N
N

N

HAL

open science

A Polynomial Time Presburger Criterion and Synthesis
for Number Decision Diagrams

Jérome Leroux

» To cite this version:

Jérome Leroux. A Polynomial Time Presburger Criterion and Synthesis for Number Decision Dia-
grams. LICS, 2005, France. pp.147 - 156, 10.1109/LICS.2005.2 . hal-00346307

HAL Id: hal-00346307
https://hal.science/hal-00346307
Submitted on 15 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00346307
https://hal.archives-ouvertes.fr

A Polynomial Time Presburger Criterion and Synthesis
for Number Decision Diagrams

Jérdme Lerouk
IRISA/INRIA Rennes, Campus de Beaulieu, Rennes, France.
jleroux@irisa.fr

Abstract strings of digit vectors (least or most significant digittys
[30, 4] (implemented in kST [2], LASH [16] and MONA
Number Decision Diagrams (NDD) are the automata- [15]). Presburger-formulas and semi-linear sets lack mano
based symbolic representation for manipulating sets of in- icity. As a direct consequence, a set that possesses a simple
teger vectors encoded as strings of digit vectors (least or representation could unfortunately be represented in an un
most significant digit first). Since 1969 [8, 29], we know duly complicated way. Moreover, deciding if a given vec-
that any Presburger-definable set [26] (a set of integer vec- tor of integers is in a given set, is at led#-hard[3, 13].
tors satisfying a formula in the first-order additive themfy =~ On the other hand, a minimization procedure for automata
the integers) can be represented by a NDD, and efficient al-provides a canonical representation RibD-definable sets
gorithm for manipulating these sets have been recently de-(a set represented by a NDD). That means, the NDD that
veloped [31, 4]. However, the problem of deciding if a NDD represents a given set only depends on this set and not on
represents such a set, is a well-known hard problem first the way we compute it. For these reasons, NDD are well
solved by Muchnik in 1991 [23, 24, 5] with guadruply- adapted for applications that require a lot of boolean ma-
exponential timealgorithm. In this paper, we show how to nipulations such as model-checking.
determine inpolynomial timewhether a NDD represents Whereas there exist efficient algorithms for computing a
a Presburger-definable set, and we provide in this positive NDD that represents the set defined by a given Presburger
case apolynomial timealgorithm that constructs from the  formula [14, 31, 4], the inverse problem of computing a
NDD a Presburger-formula that defines the same set. Presburger-formula from a Presburger-definable set repre-
sented by a NDD, called tHeresburger synthesis problem
was first studied in [18] and onlyartially solved in expo-
nential time(resp. doubly exponential timeor convex in-
teger polyhedron§l?7] (resp. forsemi-linear sets with the
same set of period@2]). Presburger-synthesis has many
applications. For example, in software verification, we are
interested in computing the set of reachable states of an in-
finite state system by using NDD representations and in an-
alyzing the structure of these sets with a tool such as [25]

. . which manipulates Presburger-formulas. The Presburger-
[1, 9, 16]. Different techniques [12] and tools have been de- synthesis problem is also central to a new generation of

velopeq for mampulatmghg Prgsburger-deflnable sdthe constraint solvers for Presburger arithmetic that maaigul
sets of integer vectors satisfying a Presburger formuba): b both NDD and Presburger-formulas [17, 14]
Working.directly on the Pres.burger-fo.rmulas [14] (imple- The Presburger-synthesis problem ’is naturally related
mented in MEGA [25]), by using semi-linear sets [13] (im- to the problem of deciding whether a NDD represents

fon that represents the Sets of integer vectors encoded a2 P1ESDuger-definable set, a welrkown hard problem
P 9 irst solved by Muchnik in 1991 [23] with a quadruply

1. Introduction.

Presburger arithmetic [26] is a decidable logic used in
a large range of applications. As described in [17], this
logic is central in many areas including integer program-
ming problems [28], compiler optimization techniques [25]
program analysis tools [7, 11, 10] and model-checking

*Research funded by the Faculté des arts et des sciencesdhiver- exponential time algorithm. To the best of our knowledge
site de Montréal and by the Natural Sciences and Engimgdtesearch  no better algorithm for the full class of Presburger-defiaab
Council of Canada through a discovery grant held by Pierr&énezie. sets has been proposed since 1991.

TThis work was carried out during the author’s postdoctoradies at
Département d’Informatique et de Recherche Opératitneniversité ) o )
de Montréal, Montréal, QC Canada In this paper, we prove that we can decid@atynomial



timewhether a NDD (least significant digit first) represents x[i]. We naturally defined + B = {a +b; (a,b) € A x B}

a Preshurger-definable set.

Moreover, for a NDD thatand7'.A = {t.a; (t,a) € T x A} foranyA,B C Q™

represents such a set, we provide an algorithm that com-and7 C Q. For anya,b € Q™ andt¢ € Q, let us define
putes inpolynomial timea Presburger-formulathat defines « + B = {a} + B, A+b = A+ {b},t.A = {t}.A and

the set represented by the NDD. These results rely on al.a = T.{a}.

deeper analysis of the structure of a NDD that represents a The set of words over a non-empty finite alphabeis

Presburger-definable set, and on a new geometric point ofwritten ¥*. Thelengthof a wordo is written|o| € N. The
view on the Presburger-definable sets (whence the lengthword of length0 is writtene and we denote byt the set

of section 3).

¥+ = ¥*\{e}. The concatenation of two wordsands’ in
¥* is writteno.o’. Such a word is called aprefixof o.0”

In section 3 we recall some geometrical objects used (respectively atrict prefixif ¢’ # ).

in the sequel.

In section 4, we describe the size of

A deterministic and complete automatehis a tuple

the structures manipulated in this paper for complexity 4 = (Q, 3,6, ¢, F); Q is the finite set of stateg; is the

issue.
introduces the notion ofletectable setshat corresponds

Section 5 contains the definition of NDD and finite alphabety : Q x ¥ — @ is the transition function,

qgo € @ is the initial state and” C @ is the set of final

to sets obtained by modifying the set of final states of states. TheCartesian productd; x » A- of two automata
a NDD. In section 6, we provide our new geometric 4, — (Q1,%,01,q0.1, F1) andAy = (Qa, %, 02, qo.2, F2),
point of view of the Presburger-definable sets. Section 7where F C @Q; x Q, is the deterministic and com-
shows that this geometrical point of view can be “used plete automatotd; x » As = (Q, 3,4, o, F) defined by

in polynomial time” from a Presburger-definable NDD.

Q = Q1 % Q2,((q1,92),a) = (01(q1,a),02(q2,a)), and

Finally, in section 8, we prove the main results of this paper 4, — (q0.1,q0.2). As usual, we extend over@ x ¥* such

Proofs:

thatd(q,o.0') = 6(6(q,0),0’). The languagé (A) C *
accepted by a deterministic and complete automatads

Some proofs had to be omitted due to space constraintsdefined byl(A) = {0 € ¥*; §(qo,0) € F}. A tuple

A self-contained long version of this paper (with detailed (q,0,¢") such thats(q,0) = ¢ is called apath fromg to
proofs for all results) can be obtained from the author or as ; |apeled byo and it is writteng > ¢’ or justg — ¢'. In

a technical report [21].

2. Preliminaries

Throughout this paper, intersection, union, difference

and symmetric difference of two setsand B are written
ANB, AU B, A\B, andAAB = (A\B) U (B\A). We
denote byN, Z, Q respectively the set of non-negative in-
tegers, integers, and rational numbers. Tarlinality of a
finite setX is written|X| € N. The set offunctionsfrom

a setX to a setY, also calledsequencesf elements inY”
indexed byX is writtenYX. A function f € YX is also
denoted byf : X — Y. For such a function and for any
AC X andB CY, we definef(A) = {f(a); a € A} and
f7UB) = {z € X; f(z) € BY.

The setX™ is called the set of vectors witlm € N
components in a seX. Given an intege¥ € {1,...,m}
and a vectorr € X™, thei-th component ofc is written
z[i] € X. Vectore; € Q™ is defined bye;[j] = 1 and
g;[i] = 0foranyi € {1,...,m}\{j}. Vector(0,...,0) €
Q™ is denoted byd. Vectorsxz + y andt.x are defined
by (x + y)li] = (z[]) + (y[i]) and(t.2)[i] = t.(x[i]) for
anyi € {1,....,m}, x,y € Q™, t € Q. For anyx,y €
Q™, let(z,y) = >, z[i].y[i] be thedot product For any
subsetX C Q™, we denote byX+ = {y € Q™; Vx €
X (z,y) = 0}. Foranyz € Q™, let us consider the norm
l|z||,, = max; |z[i]| where|z[:]| is the absolute value of

this casey’ is said reachable from. A subset)’ C Q is
saidreachablefrom a subse®), C Q if there exists a path
from a state inQ), to a state inQ’. A strongly connected
component)’ of an automatori is an equivalence class
for the equivalence relatior® defined overQ by ¢ = ¢’ if
and only ifg — ¢’ andq¢’ — q.

3. Geometric sets

In this paper, we use a large range of geometric sets. Sec-
tion 3.1 recalls the notion aftegral dimensionThevector
space definitiois given in the next section 3.2. Section 3.3
recalls some properties satisfied by finite unionsaffine
spacescalledsemi-affine spacg0]. Section 3.4 gives the
definition of apatternsand amodular spacesand the final
one provides the definition glolyhedronsaandboundaries

3.1. Integral dimension andV-degenerate subsets

Given a subseX C 7™, there exists a minimal integer
dim(X) € {—1,...,m} (for <), called thantegral dimen-
sion, satisfying the following inequality:

{z € X; Jlell, <}l
ndim(X)

sup

) < +00
neN\{0}



Remark 3.1 Let X C Z™. We havelim(X) = —1 if and Lemma 3.3 ([20]) The class of semi-affine spaces is stable
only if X is emptydim(X) = 0 if and only if X is a non- by any infinite intersection.
empty finite set, andim(X) > 1if and only if X is infinite.
Example 3.4 The semi-affine hull of &inite subsetX C

Without ambiguity, given a subsef C Q™, the integer  Qm js equal toX becauseX is the finite union over € X
dim(Z™ N X) is also denoted bylim(X), and called the  of the affine spacéz} = = + {0}. The semi-affine hull
integral dimensiorof X o of aninfinite subsetX C Q is equal toQ (remark that

AsubsetX C V' whereV’ C Q™ is saidV-degenerate  ; — 1). In fact, the class of affine spaces®fis equal to
if dim(X) < dim(V"). Let us consider the equivalence re- {Q,0 U {{z}; z € Q).
lation ~y defined over the subsets df by X; ~y X5
if and only if X;AX, is V-degenerate. The equivalence Example 3.5 As aff(X) is an affine space and in partic-

class[X]y of a subsetX C V satisfies|X]y = {X' C ular a semi-affine space that contaifis, we deduce that
V; dim(XAX') < dim(V)}. saff(X) C aff(X). This last inclusion can be strict as
shown by the exampl& = {(0,0), (1,0), (0,1)}. In fact,
3.2. Vector spaces in this case, we haveff(X) = X andaff(X) = Q2.
Recall that avector spacd’ of Q™ is a subset of)™ A maximal (for C) non-empty affine spacd C S, is

such that there exists a finite subsgt C Q™ satisfying  called anaffine componendf 5. The set of affine compo-
V =3, o Qo (Whenlj, = 0 thenV = {0}). Sucha nents ofS' is written comp(.S). As proved by the follow-

vector spacé” is saidgenerated by/,. Thedimensiorofa N proposition 3.6, a semi-affine space can be canonically
vector spacé” is defined as the minimal integerc N (for ~ represented by its set of affine components. This is an im-
<) such that there exists a finite subgtof n vectors in  Portant property formplementation issuesf a semi-affine
Q™ that generate¥. library.
Lemma 3.2 For any vector space, the integral dimension Proposition 3.6 ([20]) The set of affine components
and the dimension are equal. comp(S) of a semi-affine spaces is finite and S

is equal to the finite union of its affine components
3.3. Semi-affine spaces S =U accomp(s) 4-

-
An affine spaced of Q™ is either the empty set oraset ~ The direction S of a semi-affine spacé is defined

of the formA = a + V wherea € Q™ andV isavector by S = Ujceomp(s) A Remark that the semi-affine

space ofQ™. In this case the vector spadé is unique, space direction definition extends the affine spaces direc-

denoted byA and called thelirectionof A. A finite union tion definition because i is a non-empty affine space then

of affine space$ = (J,.. A is called asemi-affine space comp(S5) = {5}

[20] (see figure 1 for an example). Example 3.7 Let us consider the semi-affine spage=

Al @] A2 U Ag U A4 where A1 = @(1,2), A2 =
(2,0) +Q.(1,2), A3 = (0,—3.5) + Q.(20,—3) and A4 =
{(8,—=7)} given in figure 1. We havé = V1 U Vs where
Vi = Q.(1,2) and V3 = Q.(20,—3). Remark thatS
owns4 affine componentsomp(S) = {41, As, Az, Ay},

o the set{z; A € comp(S)} = {W,Vs,{0}} owns
3 vector spaces andS owns only2 affine components

A semi-affine spacé  lts direction S comp(S) = {V,V3}. In fact, in general, we have
— —
Figure 1. Direction of a semi-affine space comp(S) C {A; A € comp(S)} for any semi-affine
spaces.

Recall that a finite or infinite intersection of affine spaces . o
remains an affine space. In particular, for any subset Fellowing lemma proves that it is equal toS =
X C Q™ there exists a unique minimal (faf) affine Uacc A whereC is a finite cIa_s)s of afhne_s)paces not neces-
spaceaff(X) that containsX, called theaffine hull of X. sarily equal tacomp(S), then 'S = (J 4. A.
As proved by lemma 3.3, a finite or infinite intersection o i .
of semi-affine spaces remains a semi-affine space. Hence-€mma 3.8 For any finite clas<” of affine spaces, the di-
there also exists a unique minimal (fa) semi-affine space ECUO” of trE semi-affine space = (J .. A is equal to
saff(X') that containsX, called thesemi-affine hull ofX.. S =Usec A



. . — = - . —
The semi-affine spacaff(X), is writtensaff (X).
3.4. Patterns andV’-modular spaces

A pattern P of Z™ is a subset ofZ™ such that there
existsn € N\{0} and a subseB C Z™ such thatP =
B + n.Z™ (see figure 2 and example 3.9). Intuitively, a
pattern is a subset @™ obtained from a “motif3 repeated
in all directions”. Remark that a subsetC Z™ is a pattern
if and only if there exists: € N\{0} such thatP = P +
n.Z™, and in this caséd® = B + n.Z™ whereB = PN
{0,...,n—1}™.

PatternP

semi-affineS M=PNS
Figure 2. A Q.(1,1)-modular space M

A V-modular spaceV/, whereV is a vector space, is a
subset of the form\/ = P N S whereP is a pattern and

S is a semi-affine space obtained as a finite union of affine

spacesA satisfying_ff =V.

Example 3.9 Let us consider the patter® = B + n.Z?
wheren = 3 and B = {(0,0), (1,1),(2,2),(0,2)}, the
vector spacd” = Q.(1, 1), the semi-affine spacg = V' U
((0,2) + V) U ((0,-1) + V) and theV-modular space
M = PnS. SetsP, S and M are given in figure 2.

3.5.V-polyhedrons

Here, we defineV-polyhedrons we characterize/-
degeneratéd/-polyhedronsand we introduce the notion of
V-boundaryandpossibleV-boundaryof a V-polyhedron.

The V-half spaceHy . 4 . whereV is a vector space,
a € V\{0}, # € {<,<,>,>}andc € Q is defined
by Hy,a.4,.. = {z € V; (a,x) #c}. We also denote by
Hy o =, the affine spacély - . = {v € V; {(a,2) =
c} (even equal to the vector spalen (Q.a)=* if ¢ = 0).

A V-polyhedronC' is a subset o defined as a boolean
combination ofV-half spacesy . « . (see figure 3 and
example 3.10). Apossible boundans of such aV-
polyhedronC' is the semi-affine spacé = (J, .,V N
(Q.a)* whereD is the finite set ofv € V\ {0} used to de-
fine C' as a boolean combination bthalf spaced?v o, 4 .

Example 3.10 Let us consider the vector spate = Q?2,
and theV -polyhedrong’y, C; andCs given in figure 3 and

Bgis

Figure 3. Q2-polyhedrons

defined byCy = {z € Q% (2[1] < 4.22]) A (2]2] <
42D}, G = {o € Q% —1 < a[l] — 2f2] < 1},
and Cy = Cp\C:. Remark thatCy and C, are nonV-
degenerate, and is V-degenerate. Moreove$, = {x €
Q% (z[1] = 4.2[2)) v (z[2] = 4.2[1])} is a possiblel/-
boundary ofCy, S1 = {z € Q% z[l] = z[2]} is a pos-
sible V-boundary ofC, and S, = Sy U Sy is a possible
V-boundary ofCs.

Remark 3.11 A V-polyhedron is equal to a finite union of
convexV -polyhedrons) . », Hv,a,#..c., WhereD is a fi-
nite subset 0¥\ {0}, (#4)acp IS @ sequence K<, <, >
,>}P and(cq)aep is a sequence i”.

The following proposition 3.12 provides a geometrical
characterization of -degeneraté’-polyhedrons

Proposition 3.12 A V-polyhedronC' is V-degenerate if
and only if there exists a finite subsBt C V\{0} such
thatC C J,cplr € V; =1 < (a,z) <1},

The following lemma 3.13 shows that ahpolyhedron
C owns a minimal (forC) possibleV-boundary (up td/-
degenerate sets) called the boundaryof C' and written

bound, (C).

Lemma 3.13 Let C' be a V-polyhedron. There exists
a unique minimal (forC) semi-affine space boundC)
called theV-boundary ofC' such that bound(C) is a pos-
sible V-boundary of aV/-polyhedron in[C]y (see section
3.1).

Example 3.14 Let us consider th& -polyhedron<Cy, C4

and C;, defined in example 3.10, and given in figure 3. We
have boung (C;) = 0 and boung (Cy) = bound, (C5) =

{z € Q% (z[1] = 4.2[2]) V (x[2] = 4.2[1])}. Remark in
particular that boung (C-) is not a possibld/-boundary

of Cs.

4. Size and complexity

This section provides the size of the manipulated struc-
tures in this paper.



Naturally, the size of a rational number= 7 where
n andd € N\{0} are relatively prime, a vectar € Q™,
a matrix M € M,, ,(Q), aworde € ¥* are defined by
sizgz) = In(1+|n|)+In(1+d), sizgv) = > | sizev|i]),
sizg M) = 321", 377, sizg(M;;), sizgo) = |o].In(1 +
|X]).The size of an affine spacé implicitly generated
by a finite set4d, C Q™ is defined by sized)
> agea, Siz€lao). The size sizgS) of a semi-affine space
S'is given by siz€S) = }_ 4 ccomp(s) SiZ&A). The size of
a finite setC of rational numbers, vectors, matrices, and so
on, is given by siz&) = >, . sizgY).

Recall that almost all the natural operations over affine
spaces can be done in polynomial time (in the dimension

m > 1).
The size of a deterministic and complete automation
over an alphabet is given by sizéA) = |Q].|X|.

5. NDD andr-definable sets

Sets of integer vectors that can be represented by au-

tomata, calledNumber decision Diagram (NDD)hanks to
aleast or most significant digit firstecomposition, are re-
lated to the notion of-definable [5] where: > 2 is an
integer calledthe basis of decompositionin this section
this notion is recalled. Moreover, in section 5.1 and 5.8, th
sets obtained bgnodifyingrespectively, thénitial stateand
the set of final statesf a NDD, are characterized. In the
last section 5.3, we introduce the notiortefminal compo-

nents some particular strongly connected components of a

NDD.

Given aninteger > 2, a subseX C N, wherem > 1
is called thedimensionis saidr-definable if it is definable
in the first order logidZ, +, <, V,.) whereV, : Z — Zis
the valuation functiondefined byV,.(0) = 1 andV,.(z) is
the greatest power ofthat dividesr € Z\{0}.

Example 5.1 Letr = 2. For any ki, ks € N, valuation
Vo(2k + 2k2) is equal to2* wherek = min{ky, ko} if
k1 # ko andk = k; + 1 = ko + 1 otherwise.

Recall that the first order logi¢Z, +, <, V) is decid-
able The proof of this well known result is based on the
decomposition of an integer vector intdemst or most sig-
nificant word of digit vectorover the alphabel,» =
{0,...,7 — 1}"™. Following notations introduced in [19],
this decompositiorcan be provided thanks to the following
function~,, whereb € X,.m.

—

AL
T

Z’I’ﬂ
r.x+b

M -

—

Given a sequench, ..., by of k > 1 digit vectors inX,.»,
we have the following equality also called theast signifi-

cant digit first decompositian

k

Z Ti_lbi

=1

;0)})

’Yblo'.'ofybk({(oa"'

Hence, the vectop(c) = ~,({0,...,0}) € N™ can be
naturally associated to the wosd= b; . .. by, Wherev, is
the function defined by the following equality (function
is equal to the identity functiof.(x) = z):

(0,0)

Figure 4. ANDD representing {z € N?; (z[1]
2.z[2]) V (z[2] = 2.z[1])} where — € {0,1}

(151) (13_)

Figure 5. A NDD representing {z € N?; z[2] >
4.z[1]} where — € {0,1}

Definition 5.2 ([31, 4]) A (least significant digit first)
Number Decision Diagram (NDDis a deterministic and
complete automaton ovér,.. such that for any state €
@, we havey € F'if and only ifd(¢,0) € F.

The setX = p(L(A)) is called the set represented By
and such a set is salIDD-definablgsee figure 4 or 5 for



an example of NDD). Recall that a s&tis NDD-definable
if and only if it is r-definable [5].

semi-eyeanddetectablesets.

Let A be a NDD. We consider the binary relatienover

Remark 5.3 There exists some deterministic and complete @, defined byg ~ ¢’ if and only if 6(¢,0%) N d(¢’,0%) #

automatad,, A andA such thatl(A;)NL(As) = L(A),
but X, NX, #* X whereX; = p(L(Al)), Xy = p(L(.Ag))
and X = p(L(A)). This side effect is no longer true
for NDD thanks to the conditiog € F' if and only if
d(q,0) € F for everyg € Q. In fact, given two NDDA; =
(Q1,%m,01,q0,1, F1) and Ay = (Q2,m, 02, 0,2, I2)
representing respectively two se¥§ and X, the Carte-
sian productA; xp, A, where# < {U,N, A}, F|, =
(Ql X Fg) U (Fl X Qg), Frn = F| x 5, and FpA =
(F1 x (Q2\F2)) U ((Q1\F1) x F3), is a NDD representing
X1#Xo.

Remark 5.4 A (most significant digit first) Number Deci-
sion Diagram (NDD)that represents a sek C N™ is
a deterministic and complete automatdnover X,.. that
recognizes the mirror op~!(X) and defined ag.(A) =
{ay...an; apn...a1 € p~H(X)}.

5.1. Moving the initial state

The set represented by the NDI) when the initial state
qo of a NDD A is replaced by another stajec @, can be
easily characterized thanks to the functign

Proposition 5.5 Let A be a NDD that represents a sét.
For any pathgy = ¢, the NDDA, representsy; ! (X).

When a sefX’ C N™ is implicitly represented by a NDD
A (not necessary minimal), we denote Ky, the set repre-
sented by the NDIA,,. Proposition 5.5 shows that for any
pathg = ¢', we haveX, = v;1(X,).

Example 5.6 Let us consider the NDDIL presented in fig-
ure 4 that represents the se&f = {x € N?; (z[1] =
2.22]) V (z[2] = 2.z[1])}. We haveX,, = X, X,, =0,
Xy = {z € N%z[1] = 22[2] + 1}, X, = {z €
N% z[2] = 2.2[1] + 1}, X, = {z € N3 2[1] = 2.2[2]},
X, = {z € N*;2[2] = 2.z[1]}.

Example 5.7 Let us consider the NDDBL presented in fig-
ure 5 that represents the séf = {z € N? =z[2] >
4.z[1]}. Foranyc € {0,1,2,3,4}, we haveX,, = {z €
N?%; z[2] > 4.2[1] + c}.

5.2. Replacing the set of final states

(. As A is deterministic,~ is an equivalence relation. An
equivalence class for this relation is callaa eye A finite
union of eyes is called semi-eyeNaturally, for any subset
F' C Q, the automaton " is a NDD if and only if 7’ is a
semi-eye.

Example 5.8 LetA be the NDD given in figure 4. The set of
states) can be partitioned intd eyesYy, Y3, Y3, Y, where

Yi={q1,92,91}, Y2 ={qo}, Y3 = {gs} andYs = {qu}.

Example 5.9 Let A be the NDD given in figure 5. The set
of states) can be partitioned int@ eyesY;, Y,, Y5 where
Y1 = {q}andYs = {q1} andY3 = {q2,¢3, q4}.

Let.A be aNDD and remark that for ady/ C N, there
exists a unique minimal (fof) semi-eyel’4 (X’) such that
X' is included in the set represented 4§+ (X"). In gen-
eral, this inclusion is strict. However, faletectable sefst
becomes an equality.

AsetX’ C Z™ is saiddetectable in a seX C Z™ if for
any pair of words(oy, 02) such thaty ' (X) = ~;,'(X),
we havey, '(X') = 4, }(X').

Remark 5.10 WhenX and X"’ are respectively represented
by twominimal NDD A = (Q,X,=,d,qo, F) and A’ =
(Q,%,m, 0, qy, F'), we proved in [21] thatX’ is de-
tectable inX if and only if for any pair of wordgo, 02)
such thatdé(go,01) = 0(qo,02), we haved' (¢}, 01) =

5 (dh o).

Proposition 5.11 Let X C N™ be represented by a NDD
A. For any setX’ C N™ detectable inX, the NDD
AFa(X') representsX’.

The following proposition 5.12 will be useful to compute
in polynomial time the sef4 (X’) of a setX’ C N with
apolynomial time membership probleamnd detectable in a
setX C N™ represented by a NDIA.

Proposition 5.12 Let X C N™ represented by a NDDL
and letX’ C N™ detectable inX. In polynomial time, the
computation ofF4 (X’) can be reduced to the membership
problem forX”.

Example 5.13Let X = {x € N?% (z[1] = 2.z[2]) Vv
(z[2] = 2.2[1])} be represented by the NDB given in

In order to characterize the set represented by the NDDfigure 4. The sets(; = {z € N* (z[1] = 2.2[2])} and

AF" when the set of final states of a NDD A is replaced
by another set of statds’ C @, we introduce the notion of

X = {z € N?; (2[2] = 2.z[1])} are both detectable iX .
We havel's (X1) = {g3,90} and Fa(X2) = {q4, q0}-



5.3. Terminal components

The strongly connected componermta NDD play an
important role in this paper. We calltarminal component

T of a NDD A, a strongly connected component reachable i
from the initial state, that contains at least one final state Example 6.2 The Presburger-definable set

and such that any final staté reachable froni is in T
Intuitively, a strongly connected componéhtis terminal
if it is farthest from the initial state. Thset of terminal
componentsf A is denoted by’ (A).

Proposition 5.14 Let A be a NDD. For any terminal com-
ponentT of A, there exists a unique vector spate(A)
such thaBaH(p(L(Afl))) is an affine space whose the di-
rection is equal to/(A), for any state; € T and for any
semi-eyel’ such thatT' remains a terminal component of
AF

Proposition 5.14 associates to any terminal component

T of a NDD A, a vector spac&p(A). Moreover, as for
anyq € T n F, we haveaff(p(L(Ay))) = Vr(A), we
deduce from [19] that we can compute in polynomial time
this vector space. For any vector spd¢ewe denote by
Ty (A) the set of terminal componeritse T'(A) such that
Vi(A) = V.

Example 5.15 Let us consider the NDIDA given in fig-
ure 4 that represent( = {z € N?; (z[1] = 2.2[2]) V

(z[2] 2.z[1])}. The setT'(A) contains two terminal
componentd’(A) = {Tp, 71} whereTy, = {g2,¢4} and

Ty = {q1,q3}. Moreover, we havé, (A) = Q.(1,2)

andVp, (A) = Q.(2,1). In particular we hav&gf)(X) =

UTeT(A) Vr(A).

Example 5.16 Let us consider the NDDL given in figure
5 that represents\ = {z € N?; z[2] > 4.z[1]}. The
setT'(A) contains one terminal componeftsA) = {Q}.
Moreover, we havé/,y(A) = Q2. In particular, we also

havesaff(X) = Uper) Vir(A).
6. Presburger-definable sets

A subsetX C Z™ is said Presburger-definable if it can
be defined by a formula in the first order thed®; +, <).
Naturally, any Presburger-definable set-iglefinable and

Z™ is a finite subset oZ™ called the set ofperiods A
semi-linear sebf Z™ is a finite union of linear sets &1
Recall that a sefX is Presburger-definable if and only if it
is semi-lineaf13].

{z €
N=; x[2] > 4.x[1]} is represented in figure 6.

Given a vector spack and a subsek C Q™, let us
consider the following seXy C X:

U

A€comp(saff (X))

A=V

A
Xy=Xn

As Xy is non-empty if and only ifi” is in the finite set
{Z; Ae comp(sﬁ(X))}, we have a decomposition &f
into a finite union ofXy,. In [21], we proved that for any
vector spacé’, the setomp(saff (X)) is a finite union of
non-empty affine spaces$ such thatd = V.

This decomposition oX is refined by the following the-
orem 6.3 whenX C Z™ is Presburger-definable anidis
an affine component Qfa—ff(X) (see example 3.7 for the

— — —
inclusioncomp(saff (X)) C { A; A € comp(saff(X))}).

Theorem 6.3 (decomposition theorem)Let X C Z™ be
a Presburger-definable set aid ¢ Comp(ﬁ(X)). There
exists a unique finite class(y (X) of VV-modular spaces
such that there exists a sequer(€a,,as) e, (x) of V-
polyhedrons satisfying the following two assertions:

e Sequencé€Cv, i) menmy (x) IS @ “kind of partition” of
V: Cy,a is nonV-degenerate for any/ € My (X)
whereasV\(Uyea, (x) Cv.u) is V-degenerate and
Cy.m N Cy e is V-degenerate for anyl # M’ €
My (X).

e For anyV-modular spacé/ € My (X), we have:
dim ((Xy AM) N (Cyr + V1)) < dim(Xv)

Moreover another sequenceCy, \/)aent, (x) Of V-
polyhedrons satisfies the previous two assertions if angl onl
if [CV,JV[]V = [C{/JVI]V for anyM e Mv(X)

Recall that theV/-boundary of aV-polyhedron is de-
fined “up to V-degeneratd/-polyhedrons”. That means
if C; and Cy are twoV-polyhedrons such thdCi]y =
[C2]yv then boungt(Cy) = bound (C2). Let X be a

there exists some-definable sets that are not Presburger- Presburger-definable set aidbe an affine component of
definable. In this section, we provide a “decomposition the- saff (X'). From the previous theorem 6.3 we deduce that
orem” for the Preshurger-definable sets that provides a newU /¢y, (x) bound,(Cv,ar) only depends on¥ and V.
geometrical point of view of Presburger-definable sets. This semi-affine space is written boynd¥).

bound/(X)= | J bound (Cy.x)

MeMy (X)

Remark 6.1 Alinear setX of Z™ is a set of the fron =
b+ > ,cp N.p whereb € Z™ is called thebasisand P C



Example 6.4 Let us consider the Presburger-definable set

X = {z € N% z[2] > 4.z[1]} given in figure 6. We
—
havesaff(X) = V whereV = Q? and Xy = X. We

also haveMy (X) = {0, Z*}. Remark that the sequence of
V-polyhedrongCv, a1) preny, (x) given byCy z2 = {x €
Q% z[1] > 0 A z[2] > 4.2[1]} andCy g = Q*\Cyz: sat-
isfies the decomposition theorem. From bou((@ ;2) =
bound, (Cyy) = Q.(0,1) U Q.(1,4), we deduce that
bound, (X) = Q.(1,0) UQ.(1,4).

7. Polynomial time decomposition

In this section, we show thatff(X) and boung (X)
are computable in polynomial time from a NDD that
represents a Presburger-definableXet

e . A

8

L 1]
>y
>

i . bt . [
Xgo = X Xg, = 71,0) (X) Z = XqyAXg, saff(Z)

Figure 6. X = {z € N?; z[2] > 4.2[1]}

In order to illustrate the computation ﬁ(X) from a
NDD representing a Presburger-definable Ee{see also
example 5.15 and 5.16), assume thatis a non-empty
set represented by a NDIA. As any terminal compo-
nent7 is reachable frong,, there exists at least one path
g0 = ¢ with ¢ € T. From proposition 5.5, we deduce
that X, = ~,*(X) and in particulal’, (X,) C X where
', : Q™ — Q™ is the affine function that extends,
by 'y (z) = r1°l.2 + p(o). From this inclusion, a simple
lemma shows thﬁ(Xq) - s?f(X). Now, just recall
thatVp(A) = s?f(Xq). Therefore, we have proved the in-

clusionUrpera) Vr(A) € s?f(X). Even if the converse
inclusion is not true in general, the following theorem sbow
that it holds for any Presburger-definable NDD. In particu-
lar we deduce that?f(X) can be efficiently computed in
polynomial time.

Theorem 7.1 Let X be a Presburger-definable set repre-
sented by a NDDA. We have the following equality:

- U v

TET(A)

saff

We illustrate the computation of boupdX') from the
NDD A given in figure 5 that represents the sgt =

{x € N? =z[2] > 4.z[1]} given in figure 6. Remark
—

thatsaff(X) = V = Q2 and boung(X) = Q.(1,0) U

Q.(1,4). Proposition 5.5, shows thak,, {z €

N™;

x[2] > 4.xz[1] + 2} also given in figure 6. Remark
—
thatsaff (X, AX,,) = Q.(1,4) which provides the affine
componen®.(1,4) of bound, (X).

Ym0 (Q.e))t X pm

g r ’n @ e7 8

Figure 7. A NDD representing NN

N(Qe)*

This technique is generalized to any Presburger-
definable setX by the following theorem that proves in
particular that we can efficiently compute boyt{c') in
polynomial time from a NDD that represents (see also
figure 7).

Theorem 7.2 Let X be a Presburger-definable set repre-
sented by a NDIA, and letV be an affine component of

saff (X).

e Considerly (A), the set of statesg;,q2) € T'x T
—
whereT € Ty (A) andsaft(X,, AX,,) is strictly in-
cludedinV.

e ConsiderJy (A), the set ofj € {1,...,m} such
that vV N (Q.e;)* is strictly included inV and such
that there existg € FF N T whereT € Ty (A) and

saff(X, N (Q.e))H) = V N (Qe)*.
We have the following equality:

U

(q1,92)€Iv (A)

u J vn@e)h)

JjEJv (A)

bound, (X) = saff(X,, AX,,)

8. Presburger synthesis

In this last section, we prove that we can decide in poly-
nomial time if a NDDA represents a Presburger-definable
set X. Moreover, in this case, we prove that we can
compute in polynomial time a Presburger formglghat
definesX.

We only sketch the proof of this result. Assume that a
Presburger-definable s&tis represented by a NDRA. We



have proved thatomp(sEf(X)) is computable in polyno-  “flipping” the “direction” of the transitions and by deter-
mial time and for any vector spag&in this set, bound(X) mining the resulting automaton, we obtaireast signifi-
is also computable in polynomial time. In technical report cant digit firstNDD A that representsX. Even if from a
[21], we prove that we can also compute in polynomial time theoretical point of view, an exponential blow up can ap-
a sequencé€Cv,ar) mrent, (x) Of V-polyhedrons satisfying  pear, in practical examples, it is not the case (see [14] for

decomposition theorem. the duality least/most significant digit first).
Remark that from decomposition theorem, we deduce
the following corollary: Remark 8.5 Our algorithms should be efficient on NDD

with a large set of states. Assume that the dimension 1
Corollary 8.1 Let X C N™ be a non-empty Presburger- is fixed. Recall that in [19], we proved thaff(X) is com-

definable set andCv. ) areny (x) be a sequence df - putable in Iinear time from a NDD that represents. In
polyhedrons satisfying decomposition theorem. We haveparticular saff (X) is also computable in linear time. More-
dim(X’) < dim(X) whereX' is given by: over, even if theorem 7.2 seems to provid@@Q|*) time
complexity algorithm for computing boupdX ), we can
U (M N (Cym+ V) just compute only one NDD for ea@he Ty (A) whose the

set of states i§” x T'. Therefore boungd(X) is computable
in quadratidcime. The exact complexity of our criterion will
be detailed in a revue version of the paper.

X' = XA | vecompsaf (x))
MeMy (X)

In technical report [21], we prove that we can choose _
(Cv.ar)menty (x) correctly such that all the ses/ 0 9. Conclusion and future work

(Cv.ar + V1) are detectable iX. That meansX’ is de-

tectable inX and in particular, by modifying the set of final We have described the precise structure of a NDD that
states of the NDD4, we obtain a NDD that represents represents a Presburger-definable set. We are currently
with exactly thesame size working on the design of new efficient symbolic represen-
As dim(X'’) < dim(X), an induction over the integral tations for Presburger-definable sets. In particular, vee ar
dimension provides the proof of the following theorem. interested in studying hybrid representations that usk bot

NDD and constraint formulas. This is work in progress.
Theorem 8.2 We can decide in polynomial time if a NDD
A represents a Presburger-definable sét Moreover, in  Acknowledgment: We thank Pierre McKenzie for his sup-
this case, we can compute in polynomial time a PresburgerPort and for his interesting remarks on so many versions of
formula¢ that defines . this paper.
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