We now focus om-dim vectors of (integer or rational) numbers. We witior the
all zero vector0[i] = 0 for all 7 € [1..n]. We also denote by theusual partial order
onQ", defined by <y ifforall i € [1..n] we havex[i] < y[i].

Operations om-dim vectors are componentwise extensions of their scalamter-
part (e.g. fox,x’ € Q", x+x’ is the vectoy € Q" defined byy[i] = x[:] + x'[¢] for all
i € [1..n]). Fora € Q andx € Q", ax is the vectoy € Q™ defined byy[i] = ax[i]
foralli € [1..n].

These operations are classically extended on setsdirh vectors (e.g. foP, P’ C
Q",P+P ={p+p'/pe Pp € P}). Moreover, in an operation involving sets of
n-dim vectors, we shortly write for the singleton{x} (e.g. forP C Q™ andx € Q",
we writex + P for {x} + P).

A binary relation R on some sek is any subset oK x X. We shortly writer R z’
whenever(z,z’) € R. Given a sett’, we denote byR[Y] the relational imageof Y’
by R, defined byR[Y] = {z € X / 3y € Y,y Rz}. Theinverseof a binary relation
R on X is the binary relatiol?~! on X defined byx R~ 2’ iff 2’ Rx. We sayR is
symmetridf R = R~!. Given two binary relation®;, R; on X, thecomposed binary
relation R; - Ry on X is defined by (R; - R2) 2’ if we havex Ry y andy Rs «’ for
somey € X. We denote byRR* the reflexive and transitive closuef R. Theidentity
relation onX is the binary relatioddy = {(z,z) / « € X}. In the rest of the paper,
we will only consider binary relations, and they will shgrtle calledrelations

2.2 Presburger Arithmetic and Semilinear Sets

Presburger arithmetigthe first order additive theory over the integéfs +, <)) is a
decidable logic used in a large range of applications. Asrileesd in [Lat04], this logic
is central in many areas including integer programming |@mis, compiler optimiza-
tion techniques, program analysis tools and model-chgckin

Presburger-definable subsetsZf may also be represented in termssefnilinear
sets[GS66]. For any subse? C 7Z", we denote byP* the set of all (finite) linear
combinations of vectors if:

P = {Zfzocipi/k,co,...,ck ENandpo,...,PkEP}

A subsetS C Z" is said to be dinear setif S = (x + P*) for somex € Z" and for
some finite subseP C Z" ; moreoveix is called thebasisand vectors inP are called



periods A semilinear sets any finite union of linear sets. Let us recall that semdine
sets are precisely the subset&Z#fthat are definable in Presburger arithmetic [GS66].

Observe that any finite non empty ggtcan be “encoded” using a bijectionfrom
Q to [1..]|Q|]. Thus, these semilinearity notions and Presburger-défityabotions
naturally carry over subsets of) x Z™ and over relations 0@ x Z".

2.3 Counter Automata

Definition 2.1. A n-dim counter automato$ (counter automatofor short), is defined
asatupleS = (Q, T, a, 3, (Gt)ier), WhereQ is a finite non empty set dbcations T’
is a finite non empty set dfansitionsa : ' — Q andg : T' — @ are thesourceand
targetmappings, andG; ).cr is a family of binary relations oiN" called flow guards

An n-dim counter automaton is basically a finite graph whose edge labeled by
relations ovem-dim vector of integers. Each componeént [1..n] corresponds to a
counter ranging oveX. Operationally, control flows from one location to anotheng
transitions, and counters simultaneously change valuwes@ing to the transition’s flow
guard.

Formally, let§ = (Q, T, «, 8, (G¢)ier) be an-dim counter automaton. Theet of
configurationCs of 8 is @ x N™, and the semantics of each transittoa 7" is given by
theaction reachability relatioriRs () overCs defined by:

(¢,x) Rs(t) (¢',x) if  g=a(t) and ¢ = 3(t) and x G¢ X'

Definition 2.2. Aninitialized n-dim counter automato(8, I) is a tuple such tha$ is
ann-dim counter automaton anblC Cg.

We write T for the set of alhon empty words, - - - ¢, with ¢; € T', ande denotes
theempty word The sefl't U {e} of all wordsw overT is denoted by™*. For any word
7w € T* and for anyt € T', we let|r|; denote the number of occurences @f 7. Flow
guards and transition reachability relations are natyieaitended to words:

GE = IdNn RS(E) = IdcS
G7‘r~t = G7r : Gt RS (7T : t) = RS (TF) . RS (t)

A languageoverT is any subsel of 7. We also extend flow guards and reach-
ability relations to languagesG, = |J,c; Gx andRs(L) = |J,.c, Rs(w). For any
languagel. C 7™ and for any set of configuratiodsC Cg, we respectively denote by
postg (L, I) and bypreg (L, I') the set ofsuccessoconfigurationdRs(L))[I] and the
set ofpredecessoconfigurationgRs (L))~ [1].

Definition 2.3. Given a counter automatdy theone-step reachability relatiaf S is
the relationRg (7T'), shortly writtenRs. Theglobal reachability relationf § is the rela-
tion Rs(7™*), shortly writtenRs. Given a subset C Cs, the setpostg (7™, I), shortly
written post§ (1), andpreg (T, I'), shortly writtenpre§ (1), are respectively called the
forward reachability setf (8, I') and thebackward reachability seff (S, I).

4 Obviously, the extension of these notions does not depenhestencoding™.



Remark that the global reachability relation is the reflexand transitive closure of
the one-step reachability relation.rdachability subrelations any relation? C Rj.
For the reader familiar with transition systems, the openall semantics of can be
viewed as the infinite-state transition syst&fg, Rs).

Theinverse counter automatd@T ! of a counter automatahis obtained fron8 by
replacing the flow guards; with their inverseG; *. Aspreg (L, I) = postg_1 (L, I) for
everyL C T* andI C Cg, we restrict our attention (without loss of generality) he t
global reachability relatiorand theforward reachability sefshortly calledreachability
setfrom now on).

Consider two locationg andq’ in a systen8. A word = € T* is called apath from
g to ¢ if either (1)m = e andq = ¢/, or (2) ™ = to---t; with & € N and satisfies:
q = alty), d = B(t) andf(t,—1) = a(t;) for everyi € [1..k]. A path fromg to g is
called aloop ong, or shortly aloop. We denote byi7s(q, ¢') the set of all paths from
qtoq in 8. The sel, ..o 1Is(q.¢') of all pathsin 8 is written I7s. A trace of an
initialized counter automatof$, ) is any wordr € T™* such thapost(r, I) # 0. Note
that every trace is a path, but the converse is not true.

Notation. In the following, we will simply writeR (resp.post, I, C) instead ofRs
(resp.postg, ITs, Cs), when the underlying counter automaton is unambiguousville

also sometimes write> (resp.—2, L, Z) instead ofR (resp.R(c), R(L), R*).

Example 2.4.Consider the2-dim counter automatoé depicted in figure 1. Counters
are denoted by andy and flow guards are given by predicates avey, x’, andy’
(with an implicit conjonction between equalities). Intuétly, the loopl; on location
q1 transfers the contents of the first counter into the secondteo, while the loog,

lltllgtzll
_—

on locationg, does the converséntermediate locationglong (g1, (1,2))
(¢1,(4,1)) are also depicted above. This counter automaton exhibitsples global
reachability relation, since it is readily seen that, (z,7)) = (q1, («/,%')) if and only
if: (2/+y')—(z+y) is even, and’ +y' = z+yimpliesz’ < x. Relation(gz, (z,y)) =
(g2, (2, ")) is similar, and thus we obtain, by composition with relati@® (¢;) and
Re(t2), thaté has a semilinear global reachability relation. O

3 Flatness as a criterion for acceleration completeness

We now investigate termination of accelerated symbolichedility computations on
counter automata. An important concept used in this papiaisof semilinear path
scheme (SLP$).S04].

Definition 3.1. [LS04] Alinear path schem@PS for short) for a counter automatén
is any language C Il of the formp = o¢bjo; - - - 0501, Whereoy, 61,01, ...,0k, 0k
are words. Asemilinear regular path scherf®LPS for short) is any finite union of LPS.

Definition 3.2. A counter automatoB (resp. initialized counter automatdis, 1)) is
called globally flat (resp.flat) if there exists an SLPS for § satisfyingR* = R(p)
(resp.post*(I) = post(p, I)).



Thisflathesscondition may seem to be a very restrictive property. Howeve will
later prove that most of the known semilinear classes of riautomata are in fact
flat. The following lemma follows from Lemma 4.1 in [LS04], cit will be crucial
to prove flatness for several classes of counter automatser@ that this lemma is
not a (direct) consequence of Parikh’s Theorem, since weineghe SLPS to be
a subset of the considered regular languagdRecall that, assuming a linear order
T = {t1,...,t,n} ONT, theParikh map? is the total mapping frorff™* to N"* defined

by W(m) = (I7less -+ |mle,,)-

Lemma 3.3. Given a counter automato8, for any regular languagd. C II, there
exists an SLPS C L such that? (p) = ¥(L).

Accelerated symbolic model-checking consists in the ugegdtive fixpoint com-
putation, accelerated with the computation of (the effédftsome loops. In order to
cope with the many variants, we analyze termination for genersions of these ac-
celerated reachability computations. Thus, the semiréifgos presented below cannot
be directly implemented. Effectivity issues will be dissed in Remark 3.5.

Semi-Algorithm Accel-R*(8)

Semi-Algorithm Accel-post™ (8, I)

Input:

A counter automatos.

Output:

The global reachability relatioR s .

let R« Idcg
repeat forever
sel ect one of the following tasks:
oif R(')-RCRreturnR
eselect reT*andR',R" CR
let R— RU (R -R(=*)-R")
eselect tcTandR,R"CR
let R— RU(R -R(t)-R")

Input:

An initialized counter automatof8, ).
Output:

The reachability setostg ().

let X 1
repeat forever
sel ect one of the following tasks:
oif post(I,X)C XreturnX
eselect re T*andX’' C X
l et X « X Upost(n*, X")
eselect teTandX' C X
let X « X Upost(t, X’)

Theorem 3.4. Given any counter automatdéhand any subset C Cg, we have:

1) for every terminating execution atcel-R*(8) (resp.Accel-post* (8, I)), the re-
turned valueret satisfiesret = R (resp.ret = postg(I)).

i7) there exists a terminating executioniafcel-R*(8) (resp.Accel-post* (8, I)) iff
8 is globally flat (resp(8, I) is flat).

Proof. Assume that the semi-algorithitcel-R*(S) terminates. From an immediate
induction over the number of times a new task is done, we dethat there exists an
SLPSp such thapost* (1) = post(p, I). Hence(8, I) is flat and moreover the returned
value ispost*(I). For the converse, assume ttiat ) is flat. There exists an SLPS
such thapost*(I) = post(p, I). From this SLPS, we deduce an execution of the semi-
algorithm Accel-R*(8) that terminates. The proof is similar for the semi-algarith
Accel-R*. O

Remark 3.5.In order to implement these two semi-algorithms, a symbelresenta-
tion for sets of (pairs of) configurations is required. Séme#r sets are usually used



since (1) they are expressive enough to express most @hfite guards, and (2)
they enjoy nice decidability and closure properties. Meegpeffective acceleration
results [FLO2, CJ98, Boi03] can be used in order to perforengbcond task of the
algorithm (for some classes of semilinear flow guards).

Remark 3.6.Model-checkers ksT, LAsH and TReEX implement “deterministic refine-
ments” of the semi-algorithmsccel-post* and Accel-R*. FAST takes as input an
initialized counter automaton in the form offiaite-linear systemwhere flow guards
are given by partial integral affine transformations witmgmear definition domains.
The heuristics implemented inABT ensure termination for all flat finite-linear sys-
tem [FLOZ2].

4 Flat Counter Machines

In the remaining of this paper, we focus on a restricted ctdssounter automata,
called counter machines, where flow guards are restrictetlisear relations given
by guarded commands. Counter machines form a fairly lamss@f counter automata,
as it contains for instance Petri nets and Minsky machinesasilV show, in this section
and in the next section, that many known semilinear subetascounter machines are
flat.

First, we introduce some new notations that will be used egibsntly. Recall that
a minimal elemenbf a subsetX C Q" is anym € X such that for every € X, if
x < m thenx = m. We denote byMin(X) theset of minimal elementsf X. It is well
known that any subset 3" has finitely many minimal elements [Dic13].

For everyi € [1..n], we denote; thei'" basis vectoof N" defined bye;[j] = 1
if 7 = i ande;[j] = 0 otherwise. The sef=, >}" will be considered as an alphabet,
and every symbol € {=, >}" will also denote the partial order d@™ defined by:
x #y if x[i] #[¢] y[¢] forall i € [1..n].

4.1 Counter Machines

Flow guards of counter machines belong to a basic subclassemilinear relations,
called guarded commands, which we now presentanAtim guarded commanid any
relation overN™ that may be written a$(x,x') € N?" / x# p andx’ = x + §} for
some# € {=,>}", un € N*, andé € Z" such thaju + § > 0.

Remark 4.1.The class oh-dim guarded commands is the closure under compaosition
of three kinds of basic relations:

— incremenbof a counteti € [1..1n]: {(x,x') € N?" /x' =x + e;}
— decrementfacounteli € [1..n]: {(x,x') € N" /X' =x — e;}
- 0-testof a counteri € [1..n]: {(x,x') € N?" / x[i] = 0 andx’ = x}



Definition 4.2. An n-dim counter machin¢écounter machine for short) is ag-tuple
8§ =(Q,T,c, B, (Gt)ter, #,11,0), where(Q, T, «, 5, (G¢)ier) IS @ counter automa-
ton, and where# : T — {=,>}", u: T — N" andé : T — Z" are three transition
labelings satisfyingu(t)+d(t) > 0andGy = {(x,x’) / x #(t) u(t) andx’ = x+4(t)}
foreveryt € T.

Transition labelingg#, 1 andé will be calledcondition labeling min labelingand
displacement labelingespectively. We extend the displacement labeding words in
the obvious wayd(¢) = 0 andd(rw - t) = d(m) + ().

When#(t) € {>}" for every transitiort € T', we say that the counter machiie
is test-free The class of test-free counter machines is equivalentealdss ofvector
addition systems with stat@dP79].

Obviously, any counter machine may be viewed as a countensibn. In the fol-
lowing, we will identify a counter machine with its corresmbng counter automaton.
Observe that for any configuratioiig x) and(¢’, x') of a counter maching, and for
any wordr € T*, we haveiq,x) = (¢',x') impliesx’ = x + 6(r).

The followingacceleration theorerfor counter machines, which was actually proved
for larger classes of counter automata, shows that the abditi» subrelation “along”
any SLPS is effectively semilinear. As a direct consequearidis theorem (see for
instance [LS04]), we obtain that flathess (resp. globaldisgéhimplies effective semi-
linearity of the reachability set (resp. of the global resuility relation).

Theorem 4.3 ([CJ98, FL0O2, Boi03]).For any SLPS in a counter machine, the
reachability subrelatioiRs (p) is effectively semilinear.

Corollary 4.4. The global reachability relatiorRg (resp. reachability sepost§ (1))
of any globally flat counter machirge(resp. flat initialized counter machin@, I)) is
effectively semilinear.

Our example counter automaténwhich actually is a counter machine, shows that
the converse of this corollary does not hold (see also Rerhady).

Example 4.5.Recall that the counter automaténintroduced in Example 2.4 has a
semilinear global reachability relation. In particulaetheachability seposty (1) is
semilinear for any semilinear sétC C¢. However, (&, (1, (0,0))) is not flat. Intu-
itively, any loopé € T is either inly, I3, [T 61 T to 17, or inl5t, T* ¢1 15, In each
case, we can verify thalost, (6%, I) is finite for any finitel C C¢. An induction over
the length of an SLP®, proves thapost, (p, I) is finite for any finitel C C¢ and for
any SLPSp. As the reachability setost} ({(¢1,(0,0))}) = {(q1,(z,y)) /z+y €
2N} U{(g2, (z,9)) / z+y— 1 € 2N} is infinite we deduce thd€, (¢1, (0,0))) is not
flat.

Remark 4.6.Unfortunately, flatness is undecidable for counter machihaleed, the
boundedness problem (®sts ({(g,x0)}) finite?), which is known to be undecidable
for 2-dim counter machines, is reducible to the flatness probkefallbws: (1) if (S, I)

is flat, then we can compute a semilinear descripgiosts (/) and decide whether
post§ (1) is finite ; (2) if (8, I) is not flat, therpost§ ({(g,%o)}) is necessarily infinite.



4.2 Reversal-bounded Counter Machines

We focus in this subsection on reversal-bounded countehimes. Intuitively, an ini-
tialized counter maching, I') will be called reversal-bounded when there existsN
such that every counter in every run$éfrom I makes at most reversals (alternations
between nondecreasing and nonincreasing modes) [Ibala&@Jddfinition will be made
precise with the use of letter morphisms.

Consider a finite sef’ of transitions and a displacement labelihgT — Z™. For
everyi € [1..n], we define the morphism? : 7% — {+,—}* by: @?(t) = + if
S(t)[i] > 0, @2 (t) = — if 6(1)[i] < 0, andy?(t) = e if §(t)[i] = 0.

Definition 4.7. An initialized counter machinéS, I'), with transition setl" and dis-
placement labeling, is calledreversal-boundeiithere exists: € N such thatp? () €
({+}*uU{=1}*)" for everyi € [1..n] and every tracer of § from I. A counter machine
§ is calledglobally reversal-boundeti (8, Cs) is reversal-bounded.

Recall that the global reachability relation (resp. reddlits set) of any reversal-
bounded counter machine (resp. initialized counter majhig effectively semilin-
ear [Iba78]. We show that these two classes are flat. Notetliese results do not
follow from the effective semilinearity proof given in [IB&] which uses Parikh’s The-
orem and manipulations on semilinear sets.

Proposition 4.8. Every reversal-bounded initialized counter machine is Baery glob-
ally reversal-bounded counter machine is globally flat.

Proof. In appendix, section A. a

4.3 Lossy/Inserting Counter Machines

Let us now focus on lossy/inserting counter machinesnAtim counter machine will

be called lossy (resp. inserting) when for every locatjasnd for every countei ¢
[1..n], there is a loop on ¢ whose flow guard is the decrement (resp. increment) of
counteri. Formally:

Definition 4.9. A counter machin8, with location setp and transition sef’, is called
lossy(resp.inserting if for everyq € @ and for everyi € [1..n], there exists a loog
ong suchthatG, = {(x,x') € N>" /X' = x —e;} (resp.G, = {(x,x') e N** / x' =
X + 67})

Observe that the inverse of any lossy (resp. inserting) 'ssumachine is an insert-
ing (resp. lossy) counter machine. The reachability setngfiaitialized lossy (resp.
inserting) counter machine is obviously semilinear sinége downward (resp. upward)
closed (w.r.t. the usual partial order on configurationsafrter automata). Moreover,
it is effectively semilinear for any initialized lossy tefseée counter machine and for any
initialized inserting counter machine [BM99]. We show thiase two classes are flat.

® We use an explicit representation of losses and insertusflatness results given in Propo-
sition 4.10 also hold when losses and insertions are “haeftoin the semantics.
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Proposition 4.10. Every initialized inserting counter machine is flat. Evemitialized
lossy test-free counter machine is flat.

Proof. Consider an initialized inserting counter mach{8e!). It is readily seen that
post*(I) = Min(post*(I)) + N™. As Min(post*(I)) is finite, there exists a finite
set of pathsp,, C II such thatpost(p,,,/) = Min(post*(I)). Moreover, for ev-
eryq € @ and for everyi € [1..n], there exists a loom,; on ¢ such thatG, =
{(x,x) € N** /X' = x + e;}. Consider the SLP$ = |J,c(mg,1)" - (7g,n)*

It is readily seen thaR(p) = {((¢,%),(¢,x")) € Cs / ¢ € Q andx’ > x}. There-
fore, post*(I) = post(pm p, I). We only sketch the proof of flatness for lossy test-free

counter machines. Consider an initialized lossy test-dmeater machinéS, I'). Recall
that Karp-Miller's algorithm [KM69] basically (1) compuwte forward reachability tree
where nodes are labeled by vectorg§liftu{w})", and (2) accelerates sequences of tran-
sitions in order to replace some componentsbbserve that vectors N U {w})”
may be interpreted as downward-closed subsel"ofThus, Karp-Miller’s algorithm
may be seen as a “refinement” of thecel er at ed- post* semi-algorithm, where at
each step, loops corresponding to losses are acceleratieat $e current set of reach-
able configurations becomes downward-closed. Since Kalpd algorithm always
terminates, we deduce from Theorem 3.4 {{$afl) is flat. O

The previous proposition cannot be extended to global #atngince there exists
a 3-dim lossy test-free counter machine having a non segaitifand hence non flat)
global reachability relation [LS04]. Moreover, the testdness condition cannot be re-
laxed for lossy counter machines, since the semilineahedality set is not in general
constructible for initialized lossy counter machines [B9SBM99]. The following re-
mark shows that the test-freeness condition cannot be redr®xen in dimensio?.

Remark 4.11 Recall that every initialize@-dim lossy counter machine has an effec-
tively semilinear reachability set [FS00a]. Still, there @itialized2-dim lossy counter
machines that are not flat. Consider for instance our exacopleter machine, {(q1, (1,0))}),
which is not flat according to Example 2.4, augmented with losps on each location:

the resulting2-dim lossy counter machine obviously remains non flat.

4.4 Test-free2-dim Counter Machines

We briefly recall in this section known results on test-f2zedim counter machines. The
reachability set of any initialized test-fr@edim counter machine is effectively semi-
linear [HP79]. Moreover, the global reachability relatisralso effectively semilinear

for this class [LS04]. The proof of this second result adyuased flatness-based proof
techniques:

Proposition 4.12 ([LS04]).Every test-fre@-dim counter machine is globally flat.

5 Flat Petri Nets

We now restrict our attention to a well-known and extensiv@udied subclass of
counter machines: Petri nets. Usually, a Petri net is giwea Hirected graph whose
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nodes are either places or transitions. We give an equivdiefnition in terms of
counter machines.

Definition 5.1. An n-dim Petri net(Petri net for short) is any test-free-dim counter
machine whose location set is a singleton.

As the set) of locations in a Petri net is a singleton, we unambiguoustyade any
configuration(q, x) by x.

5.1 Cyclic and Reversible Petri Nets

We focus in this subsection on two subclasses of Petri ogtdic Petri net§AK77]
andreversible Petri net§Tai68]. Intuitively, an initialized Petri net will be caltl cyclic
if its reachability set is a strongly connected component; @ Petri net will be called
reversible if every transition has an inverse.

Definition 5.2. An initialized Petri ne{8, I) is calledcyclicif I C post*(X) for every
X C post*(I). A Petri netS$ is called globally cyclicif (8,xg) is cyclic for every
xg € Cs.

Definition 5.3. A Petri net with transition set’ is calledreversibleif for everyt € T,
there exists’ € T such thatR (') = R(¢) .

Observe that a Petri net is globally cyclic iff its global ceability relation is sym-
metric iff for every transitiont, there exists a path such thatR(7) = R(t)~!. Thus,
every reversible Petri net is globally cyclic. It is well-dan that the global reachability
relation (resp. reachability set) of any reversible Petti(nesp. cyclic initialized Petri
net) is effectively semilinear [AK77, Tai68, BF97]. We shivat these three classes are
flat.

Proposition 5.4. Every cyclic initialized Petri net is flat. Every globallydig Petri net
is globally flat.

Proof. In appendix, section B. ad

Remark 5.5.Recall that global flatness implies effective semilingadf the global
reachability relation. Hence, combined with the short prgigen in [Hir94] that ev-
ery congruence ofN" is semilinear, the previous proposition gives an easy podof
effective semilinearity ofR* for reversible petri nets. The first proof (and only proof,
to our knowledge) of this result is presented in [Tai68] arid Very difficult to read.

5.2 Regular Petri Nets

We now turn our attention to the class of regular Petri netd¢N81]. Recall that the
trace set of an initialized Petri né8, I) is the set of all pathsr € T* such that
post(m, I) # (.

Definition 5.6. An initialized Petri net is calledegularif its trace set is a regular lan-
guage.

12



A singly-initialized Petri neis any initialized Petri ne(S, I) where! is a single-
ton. It follows from Parikh’s Theorem that the reachabiligt of any regular singly-
initialized Petri net is effectively semilinear [VVN81]. &Wdeduce from Lemma 3.3,
which is a variant of Parikh’s Theorem, that this class isialty flat.

Proposition 5.7. Every regular singly-initialized Petri net is flat.

Proof. Let (8, {xo}) be aregular singly-initialized Petri net, and Ietlenote its regular
trace set. According to Lemma 3.3, there exists an ShRSL such thatl. andp have
the same reflexive closure. Assume that™ x. Sincer € L, there exists’ € p such
thatn’ is a permutation ofr. Henced(n') = é(w) and ast’ is a trace fronkg, we get

thatxg -, xo + 0(7") = x. We conclude thatost*({x¢}) = post(p, {x0})- O

5.3 Persistent and Conflict-free Petri Nets

Persistent and Conflict-free Petri nets are among the fitgtlasses of Petri nets intro-
duced in the literature. Intuitively, a Petri net is conflicte if every “enabled” transi-

tion remains enabled until it is taken. For persistent Redts, this condition only has
to hold for reachable configurations.

Definition 5.8. An initialized Petri net(8, I) is called persistentf for any transitions
t1,t2 With ¢y # to, and for anyx, x;,x2 € postg (/) such thatx Dy andx 22 xo,

1t2

there exists’ € postg(I) such thaix SAENNG
Definition 5.9. A Petri netS is calledconflict-freeif (S, Cs) is persistent.

Semilinearity of the reachability set for singly-initiaéid persistent Petri nets was
first proved in [LR78] in a non-constructive way, and a comstive proof was later
presented in [May81]. It turns out that flatness, and henfextdfe semilinearity, can
actually be deduced from the first proof. Let us first recati temmas from [LR78]: a
weaker version of Lemma 3.1 and Lemma 4.3.

Lemma 5.10. Given any singly-initialized persistent Petri n@, {xo}), for any two
traceso; ando, with ¥ (o) < ¥(02), there exists a path’ such thatr; ¢’ is a trace
and¥(o3) =¥ (o1) + ¥(0').

Lemma 5.11. For any singly-initialized persistent Petri né§, {x,}), there exists a
finite setF” of pathst € T+ with §(r) > 0 such that for everyy — x — x/, if x </

Ty Tk 12

then there existsy, ..., € F such thak —— x

Following the proof given in [LR78] that singly-initializEpersistent Petri nets have
semilinear reachability sets, we deduce the following theo

Theorem 5.12. Every semilinearly-initialized persistent Petri net igtfla
Proof. In appendix, section C. a

Corollary 5.13. Every conflict-free Petri net is globally flat.
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Proof. Consider a conflict-free Petri ngtwith n counterse, ..., z,. By adding toS n
new counters, ..., 2}, that are neither tested, nor incremented, nor decremented,
obtain a new conflict-free Petri nét with 2 n counters. Remark that for ady C T*,
we haveRg(L) = postg, (L, I) wherel = {(x,x) € N?" /x = x'}. As §' is conflict-
free, Theorem 5.12 proves th@’, I) is flat and in particular there exists an SLPS
p such thatposts, (I) = postg, (p, I). We deduce thakRi = Rs(p) and hences is
globally flat. a

Remark 5.14 Recall that global flatness implies effective semilingadt the global
reachability relation. Hence, the we obtain that the globathability relation is effec-
tively semilinear for conflict-free Petri nets.

5.4 BPP-Nets

We briefly recall in this section known results on BPP-nets.nAdim Petri net, with
transition sefl” and min labelingu, is called aBBPP-netif for everyt € T, u(t) = e;
for somei € [1..n].

Let us recall that the global reachability relation is efffiely semilinear for BPP-
nets [Esp97, FO97]. The proof of this result given in [FOtally uses flatness-based
proof techniques:

Proposition 5.15 ([FO97]).Every BPP-net is globally flat.
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A Proof of Propositition 4.8

Lemma A.1. For any alphabef’, the languagé'™ may be written as a finite union of
languages of the forrty Ug - - - tx—1 Uj;_; ti Where:

i) eacht; € T'and each/; C T, and
i1) for everyj € [0..k — 1] and for everyt € Uj, there existdr < j < [ such that
t=1tn =1;.

Proof. For any?” C T, letT%, (resp.7’,) denote the set of all words € 7" such
that|o|; > 2 (resp.|o|; = 2) for all t € T'. We have the following equalify

™ o= U U @ wom1

T'CT T"CT\T"

Thus, itis sufficient to prove that for arfy C T, TX, may be written as a finite union
of languages of the required form. Now, given any werd= t,...t, € T., where
t; € T', and giveni € [0..k — 1], let U7 be the set of transitions € 7" such that
[to ... t;]s = 1. Observe that we have:

Th= U @)t (U7 )

U:t0~~tk€T;2

Itis readily seen that this decomposition satisfieandii), which concludes the proof.
O

Proposition 4.8. Every reversal-bounded initialized counter machine is Batry glob-
ally reversal-bounded counter machine is globally flat.

Proof. Consider an initializeéi-dim counter machings, I), with transition sef” and
displacement labeling. For everydisplacement mode < {+, —}", we denote by},
the set of transitions € 7 such thaty? () € {m[i],} for everyi € [1..n].

Observe thats, I) is reversal-bounded (resp.is globally reversal-bounded) iff
there exists € N such thatpost*(I) = post(L",I) (resp.R* = R(L")) where
L= Um€{+7_}n T:. Hence, in order to prove the proposition, it is sufficiensbmow
thatR(T}) is flat for everym € {+, —}™.

Consider a fixeth € {+, —}™ and let us prove th& (1};) = R(p) for some SLPS
p. The proof relies on the observation that, along every padbinters are evolving in
same “direction”. Hence, guards have to be checked onlyhiffitst and the last oc-
currence of each transition. Thus, the following decomypmsiof 77, will be useful.
According to Lemma A.1, the languagé& may be written as a finite union of lan-
guages of the forny Uy - - - t, U tr+1 such that conditions) andii) of Lemma A.1
are satisfied.

6 Recall that theshuffle operatotr over languages is defined by:

Lm L' = {wowp - - wgw}, / wo - - wx € Landwy - -~ wj, € L'}
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Now let us consider any languade= to Uj - - -t U} tx+1 such that conditions
i) andii) are satisfied. We show th&(L) is flat, which will conclude the proof. For
everyt € T, we denote by the transition obtained from by relaxing the guardt
has the same source and target,aand its flow guard is defined bz = {(x,x’) €
N2m /x' = x+4(t)}. Itis readily seen that, for any transitiere T, and for any words
' €Tk, wehaveR(tmtn't) = R(twin't).

We also denote by/; the set{t / t € U,} for eachj € [0..k]. We obtain that
R(L) = R(to Uy ---tx Uk trs1). For everyj e [0..k], there exists according to

Lemma 3.3 an SLP$; C U; such thatll N U; andp; have the same reflexive
closure. Therefore, we get that:

RT;) = {((a:%), (¢',¥)) € Cs / 3 € (T(q,4') N T), X' = x+ 8(m)}
= R(75)

since forevery € [1..n], allthes(?)[i], with# € U;, have the same sign. Consequently,
we get:

to) - R(To") -+ Rltx) - R(Tx ) - Rltxs1)
to) - R(po) - R(tx) - R(px) - R(tk+1)
topo -tk Pk trs1)

topo -tk prtrs1)

where, for everyj € [0.. k], we denote by, the SLPS obtained frormy; by replacing
eacht by ¢ (note thatp; C U, which justifies the last equality in the above equations).
0

B Proof of Proposition 5.4

Proposition 5.4. Every cyclic initialized Petri net is flat. Every globallydig Petri net
is globally flat.

Proof. Let (8, I') be a cyclic initializedh-dim Petri net, and lety € I. Itis readily seen
thatpost*(I) = post*({xg}). From Theorem 3.5 in [BF97], we get that:

post*(I) = Min(post*({xo})) + (Min((post*(xp) —xo) N N™))*

For everym € Min(post*(I)) andp € Min((post*(xg) — xo) N N™), there exists

mm € T* such thatg — m and there existsé € T such thatg T, xo + p. The
SLPS witnessing flatness (8, I) is p’ - p, wherep is the union of ther,,,, andy’ is the
concatenation (in any order) of tiie;)*.
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Let S be a globally cyclio:-dim Petri net. ASR* is symmetric, we obtain th&* is
a congruence oN™ and hence itis semilinear [ES69]. Therefore, it is suffittemprove
that every linear set contained®* is also contained ifR(p) for some SLP$. Con-
sider a basigx, x') € N?" and a finite set of period® = {(p1,p}),---, (Px,P%)} C
N2" and assume thak + P*) C R*. There existsrg, 7, ..., 7 in T* such that
x 7% %', andx + p; —= x' 4 p/ for everyi € [1..k]. As R* is symmetric, there exits

o

To € T* suchthak’ — x. Consider the LP$ = (m;70)* . .. (mx70)* - mo. Itis readily
seenthaR(p) O (x,x') + P*. O

C Proof of Theorem 5.12

Theorem 5.12. Every semilinearly-initialized persistent Petri net istfla

Proof. Let us first prove that any singly-initialized persistentrPeet (8, I) with I =
{xo} if flat. Consider a finite set’ = {1, ..., m,, } of pathsinl'* satisfying Lemma5.11
and let us first prove that, = (7% ... 7% )™ is a SLPS such that for amy = x — X/,
if x < x' then(x,x’) € Rs(p+). From Lemma 5.11, there exists a sequenge..., T;,

in F such thak —-"*, ¥ As d(m) > 0foranyr € F, the wordr;, ...m;, canbe
reordered into a word such thak - x’ andw = mpl . where{ji, ... i} =

{1,...,n}anda; > 0. Fromwﬁjﬁ € wy...m,, we deduce thaw € p+ and we get

(x,x') € Rs(ps). Now, let M denote the setlin({(x,¥ (o)) / xo — x}). Recall that
M isfiniteand in particular, there exists a finite subSitof the trace set of8, I) such
that M = {(xo + 6(0),¥(0)) / 0 € Xo}. Let us prove thaposts (1) = postg(p,I)

wherep = Y - p5.. Assume thakg LA By definition of M, there exists, = x
with o € X, such that(x,?(0)) < (¥',¥(0¢’)). According to Lemma 5.10, there
exists a pathy” such thato ¢” is a trace and@(¢’) = ¥ (o) + ¥(o”). We get that

Xg = x <, xo 4 8(c) + 6(0”) = xo + (') = x. Sincex = ¥’ andx < X', we
obtain that(x,x") € Rs(p4+). We have proved that € postg(p, I). We conclude that
any singly-initialized persistent Petri net is flat.

Now, let us prove that any linearly-initialized persist®etri Net(S, I) is flat. Re-
call that dinear setl is a set of the forni = (xo+ P*) where{xq } U P is a finite subset
of Cs. By adding to the Petri Neit a transitiort,, such thag(t,) = 0 andd(t,) = p for
each periog € P, we obtain a singly-initialized Petri Né&’, I') wherel” = {x}.
Remark that8, I) and(8’, I’) have the same reachability set &8d, I") is persistent.
Thereforg(8’, I') is flat and there exists a SLRSoverT' =T U {t, / p € P}, where
T is the transition set o8, such thaposts, (I') = postg, (o', {xo}). By removing from
p' all letters that are not if", we get a SLP$ such thatpost§ (/) = postg(p, I).
Therefore(8, I) is flat. Finally, flatness for semilinearly-initialized &stent Petri nets
follows from the fact that SLPS are closed under finite union. a
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