A Polynomial Time Presburger Criterion and Synthesis for Number Decision Diagrams - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

A Polynomial Time Presburger Criterion and Synthesis for Number Decision Diagrams

Résumé

Number Decision Diagrams (NDD) are the automatabased symbolic representation for manipulating sets of integer vectors encoded as strings of digit vectors (least or most significant digit first). Since 1969 [8, 29], we know that any Presburger-definable set [26] (a set of integer vectors satisfying a formula in the first-order additive theory of the integers) can be represented by a NDD, and efficient algorithm for manipulating these sets have been recently developed [31, 4]. However, the problem of deciding if a NDD represents such a set, is a well-known hard problem first solved by Muchnik in 1991 [23, 24, 5] with a quadruplyexponential time algorithm. In this paper, we show how to determine in polynomial time whether a NDD represents a Presburger-definable set, and we provide in this positive case a polynomial time algorithm that constructs from the NDD a Presburger-formula that defines the same set.
Fichier principal
Vignette du fichier
papier.lics05.pdf (165.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00346307 , version 1 (15-12-2008)

Identifiants

Citer

Jérôme Leroux. A Polynomial Time Presburger Criterion and Synthesis for Number Decision Diagrams. LICS, 2005, France. pp.147 - 156, ⟨10.1109/LICS.2005.2⟩. ⟨hal-00346307⟩

Collections

CNRS
80 Consultations
144 Téléchargements

Altmetric

Partager

More