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Abstract

Number Decision Diagrams (NDD) are the automata-
based symbolic representation for manipulating sets of in-
teger vectors encoded as strings of digit vectors (least or
most significant digit first). Since 1969 [8, 29], we know
that any Presburger-definable set [26] (a set of integer vec-
tors satisfying a formula in the first-order additive theoryof
the integers) can be represented by a NDD, and efficient al-
gorithm for manipulating these sets have been recently de-
veloped [31, 4]. However, the problem of deciding if a NDD
represents such a set, is a well-known hard problem first
solved by Muchnik in 1991 [23, 24, 5] with aquadruply-
exponential timealgorithm. In this paper, we show how to
determine inpolynomial timewhether a NDD represents
a Presburger-definable set, and we provide in this positive
case apolynomial timealgorithm that constructs from the
NDD a Presburger-formula that defines the same set.

1. Introduction.

Presburger arithmetic [26] is a decidable logic used in
a large range of applications. As described in [17], this
logic is central in many areas including integer program-
ming problems [28], compiler optimization techniques [25],
program analysis tools [7, 11, 10] and model-checking
[1, 9, 16]. Different techniques [12] and tools have been de-
veloped for manipulatingthe Presburger-definable sets(the
sets of integer vectors satisfying a Presburger formula): by
working directly on the Presburger-formulas [14] (imple-
mented in OMEGA [25]), by using semi-linear sets [13] (im-
plemented in BRAIN [27]), or by using NDD (an automa-
ton that represents the sets of integer vectors encoded as
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strings of digit vectors (least or most significant digit first))
[30, 4] (implemented in FAST [2], L ASH [16] and MONA

[15]). Presburger-formulas and semi-linear sets lack canon-
icity. As a direct consequence, a set that possesses a simple
representation could unfortunately be represented in an un-
duly complicated way. Moreover, deciding if a given vec-
tor of integers is in a given set, is at leastNP-hard [3, 13].
On the other hand, a minimization procedure for automata
provides a canonical representation forNDD-definable sets
(a set represented by a NDD). That means, the NDD that
represents a given set only depends on this set and not on
the way we compute it. For these reasons, NDD are well
adapted for applications that require a lot of boolean ma-
nipulations such as model-checking.

Whereas there exist efficient algorithms for computing a
NDD that represents the set defined by a given Presburger
formula [14, 31, 4], the inverse problem of computing a
Presburger-formula from a Presburger-definable set repre-
sented by a NDD, called thePresburger synthesis problem,
was first studied in [18] and onlypartially solved in expo-
nential time(resp. doubly exponential time) for convex in-
teger polyhedrons[17] (resp. forsemi-linear sets with the
same set of periods[22]). Presburger-synthesis has many
applications. For example, in software verification, we are
interested in computing the set of reachable states of an in-
finite state system by using NDD representations and in an-
alyzing the structure of these sets with a tool such as [25]
which manipulates Presburger-formulas. The Presburger-
synthesis problem is also central to a new generation of
constraint solvers for Presburger arithmetic that manipulate
both NDD and Presburger-formulas [17, 14].

The Presburger-synthesis problem is naturally related
to the problem of deciding whether a NDD represents
a Presburger-definable set, a well-known hard problem
first solved by Muchnik in 1991 [23] with a quadruply
exponential time algorithm. To the best of our knowledge
no better algorithm for the full class of Presburger-definable
sets has been proposed since 1991.

In this paper, we prove that we can decide inpolynomial



timewhether a NDD (least significant digit first) represents
a Presburger-definable set. Moreover, for a NDD that
represents such a set, we provide an algorithm that com-
putes inpolynomial timea Presburger-formula that defines
the set represented by the NDD. These results rely on a
deeper analysis of the structure of a NDD that represents a
Presburger-definable set, and on a new geometric point of
view on the Presburger-definable sets (whence the length
of section 3).

In section 3 we recall some geometrical objects used
in the sequel. In section 4, we describe the size of
the structures manipulated in this paper for complexity
issue. Section 5 contains the definition of NDD and
introduces the notion ofdetectable setsthat corresponds
to sets obtained by modifying the set of final states of
a NDD. In section 6, we provide our new geometric
point of view of the Presburger-definable sets. Section 7
shows that this geometrical point of view can be “used
in polynomial time” from a Presburger-definable NDD.
Finally, in section 8, we prove the main results of this paper.

Proofs:
Some proofs had to be omitted due to space constraints.
A self-contained long version of this paper (with detailed
proofs for all results) can be obtained from the author or as
a technical report [21].

2. Preliminaries

Throughout this paper, intersection, union, difference
and symmetric difference of two setsA andB are written
A ∩ B, A ∪ B, A\B, andA∆B = (A\B) ∪ (B\A). We
denote byN, Z, Q respectively the set of non-negative in-
tegers, integers, and rational numbers. Thecardinality of a
finite setX is written |X | ∈ N. The set offunctionsfrom
a setX to a setY , also calledsequencesof elements inY
indexed byX is writtenY X . A function f ∈ Y X is also
denoted byf : X → Y . For such a function and for any
A ⊆ X andB ⊆ Y , we definef(A) = {f(a); a ∈ A} and
f−1(B) = {x ∈ X ; f(x) ∈ B}.

The setXm is called the set of vectors withm ∈ N

components in a setX . Given an integeri ∈ {1, . . . , m}
and a vectorx ∈ Xm, the i-th component ofx is written
x[i] ∈ X . Vector ej ∈ Qm is defined byej [j] = 1 and
ej [i] = 0 for anyi ∈ {1, . . . , m}\{j}. Vector(0, . . . , 0) ∈
Qm is denoted by0. Vectorsx + y and t.x are defined
by (x + y)[i] = (x[i]) + (y[i]) and(t.x)[i] = t.(x[i]) for
any i ∈ {1, . . . , m}, x, y ∈ Qm, t ∈ Q. For anyx, y ∈
Qm, let 〈x, y〉 =

∑m

i=1 x[i].y[i] be thedot product. For any
subsetX ⊆ Qm, we denote byX⊥ = {y ∈ Qm; ∀x ∈
X 〈x, y〉 = 0}. For anyx ∈ Qm, let us consider the norm
||x||∞ = maxi |x[i]| where|x[i]| is the absolute value of

x[i]. We naturally defineA+B = {a+ b; (a, b) ∈ A×B}
andT.A = {t.a; (t, a) ∈ T × A} for any A, B ⊆ Qm

andT ⊆ Q. For anya, b ∈ Qm andt ∈ Q, let us define
a + B = {a} + B, A + b = A + {b}, t.A = {t}.A and
T.a = T.{a}.

The set of words over a non-empty finite alphabetΣ is
writtenΣ∗. Thelengthof a wordσ is written |σ| ∈ N. The
word of length0 is written ǫ and we denote byΣ+ the set
Σ+ = Σ∗\{ǫ}. The concatenation of two wordsσ andσ′ in
Σ∗ is writtenσ.σ′. Such a wordσ is called aprefixof σ.σ′

(respectively astrict prefixif σ′ 6= ǫ).
A deterministic and complete automatonA is a tuple

A = (Q, Σ, δ, q0, F ); Q is the finite set of states,Σ is the
finite alphabet,δ : Q × Σ → Q is the transition function,
q0 ∈ Q is the initial state andF ⊆ Q is the set of final
states. TheCartesian productA1 ×F A2 of two automata
A1 = (Q1, Σ, δ1, q0,1, F1) andA2 = (Q2, Σ, δ2, q0,2, F2),
where F ⊆ Q1 × Q2, is the deterministic and com-
plete automatonA1 ×F A2 = (Q, Σ, δ, q0, F ) defined by
Q = Q1 × Q2, δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)), and
q0 = (q0,1, q0,2). As usual, we extendδ overQ × Σ∗ such
thatδ(q, σ.σ′) = δ(δ(q, σ), σ′). The languageL(A) ⊆ Σ∗

accepted by a deterministic and complete automatonA is
defined byL(A) = {σ ∈ Σ∗; δ(q0, σ) ∈ F}. A tuple
(q, σ, q′) such thatδ(q, σ) = q′ is called apath fromq to
q′ labeled byσ and it is writtenq

σ
−→ q′ or justq → q′. In

this case,q′ is said reachable fromq. A subsetQ′ ⊆ Q is
saidreachablefrom a subsetQ0 ⊆ Q if there exists a path
from a state inQ0 to a state inQ′. A strongly connected
componentQ′ of an automatonA is an equivalence class
for the equivalence relation⇄ defined overQ by q ⇄ q′ if
and only ifq → q′ andq′ → q.

3. Geometric sets

In this paper, we use a large range of geometric sets. Sec-
tion 3.1 recalls the notion ofintegral dimension. Thevector
space definitionis given in the next section 3.2. Section 3.3
recalls some properties satisfied by finite unions ofaffine
spaces, calledsemi-affine spaces[20]. Section 3.4 gives the
definition of apatternsand amodular spaces, and the final
one provides the definition ofpolyhedronsandboundaries.

3.1. Integral dimension andV -degenerate subsets

Given a subsetX ⊆ Zm, there exists a minimal integer
dim(X) ∈ {−1, . . . , m} (for ≤), called theintegral dimen-
sion, satisfying the following inequality:

sup
n∈N\{0}

(

|{x ∈ X ; ||x||∞ ≤ n}|

ndim(X)

)

< +∞



Remark 3.1 Let X ⊆ Zm. We havedim(X) = −1 if and
only if X is empty,dim(X) = 0 if and only ifX is a non-
empty finite set, anddim(X) ≥ 1 if and only ifX is infinite.

Without ambiguity, given a subsetX ⊆ Qm, the integer
dim(Zm ∩ X) is also denoted bydim(X), and called the
integral dimensionof X .

A subsetX ⊆ V whereV ⊆ Qm is saidV -degenerate
if dim(X) < dim(V ). Let us consider the equivalence re-
lation ∼V defined over the subsets ofV by X1 ∼V X2

if and only if X1∆X2 is V -degenerate. The equivalence
class[X ]V of a subsetX ⊆ V satisfies[X ]V = {X ′ ⊆
V ; dim(X∆X ′) < dim(V )}.

3.2. Vector spaces

Recall that avector spaceV of Qm is a subset ofQm

such that there exists a finite subsetV0 ⊆ Qm satisfying
V =

∑

v0∈V0
Q.v0 (whenV0 = ∅ thenV = {0}). Such a

vector spaceV is saidgenerated byV0. Thedimensionof a
vector spaceV is defined as the minimal integern ∈ N (for
≤) such that there exists a finite subsetV0 of n vectors in
Qm that generatesV .

Lemma 3.2 For any vector space, the integral dimension
and the dimension are equal.

3.3. Semi-affine spaces

An affine spaceA of Qm is either the empty set or a set
of the formA = a + V wherea ∈ Qm andV is a vector
space ofQm. In this case the vector spaceV is unique,
denoted by

−→
A and called thedirectionof A. A finite union

of affine spacesS =
⋃

A∈C A is called asemi-affine space
[20] (see figure 1 for an example).

b

A semi-affine spaceS Its direction
−→
S

Figure 1. Direction of a semi-affine space

Recall that a finite or infinite intersection of affine spaces
remains an affine space. In particular, for any subset
X ⊆ Qm, there exists a unique minimal (for⊆) affine
spaceaff(X) that containsX , called theaffine hull ofX .
As proved by lemma 3.3, a finite or infinite intersection
of semi-affine spaces remains a semi-affine space. Hence,
there also exists a unique minimal (for⊆) semi-affine space
saff(X) that containsX , called thesemi-affine hull ofX .

Lemma 3.3 ([20]) The class of semi-affine spaces is stable
by any infinite intersection.

Example 3.4 The semi-affine hull of afinite subsetX ⊆
Qm is equal toX becauseX is the finite union overx ∈ X

of the affine space{x} = x + {0}. The semi-affine hull
of an infinite subsetX ⊆ Q is equal toQ (remark that
m = 1). In fact, the class of affine spaces ofQ is equal to
{Q, ∅} ∪ {{x}; x ∈ Q}.

Example 3.5 As aff(X) is an affine space and in partic-
ular a semi-affine space that containsX , we deduce that
saff(X) ⊆ aff(X). This last inclusion can be strict as
shown by the exampleX = {(0, 0), (1, 0), (0, 1)}. In fact,
in this case, we havesaff(X) = X andaff(X) = Q2.

A maximal (for⊆) non-empty affine spaceA ⊆ S, is
called anaffine componentof S. The set of affine compo-
nents ofS is written comp(S). As proved by the follow-
ing proposition 3.6, a semi-affine space can be canonically
represented by its set of affine components. This is an im-
portant property forimplementation issuesof a semi-affine
library.

Proposition 3.6 ([20]) The set of affine components
comp(S) of a semi-affine spaceS is finite and S

is equal to the finite union of its affine components
S =

⋃

A∈comp(S) A.

The direction
−→
S of a semi-affine spaceS is defined

by
−→
S =

⋃

A∈comp(S)

−→
A . Remark that the semi-affine

space direction definition extends the affine spaces direc-
tion definition because ifS is a non-empty affine space then
comp(S) = {S}.

Example 3.7 Let us consider the semi-affine spaceS =
A1 ∪ A2 ∪ A3 ∪ A4 where A1 = Q.(1, 2), A2 =
(2, 0) + Q.(1, 2), A3 = (0,−3.5) + Q.(20,−3) andA4 =

{(8,−7)} given in figure 1. We have
−→
S = V1 ∪ V3 where

V1 = Q.(1, 2) and V3 = Q.(20,−3). Remark thatS
owns4 affine componentscomp(S) = {A1, A2, A3, A4},

the set{
−→
A ; A ∈ comp(S)} = {V1, V3, {0}} owns

3 vector spaces and
−→
S owns only2 affine components

comp(
−→
S ) = {V1, V3}. In fact, in general, we have

comp(
−→
S ) ⊆ {

−→
A ; A ∈ comp(S)} for any semi-affine

spaceS.

Following lemma proves that ifS is equal toS =
⋃

A∈C A whereC is a finite class of affine spaces not neces-

sarily equal tocomp(S), then
−→
S =

⋃

A∈C

−→
A .

Lemma 3.8 For any finite classC of affine spaces, the di-
rection of the semi-affine spaceS =

⋃

A∈C A is equal to
−→
S =

⋃

A∈C

−→
A .



The semi-affine space
−−−−−→
saff(X), is written

−→
saff(X).

3.4. Patterns andV -modular spaces

A pattern P of Zm is a subset ofZm such that there
existsn ∈ N\{0} and a subsetB ⊆ Zm such thatP =
B + n.Zm (see figure 2 and example 3.9). Intuitively, a
pattern is a subset ofZm obtained from a “motifB repeated
in all directions”. Remark that a subsetP ⊆ Zm is a pattern
if and only if there existsn ∈ N\{0} such thatP = P +
n.Zm, and in this caseP = B + n.Zm whereB = P ∩
{0, . . . , n − 1}m.
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M = P ∩ S

Figure 2. A Q.(1, 1)-modular space M

A V -modular spaceM , whereV is a vector space, is a
subset of the formM = P ∩ S whereP is a pattern and
S is a semi-affine space obtained as a finite union of affine
spacesA satisfying

−→
A = V .

Example 3.9 Let us consider the patternP = B + n.Z2

wheren = 3 and B = {(0, 0), (1, 1), (2, 2), (0, 2)}, the
vector spaceV = Q.(1, 1), the semi-affine spaceS = V ∪
((0, 2) + V ) ∪ ((0,−1) + V ) and theV -modular space
M = P ∩ S. SetsP , S andM are given in figure 2.

3.5.V -polyhedrons

Here, we defineV -polyhedrons, we characterizeV -
degenerateV -polyhedrons, and we introduce the notion of
V -boundaryandpossibleV -boundaryof aV -polyhedron.

The V -half spaceHV,α,#,c whereV is a vector space,
α ∈ V \{0}, # ∈ {≤, <, >,≥} and c ∈ Q is defined
by HV,α,#,c = {x ∈ V ; 〈α, x〉#c}. We also denote by
HV,α,=,c, the affine spaceHV,α,=,c = {x ∈ V ; 〈α, x〉 =
c} (even equal to the vector spaceV ∩ (Q.α)⊥ if c = 0).

A V -polyhedronC is a subset ofV defined as a boolean
combination ofV -half spacesHV,α,#,c (see figure 3 and
example 3.10). Apossible boundaryS of such aV -
polyhedronC is the semi-affine spaceS =

⋃

α∈D V ∩

(Q.α)⊥ whereD is the finite set ofα ∈ V \{0} used to de-
fineC as a boolean combination ofV -half spacesHV,α,#,c.

Example 3.10 Let us consider the vector spaceV = Q2,
and theV -polyhedronsC0, C1 andC2 given in figure 3 and

C0 C1 C2

Figure 3. Q2-polyhedrons

defined byC0 = {x ∈ Q2; (x[1] ≤ 4.x[2]) ∧ (x[2] ≤
4.x[1])}, C1 = {x ∈ Q2; −1 ≤ x[1] − x[2] ≤ 1},
and C2 = C0\C1. Remark thatC0 and C2 are nonV -
degenerate, andC1 is V -degenerate. Moreover,S0 = {x ∈
Q2; (x[1] = 4.x[2]) ∨ (x[2] = 4.x[1])} is a possibleV -
boundary ofC0, S1 = {x ∈ Q2; x[1] = x[2]} is a pos-
sible V -boundary ofC1, andS2 = S0 ∪ S1 is a possible
V -boundary ofC2.

Remark 3.11 A V -polyhedron is equal to a finite union of
convexV -polyhedrons

⋂

α∈D HV,α,#α,cα
, whereD is a fi-

nite subset ofV \{0}, (#α)α∈D is a sequence in{≤, <, >

,≥}D and(cα)α∈D is a sequence inQD.

The following proposition 3.12 provides a geometrical
characterization ofV -degenerateV -polyhedrons.

Proposition 3.12 A V -polyhedronC is V -degenerate if
and only if there exists a finite subsetD ⊆ V \{0} such
thatC ⊆

⋃

α∈D{x ∈ V ; −1 ≤ 〈α, x〉 ≤ 1}.

The following lemma 3.13 shows that anyV -polyhedron
C owns a minimal (for⊆) possibleV -boundary (up toV -
degenerate sets) called theV - boundaryof C and written
boundV (C).

Lemma 3.13 Let C be a V -polyhedron. There exists
a unique minimal (for⊆) semi-affine space boundV (C)
called theV -boundary ofC such that boundV (C) is a pos-
sible V -boundary of aV -polyhedron in[C]V (see section
3.1).

Example 3.14 Let us consider theV -polyhedronsC0, C1

andC2 defined in example 3.10, and given in figure 3. We
have boundV (C1) = ∅ and boundV (C0) = boundV (C2) =
{x ∈ Q2; (x[1] = 4.x[2]) ∨ (x[2] = 4.x[1])}. Remark in
particular that boundV (C2) is not a possibleV -boundary
of C2.

4. Size and complexity

This section provides the size of the manipulated struc-
tures in this paper.



Naturally, the size of a rational numberx = n
d

where
n andd ∈ N\{0} are relatively prime, a vectorv ∈ Qm,
a matrixM ∈ Mm,n(Q), a wordσ ∈ Σ∗ are defined by
size(x) = ln(1+|n|)+ln(1+d), size(v) =

∑m

i=1 size(v[i]),
size(M) =

∑m
i=1

∑n
j=1 size(Mij), size(σ) = |σ|. ln(1 +

|Σ|).The size of an affine spaceA implicitly generated
by a finite setA0 ⊆ Qm is defined by size(A) =
∑

a0∈A0
size(a0). The size size(S) of a semi-affine space

S is given by size(S) =
∑

A∈comp(S) size(A). The size of
a finite setC of rational numbers, vectors, matrices, and so
on, is given by size(C) =

∑

Y ∈C size(Y ).
Recall that almost all the natural operations over affine

spaces can be done in polynomial time (in the dimension
m ≥ 1).

The size of a deterministic and complete automatonA

over an alphabetΣ is given by size(A) = |Q|.|Σ|.

5. NDD andr-definable sets

Sets of integer vectors that can be represented by au-
tomata, calledNumber decision Diagram (NDD), thanks to
a least or most significant digit firstdecomposition, are re-
lated to the notion ofr-definable [5] wherer ≥ 2 is an
integer calledthe basis of decomposition. In this section
this notion is recalled. Moreover, in section 5.1 and 5.2, the
sets obtained bymodifyingrespectively, theinitial stateand
the set of final statesof a NDD, are characterized. In the
last section 5.3, we introduce the notion ofterminal compo-
nents, some particular strongly connected components of a
NDD.

Given an integerr ≥ 2, a subsetX ⊆ Nm, wherem ≥ 1
is called thedimension, is saidr-definable if it is definable
in the first order logic〈Z, +,≤, Vr〉 whereVr : Z → Z is
the valuation functiondefined byVr(0) = 1 andVr(x) is
the greatest power ofr that dividesx ∈ Z\{0}.

Example 5.1 Let r = 2. For anyk1, k2 ∈ N, valuation
V2(2

k1 + 2k2) is equal to2k wherek = min{k1, k2} if
k1 6= k2 andk = k1 + 1 = k2 + 1 otherwise.

Recall that the first order logic〈Z, +,≤, Vr〉 is decid-
able. The proof of this well known result is based on the
decomposition of an integer vector into aleast or most sig-
nificant word of digit vectorsover the alphabetΣrm =
{0, . . . , r − 1}m. Following notations introduced in [19],
thisdecompositioncan be provided thanks to the following
functionγb, whereb ∈ Σrm .

γb : Zm −→ Zm

x −→ r.x + b

Given a sequenceb1, ..., bk of k ≥ 1 digit vectors inΣrm ,
we have the following equality also called theleast signifi-

cant digit first decomposition:

γb1 ◦ · · · ◦ γbk
({(0, . . . , 0)}) =

k
∑

i=1

ri−1bi

Hence, the vectorρ(σ) = γσ({0, . . . , 0}) ∈ Nm can be
naturally associated to the wordσ = b1 . . . bk, whereγσ is
the function defined by the following equality (functionγǫ

is equal to the identity functionγǫ(x) = x):

γb1...bk
= γb1 ◦ · · · ◦ γbk

q1 q0 q2

q4q3 q⊥

(0, 0) (0, 0)

(1, 1) (0, 0) (1, 1)

(1, 0)

(−,−)

(0, 1) (1, 0)

(0, 1)(1, 0)

(0, 1)

(1,−) (−, 1)

(0,−) (−, 0)

(1, 1)

Figure 4. A NDD representing {x ∈ N2; (x[1] =
2.x[2]) ∨ (x[2] = 2.x[1])} where − ∈ {0, 1}

q0 q1 q3 q4

q2

(0,−) (0, 0) (1, 1) (1,−)

(1,−) (0,−)

(0, 1) (1, 0)
(1, 0)

(0, 1)

(0,−)

(1, 1)

(1,−)

(0, 0)

Figure 5. A NDD representing {x ∈ N2; x[2] ≥
4.x[1]} where − ∈ {0, 1}

Definition 5.2 ([31, 4]) A (least significant digit first)
Number Decision Diagram (NDD)is a deterministic and
complete automaton overΣrm such that for any stateq ∈
Q, we haveq ∈ F if and only ifδ(q, 0) ∈ F .

The setX = ρ(L(A)) is called the set represented byA

and such a set is saidNDD-definable(see figure 4 or 5 for



an example of NDD). Recall that a setX is NDD-definable
if and only if it is r-definable [5].

Remark 5.3 There exists some deterministic and complete
automataA1, A2 andA such thatL(A1)∩L(A2) = L(A),
butX1∩X2 6= X whereX1 = ρ(L(A1)), X2 = ρ(L(A2))
and X = ρ(L(A)). This side effect is no longer true
for NDD thanks to the conditionq ∈ F if and only if
δ(q, 0) ∈ F for everyq ∈ Q. In fact, given two NDDA1 =
(Q1, Σrm , δ1, q0,1, F1) and A2 = (Q2, Σrm , δ2, q0,2, F2)
representing respectively two setsX1 and X2, the Carte-
sian productA1 ×F#

A2 where# ∈ {∪,∩, ∆}, F∪ =
(Q1 × F2) ∪ (F1 × Q2), F∩ = F1 × F2, and F∆ =
(F1 × (Q2\F2))∪ ((Q1\F1)×F2), is a NDD representing
X1#X2.

Remark 5.4 A (most significant digit first) Number Deci-
sion Diagram (NDD)that represents a setX ⊆ Nm is
a deterministic and complete automatonA over Σrm that
recognizes the mirror ofρ−1(X) and defined asL(A) =
{a1 . . . an; an . . . a1 ∈ ρ−1(X)}.

5.1. Moving the initial state

The set represented by the NDDAq when the initial state
q0 of a NDD A is replaced by another stateq ∈ Q, can be
easily characterized thanks to the functionγσ.

Proposition 5.5 Let A be a NDD that represents a setX .
For any pathq0

σ
−→ q, the NDDAq representsγ−1

σ (X).

When a setX ⊆ Nm is implicitly represented by a NDD
A (not necessary minimal), we denote byXq the set repre-
sented by the NDDAq. Proposition 5.5 shows that for any
pathq

σ
−→ q′, we haveXq′ = γ−1

σ (Xq).

Example 5.6 Let us consider the NDDA presented in fig-
ure 4 that represents the setX = {x ∈ N2; (x[1] =
2.x[2]) ∨ (x[2] = 2.x[1])}. We haveXq0

= X , Xq⊥ = ∅,
Xq1

= {x ∈ N2; x[1] = 2.x[2] + 1}, Xq2
= {x ∈

N2; x[2] = 2.x[1] + 1}, Xq3
= {x ∈ N2; x[1] = 2.x[2]},

Xq4
= {x ∈ N2; x[2] = 2.x[1]}.

Example 5.7 Let us consider the NDDA presented in fig-
ure 5 that represents the setX = {x ∈ N2; x[2] ≥
4.x[1]}. For anyc ∈ {0, 1, 2, 3, 4}, we haveXqc

= {x ∈
N2; x[2] ≥ 4.x[1] + c}.

5.2. Replacing the set of final states

In order to characterize the set represented by the NDD
AF ′

when the set of final statesF of a NDDA is replaced
by another set of statesF ′ ⊆ Q, we introduce the notion of

semi-eyesanddetectablesets.

Let A be a NDD. We consider the binary relation∼ over
Q, defined byq ∼ q′ if and only if δ(q, 0∗) ∩ δ(q′, 0∗) 6=
∅. As A is deterministic,∼ is an equivalence relation. An
equivalence class for this relation is calledan eye. A finite
union of eyes is called asemi-eye. Naturally, for any subset
F ′ ⊆ Q, the automatonAF ′

is a NDD if and only ifF ′ is a
semi-eye.

Example 5.8 LetA be the NDD given in figure 4. The set of
statesQ can be partitioned into4 eyesY1, Y2, Y3, Y4 where
Y1 = {q1, q2, q⊥}, Y2 = {q0}, Y3 = {q3} andY4 = {q4}.

Example 5.9 Let A be the NDD given in figure 5. The set
of statesQ can be partitioned into3 eyesY1, Y2, Y3 where
Y1 = {q0} andY2 = {q1} andY3 = {q2, q3, q4}.

LetA be a NDD and remark that for anyX ′ ⊆ Nm, there
exists a unique minimal (for⊆) semi-eyeFA(X ′) such that
X ′ is included in the set represented byAFA(X′). In gen-
eral, this inclusion is strict. However, fordetectable sets, it
becomes an equality.

A setX ′ ⊆ Zm is saiddetectable in a setX ⊆ Zm if for
any pair of words(σ1, σ2) such thatγ−1

σ1
(X) = γ−1

σ2
(X),

we haveγ−1
σ1

(X ′) = γ−1
σ2

(X ′).

Remark 5.10 WhenX andX ′ are respectively represented
by two minimal NDD A = (Q, Σrm , δ, q0, F ) and A′ =
(Q′, Σrm , δ′, q′0, F

′), we proved in [21] thatX ′ is de-
tectable inX if and only if for any pair of words(σ1, σ2)
such thatδ(q0, σ1) = δ(q0, σ2), we haveδ′(q′0, σ1) =
δ′(q′0, σ2).

Proposition 5.11 Let X ⊆ Nm be represented by a NDD
A. For any setX ′ ⊆ Nm detectable inX , the NDD
AFA(X′) representsX ′.

The following proposition 5.12 will be useful to compute
in polynomial time the setFA(X ′) of a setX ′ ⊆ Nm with
apolynomial time membership problem, and detectable in a
setX ⊆ Nm represented by a NDDA.

Proposition 5.12 Let X ⊆ Nm represented by a NDDA
and letX ′ ⊆ Nm detectable inX . In polynomial time, the
computation ofFA(X ′) can be reduced to the membership
problem forX ′.

Example 5.13 Let X = {x ∈ N2; (x[1] = 2.x[2]) ∨
(x[2] = 2.x[1])} be represented by the NDDA given in
figure 4. The setsX1 = {x ∈ N2; (x[1] = 2.x[2])} and
X2 = {x ∈ N2; (x[2] = 2.x[1])} are both detectable inX .
We haveFA(X1) = {q3, q0} andFA(X2) = {q4, q0}.



5.3. Terminal components

The strongly connected componentsof a NDD play an
important role in this paper. We call aterminal component
T of a NDD A, a strongly connected component reachable
from the initial state, that contains at least one final state
and such that any final stateq′ reachable fromT is in T .
Intuitively, a strongly connected componentT is terminal
if it is farthest from the initial state. Theset of terminal
componentsof A is denoted byT (A).

Proposition 5.14 Let A be a NDD. For any terminal com-
ponentT of A, there exists a unique vector spaceVT (A)
such thatsaff(ρ(L(AF ′

q ))) is an affine space whose the di-
rection is equal toVT (A), for any stateq ∈ T and for any
semi-eyeF ′ such thatT remains a terminal component of
A

F ′

.

Proposition 5.14 associates to any terminal component
T of a NDD A, a vector spaceVT (A). Moreover, as for
any q ∈ T ∩ F , we haveaff(ρ(L(Aq))) = VT (A), we
deduce from [19] that we can compute in polynomial time
this vector space. For any vector spaceV , we denote by
TV (A) the set of terminal componentsT ∈ T (A) such that
VT (A) = V .

Example 5.15 Let us consider the NDDA given in fig-
ure 4 that representsX = {x ∈ N2; (x[1] = 2.x[2]) ∨
(x[2] = 2.x[1])}. The setT (A) contains two terminal
componentsT (A) = {T0, T1} whereT0 = {q2, q4} and
T1 = {q1, q3}. Moreover, we haveVT0

(A) = Q.(1, 2)

andVT1
(A) = Q.(2, 1). In particular we have

−→
saff(X) =

⋃

T∈T (A) VT (A).

Example 5.16 Let us consider the NDDA given in figure
5 that representsX = {x ∈ N2; x[2] ≥ 4.x[1]}. The
setT (A) contains one terminal componentsT (A) = {Q}.
Moreover, we haveVQ(A) = Q2. In particular, we also

have
−→
saff(X) =

⋃

T∈T (A) VT (A).

6. Presburger-definable sets

A subsetX ⊆ Zm is said Presburger-definable if it can
be defined by a formula in the first order theory〈Z, +,≤〉.
Naturally, any Presburger-definable set isr-definable and
there exists somer-definable sets that are not Presburger-
definable. In this section, we provide a “decomposition the-
orem” for the Presburger-definable sets that provides a new
geometrical point of view of Presburger-definable sets.

Remark 6.1 A linear setX of Zm is a set of the fromX =
b +

∑

p∈P N.p whereb ∈ Zm is called thebasisandP ⊆

Zm is a finite subset ofZm called the set ofperiods. A
semi-linear setof Zm is a finite union of linear sets ofZm.
Recall that a setX is Presburger-definable if and only if it
is semi-linear[13].

Example 6.2 The Presburger-definable setX = {x ∈
N2; x[2] ≥ 4.x[1]} is represented in figure 6.

Given a vector spaceV and a subsetX ⊆ Qm, let us
consider the following setXV ⊆ X :

XV = X ∩







⋃

A∈comp(saff(X))
−→
A=V

A






As XV is non-empty if and only ifV is in the finite set
{
−→
A ; A ∈ comp(

−→
saff(X))}, we have a decomposition ofX

into a finite union ofXV . In [21], we proved that for any
vector spaceV , the setcomp(saff(XV )) is a finite union of

non-empty affine spacesA such that
−→
A = V .

This decomposition ofX is refined by the following the-
orem 6.3 whenX ⊆ Zm is Presburger-definable andV is
an affine component of

−→
saff(X) (see example 3.7 for the

inclusioncomp(
−→
saff(X)) ⊆ {

−→
A ; A ∈ comp(

−→
saff(X))}).

Theorem 6.3 (decomposition theorem)Let X ⊆ Zm be
a Presburger-definable set andV ∈ comp(

−→
saff(X)). There

exists a unique finite classMV (X) of V -modular spaces
such that there exists a sequence(CV,M )M∈MV (X) of V -
polyhedrons satisfying the following two assertions:

• Sequence(CV,M )M∈MV (X) is a “kind of partition” of
V : CV,M is nonV -degenerate for anyM ∈ MV (X)
whereasV \(

⋃

M∈MV (X) CV,M ) is V -degenerate and
CV,M ∩ CV,M ′ is V -degenerate for anyM 6= M ′ ∈
MV (X).

• For anyV -modular spaceM ∈ MV (X), we have:

dim
(

(XV ∆M) ∩ (CV,M + V ⊥)
)

< dim(XV )

Moreover another sequence(C′
V,M )M∈MV (X) of V -

polyhedrons satisfies the previous two assertions if and only
if [CV,M ]V = [C′

V,M ]V for anyM ∈ MV (X).

Recall that theV -boundary of aV -polyhedron is de-
fined “up to V -degenerateV -polyhedrons”. That means
if C1 and C2 are twoV -polyhedrons such that[C1]V =
[C2]V then boundV (C1) = boundV (C2). Let X be a
Presburger-definable set andV be an affine component of
−→
saff(X). From the previous theorem 6.3 we deduce that
⋃

M∈MV (X) boundV (CV,M ) only depends onX and V .
This semi-affine space is written boundV (X).

boundV (X) =
⋃

M∈MV (X)

boundV (CV,M )



Example 6.4 Let us consider the Presburger-definable set
X = {x ∈ N2; x[2] ≥ 4.x[1]} given in figure 6. We

have
−→
saff(X) = V whereV = Q2 and XV = X . We

also haveMV (X) = {∅, Z2}. Remark that the sequence of
V -polyhedrons(CV,M )M∈MV (X) given byCV,Z2 = {x ∈
Q2; x[1] ≥ 0 ∧ x[2] ≥ 4.x[1]} andCV,∅ = Q2\CV,Z2 sat-
isfies the decomposition theorem. From boundV (CV,Z2) =
boundV (CV,∅) = Q.(0, 1) ∪ Q.(1, 4), we deduce that
boundV (X) = Q.(1, 0) ∪ Q.(1, 4).

7. Polynomial time decomposition

In this section, we show that
−→
saff(X) and boundV (X)

are computable in polynomial time from a NDD that
represents a Presburger-definable setX .
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Figure 6. X = {x ∈ N2; x[2] ≥ 4.x[1]}

In order to illustrate the computation of
−→
saff(X) from a

NDD representing a Presburger-definable setX (see also
example 5.15 and 5.16), assume thatX is a non-empty
set represented by a NDDA. As any terminal compo-
nentT is reachable fromq0, there exists at least one path
q0

σ
−→ q with q ∈ T . From proposition 5.5, we deduce

thatXq = γ−1
σ (X) and in particularΓσ(Xq) ⊆ X where

Γσ : Qm → Qm is the affine function that extendsγσ

by Γσ(x) = r|σ|.x + ρ(σ). From this inclusion, a simple

lemma shows that
−→
saff(Xq) ⊆

−→
saff(X). Now, just recall

thatVT (A) =
−→
saff(Xq). Therefore, we have proved the in-

clusion
⋃

T∈T (A) VT (A) ⊆
−→
saff(X). Even if the converse

inclusion is not true in general, the following theorem shows
that it holds for any Presburger-definable NDD. In particu-
lar we deduce that

−→
saff(X) can be efficiently computed in

polynomial time.

Theorem 7.1 Let X be a Presburger-definable set repre-
sented by a NDDA. We have the following equality:

−→
saff(X) =

⋃

T∈T (A)

VT (A)

We illustrate the computation of boundV (X) from the
NDD A given in figure 5 that represents the setX =
{x ∈ N2; x[2] ≥ 4.x[1]} given in figure 6. Remark

that
−→
saff(X) = V = Q2, and boundV (X) = Q.(1, 0) ∪

Q.(1, 4). Proposition 5.5, shows thatXq2
= {x ∈

Nm; x[2] ≥ 4.x[1] + 2} also given in figure 6. Remark

that
−→
saff(Xq0

∆Xq2
) = Q.(1, 4) which provides the affine

componentQ.(1, 4) of boundV (X).

q0 q⊥

Σrm ∩ (Q.ej)
⊥

Σrm

Σrm\(Q.ej)
⊥

Figure 7. A NDD representing Nm ∩ (Q.ej)
⊥

This technique is generalized to any Presburger-
definable setX by the following theorem that proves in
particular that we can efficiently compute boundV (X) in
polynomial time from a NDD that representsX (see also
figure 7).

Theorem 7.2 Let X be a Presburger-definable set repre-
sented by a NDDA, and letV be an affine component of
−→
saff(X).

• ConsiderIV (A), the set of states(q1, q2) ∈ T × T

whereT ∈ TV (A) and
−→
saff(Xq1

∆Xq2
) is strictly in-

cluded inV .

• ConsiderJV (A), the set ofj ∈ {1, . . . , m} such
that V ∩ (Q.ej)

⊥ is strictly included inV and such
that there existsq ∈ F ∩ T whereT ∈ TV (A) and
−→
saff(Xq ∩ (Q.ej)

⊥) = V ∩ (Q.ej)
⊥.

We have the following equality:

boundV (X) =
⋃

(q1,q2)∈IV (A)

−→
saff(Xq1

∆Xq2
)

∪
⋃

j∈JV (A)

(V ∩ (Q.ej)
⊥)

8. Presburger synthesis

In this last section, we prove that we can decide in poly-
nomial time if a NDDA represents a Presburger-definable
set X . Moreover, in this case, we prove that we can
compute in polynomial time a Presburger formulaφ that
definesX .

We only sketch the proof of this result. Assume that a
Presburger-definable setX is represented by a NDDA. We



have proved thatcomp(
−→
saff(X)) is computable in polyno-

mial time and for any vector spaceV in this set, boundV (X)
is also computable in polynomial time. In technical report
[21], we prove that we can also compute in polynomial time
a sequence(CV,M )M∈MV (X) of V -polyhedrons satisfying
decomposition theorem.

Remark that from decomposition theorem, we deduce
the following corollary:

Corollary 8.1 Let X ⊆ Nm be a non-empty Presburger-
definable set and(CV,M )M∈MV (X) be a sequence ofV -
polyhedrons satisfying decomposition theorem. We have
dim(X ′) < dim(X) whereX ′ is given by:

X ′ = X∆







⋃

V ∈comp(
−−→
saff(X))

M∈MV (X)

(M ∩ (CV,M + V ⊥))






In technical report [21], we prove that we can choose
(CV,M )M∈MV (X) correctly such that all the setsM ∩

(CV,M + V ⊥) are detectable inX . That meansX ′ is de-
tectable inX and in particular, by modifying the set of final
states of the NDDA, we obtain a NDD that representsX ′

with exactly thesame size.
As dim(X ′) < dim(X), an induction over the integral

dimension provides the proof of the following theorem.

Theorem 8.2 We can decide in polynomial time if a NDD
A represents a Presburger-definable setX . Moreover, in
this case, we can compute in polynomial time a Presburger
formulaφ that definesX .

Remark 8.3 Tools that manipulate NDD, represent the
transition relationδ : Q × Σrm → Q by a BDD [6] in
order to avoid an exponential blow up due to the expo-
nential size ofΣrm . Following [19], we deduce that all
the results proved in this paper can be extended in poly-
nomial time to this representation expect a technical one
(see technical report [21]). In particular, we deduce that
we can decide in non-deterministic polynomial time (non-
deterministic polynomial time in the dimensionm and poly-
nomial time in the number of states|Q|) if such a NDD rep-
resents a Presburger-definable set. Moreover, in this case,
we can compute in polynomial time a Presburger formula
that defines the same set. We are not convinced that the
problem of deciding if such a NDD represents a Presburger-
definable set, can be done in polynomial time. Nevertheless,
the problem remains open.

Remark 8.4 Our decision procedure can be used in order
to decide in exponential time if amost significant digit first
NDD A represents a Presburger-definable setX (a polyno-
mial time procedure remains an open problem). In fact, by

“flipping” the “direction” of the transitions and by deter-
mining the resulting automaton, we obtain aleast signifi-
cant digit firstNDD Ā that representsX . Even if from a
theoretical point of view, an exponential blow up can ap-
pear, in practical examples, it is not the case (see [14] for
the duality least/most significant digit first).

Remark 8.5 Our algorithms should be efficient on NDD
with a large set of states. Assume that the dimensionm ≥ 1
is fixed. Recall that in [19], we proved thataff(X) is com-
putable in linear time from a NDD that representsX . In
particular

−→
saff(X) is also computable in linear time. More-

over, even if theorem 7.2 seems to provide aO(|Q|4) time
complexity algorithm for computing boundV (X), we can
just compute only one NDD for eachT ∈ TV (A) whose the
set of states isT ×T . Therefore boundV (X) is computable
in quadratictime. The exact complexity of our criterion will
be detailed in a revue version of the paper.

9. Conclusion and future work

We have described the precise structure of a NDD that
represents a Presburger-definable set. We are currently
working on the design of new efficient symbolic represen-
tations for Presburger-definable sets. In particular, we are
interested in studying hybrid representations that use both
NDD and constraint formulas. This is work in progress.

Acknowledgment: We thank Pierre McKenzie for his sup-
port and for his interesting remarks on so many versions of
this paper.
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