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and in quiver representations

N. Ressayre∗

December 11, 2008

Abstract

1 Introduction

Consider a partial flag variety X which is not a grassmaninan. Consider also
its cohomology ring H∗(X, Z) endowed with the base formed by the Poincaré
dual classes of the Schubert varieties. In [Ricar], E. Richmond showed that
some coefficient structure of the product in H∗(X, Z) are products of two
such coefficients for smaller flag varieties.

Consider now a quiver without oriented cycle. If α and β denote two
dimension-vectors, α◦β denotes the number of α-dimensional subrepresenta-
tions of a general α + β-dimensional representation. In [DW06], H. Derksen
and J. Weyman expressed some numbers α ◦ β as products of two smaller
such numbers.

The aim of this work is to prove two generalisations of the two above
results by the same way.

We now explain our result about cohomology of the generalized flag va-
rieties. Let G be a semi-simple group, T ⊂ B ⊂ Q ⊂ G be a maximal torus,
a Borel subgroup and a parabolic subgroup respectively. In [BK06], P. Bel-
kale and S. Kumar defined a new product (associative and commutative) on
the cohomology group H∗(G/Q, Z) denoted by ⊙0. Any coefficient struc-
ture of ⊙0 in the base of Schubert classes is either zero or the corresponding
coefficient structure for the cup product.

∗
ressayre@math.univ-montp2.fr
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Let now P ⊂ Q be second parabolic subgroups of G and L denote the
Levi subgroup of P containing T . We obtain the following:

Theorem A Any coefficient structure of (H∗(G/Q, Z),⊙0) in the base of
Schubert classes is the product of such two coefficients for (H∗(G/P, Z),⊙0)
and (H∗(L/(L ∩ Q), Z),⊙0) respectively.

Actualy, Theorem 4 below is more precise and explicit than Theorem A.
This result was already obtained in [Ricar] when G = SLn, Q is any parabolic
subgroup and P is the maximal parabolic subgroup corresponding to the lin-
ear subspace in G/Q of minimal dimension.

Let Q be a quiver. The Ringle form (see Section 4.1) is denoted by 〈·, ·〉.
We prove the following:

Theorem B Let α, β and γ be three dimension-vectors. We assume that
〈α, β〉 = 〈α, γ〉 = 〈β, γ〉 = 0. Then,

(α + β ◦ γ).(α ◦ β) = (α ◦ β + γ).(β ◦ γ).

Note that, Theorem 5 is more general than Theorem B, since s dimension-
vectors occur. Moreover, we give in Theorem B a geometric interpretation
of the product.

If Q has no oriented cycle, we obtain the following corollary:

Theorem C We assume that Q has no oriented cycle. Let α, β and γ be
three dimension-vectors. We assume that 〈α, β〉 = 〈α, γ〉 = 0 and β ◦ γ = 1.

Then, α ◦ β + γ = (α ◦ β).(α ◦ γ).

This result is not really stated in [DW06]. However, the proof of [DW06,
Theorem 7.14] implies it. Note that the proof of Theorem B is really diffen-
rent from those of [DW06, Theorem 7.14]. Indeed, the numbers α ◦ β have
two non trivially equivalent interpretations (see [DSW07]): as a number of
points in a generic fiber of a morphism or as a dimension of the subspace of
invariant vectors in a representation. Here we use the first characterisation.
Derksen and Weyman used the second one.

In Section 2, we consider more generally a semi-simple group G acting
on a variety X.
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2 Degree of dominant pairs

2.1 Definitions

Let G be a reductive group acting on a smooth variety X. Let λ be a one
parameter subgroup of G. Let Gλ or L denote the centralizer of λ in G. We
consider the usual parabolic subgroup associated to λ with Levi subgroup
L:

P (λ) =
{

g ∈ G : lim
t→0

λ(t).g.λ(t)−1 exists in G
}

.

Let C be an irreducible component of the fix point set Xλ of λ in G. We
also consider the Bialinicky-Birula cell C+ associated to C:

C+ = {x ∈ X | lim
t→0

λ(t)x ∈ C}.

Then, C is stable by the action of L and C+ by the action of P (λ).
Consider over G × C+ the action of G × P (λ) given by the formula

(with obvious notation): (g, p).(g′, y) = (gg′p−1, py). Consider the quotient
G ×P (λ) C+ of G × C+ by the action of {e} × P (λ). The class of a pair
(g, y) ∈ G × C+ in G ×P (λ) C+ is denoted by [g : y].

The action of G × {e} induces an action of G on G ×P (λ) C+. More-
over, the first projection G × C+ −→ G induces a G-equivariant map
π : G ×P (λ) C+ −→ G/P (λ) which is a locally trivial fibration with fiber
C+. In particular, we have

dim(G ×P (λ) C+) = dim(G/P (λ)) + dim(C+).

Consider also the G-equivariant map η : G×P (λ)C
+ −→ X, [g : y] 7→ gy.

We finally obtain:

G ×P (λ) C+ η
- X.

G/P (λ)

π

?

It is well known that the map

G ×P (λ) C+ −→ G/P (λ) × X

[g : y] 7−→ (gP (λ), gy)
(1)
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is an immersion; its image is the set of the (gP (λ), x) ∈ G/P (λ)×X such
that g−1x ∈ Y . Note that this fact can be used to prove that G ×P (λ) C+

actually exists.

Definition. We set

δ(G,X,C, λ) = dim(X) − dim(G/P (λ)) − dim(C+)
= codim(C+,X) − codim(P (λ), G).

If δ(G,X,C, λ) = 0 and η is dominant, it induces a finite field extension:
k(X) ⊂ k(G ×P (λ) C+). We denote by d(G,X,C, λ) the degree of this
extension. If δ(G,X,C, λ) 6= 0 or η is not dominant, we set d(G,X,C, λ) = 0.

More generally, we define the degree of any morphism to be the degree
of the induced extension if it is finite and zero otherwise.

2.2 A product formula for d(G, X, C, λ)

Let T be a maximal torus of G and x0 be a fixed point of T in X. We keep
notation of Section 2.1 and assume that the image of λ is contained in T
and x0 ∈ C. We set P = P (λ).

Let λε be another one parameter subgroup of T . Set Pε = P (λε). Con-
sider the irreducible component Cε of Xλε which contains x0 and C+

ε =
{x ∈ X : limt→0 λε(t)x ∈ C}. We assume that:

(i) Pε ⊂ P ,

(ii) C+
ε ⊂ C+, and

(iii) Cε ⊂ C.

Remark. Notice that the set of the λε which satisfy these three assump-
tions generated an open convex cone in the vector space containing the one
parameters subgroups of T as a lattice.

Now, we want to compare η and ηε. We introduce the natural morphism:

ηL : L ×Pε∩L (C+
ε ∩ C) −→ C.

This map is a map η as in Section 2.1 with G = L, X = C, C = Cε and λ =
λε. In particular, we have defined δ(L,C,C+

ε ∩C, λε) and d(L,C,C+
ε ∩C, λε).

We can now state our main result

Theorem 1 With above notation, we have:
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(i) δ(G,X,Cε, λε) = δ(L,C,Cε, λε) + δ(G,X,C, λ), and

(ii) If δ(L,C,Cε, λε) = δ(G,X,C, λ) = 0, then

d(G,X,Cε, λε) = d(L,C,Cε, λε) · d(G,X,C, λ).

2.3 Proof of Theorem 1

2.3.1 — We set

YL = L ×Pε∩L (C+
ε ∩ C) and YP = P ×Pε

C+
ε .

We consider the natural morphism

ηP : YP −→ C+,

and
[Id : ηP ] : G ×P YP −→ G ×P C+, [g : [p : x]] 7−→ [g : px].

Lemma 1 With above notation, we have:

(i) the map G ×P YP −→ G ×Pε
C+

ε , [g : [p : x]] 7−→ [gp : x] is an
isomorphism denoted by ι; moreover,

(ii) ηε ◦ ι = η ◦ ([Id : ηP ]).

Proof. The morphism ι commutes with the two projections on G/P . More-
over, the restriction of ι over P/P is the closed immersion P ×Pε

C+
ε −→

G ×Pε
C+

ε . It follows (see for example [Res04, Appendice]) that ι is an
isomorphism.

The morphisms ηε ◦ ι and η ◦ ([Id : ηP ]) are G-equivariant and extend
the immersion of C+

ε in X. They have to be equal. �

2.3.2 — We are now interested in ηP . Consider the two following limit
morphisms:

ΛP : P −→ L
p 7→ limt→0 λ(t)pλ(t−1)

and Λ+ : C+ −→ C
y 7→ limt→0 λ(t)y.

The computation λ(t)px = λ(t)pλ(t−1)λ(t)x implies the easy

Lemma 2 We have: Λ+(px) = ΛP (p)Λ+(x).
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2.3.3 — Recall that Λ+ : C+ −→ C is a vector bundle. The pullback
of this vector bundle by ηL is

η∗L(C+) = {([l : x], y) ∈ YL × C+ | lx = Λ+(y)},

endowed with the first projection p1 on YL. Consider the following diagram:

YP
Θ : [p : x] 7→ ([ΛP (p) : Λ+(x)], px)

- η∗L(C+)

YL
�

p1

[p : x] 7→
[Λ

P (p) : Λ +
(x)]

-

L/(Pε ∩ L).
?

(2)

Lemma 3 The above diagram is commutative, and the top horizontal map
Θ is an isomorphism.

Proof. First, note that the map YP −→ YL in Diagram 2 is well defined by
Lemma 2. Diagram 2 is obviously commutative.

Since all the morphisms in Diagram 2 are L-equivariant, [Res04, Ap-
pendice] implies that it is sufficient to prove that Θ is an isomorphism
when restricted over the class of e in L/(Pε ∩ L). The fiber in YL over
this point if C ∩ C+

ε . Since P u ⊂ P u
ε , the fiber in YP identify with C+

ε ,
by x ∈ C+

ε 7→ [e : x]. The fiber in η∗L(C+) also identify with C+
ε in such

a way the restriction of Θ becomes the identity. It follows that Θ is an
isomorphism. �

2.3.4 — We can now prove Theorem 1.
Proof. By Lemma 3, we have the following commutative diagram:
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YP
ηP

- C+

η∗L(C+)

-

Θ
˜

-

YL

? ηL
-

-

C.

Λ+

?

It follows that dim(C+) − dim(YP ) = δ(L,C,Cε, λε) and d(L,C,Cε, λε)
equals the degree of ηP .

Moreover, by Lemma 1, we have the following commutative diagram:

G ×Pε
C+

ε ˜
- G ×P YP

G ×P C+

[id : ηP ]

?

X.

η

?

η
ε

-

The first assertion follows immediately. Let d denote the degree of [id : ηP ]
that is the degree of ηP . Since d = d(L,C,Cε, λε), we have to prove that
d(G,X,Cε, λε) = d.d(G,X,C, λ). We firstly assume that d(G,X,Cε, λε) =
0. Since δ((G,X,Cε, λε) = 0, ηε is not dominant. So, η or [id : ηP ] is not
dominant. It follows that either d(G,X,C, λ) or d is zero. The assertion
follows.

We now assume that d(G,X,Cε, λε) 6= 0, that is that ηε is dominant.
Since the image of ηε is contained in the image of η, η is dominant. Since ηε

is dominant, the dimension of the closure of the image of [id : ηP ] at least
those of X. Since δ(L,C,Cε, λε) = δ(G,X,C, λ) = 0, this implies that ηP

is dominant. Now, the second assertion is simply the multiplicative formula
for the degree of a double extension field. �
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2.4 Well genericaly finite pairs

2.4.1 — If Y is a smooth variety of dimension n, T Y denotes its tangent
bundle. The line bundle

∧n T Y over Y will be called the determinant bundle
and denoted by DetY . If ϕ : Y −→ Y ′ is a morphism between smooth
variety, we denote by Tϕ : T Y −→ T Y ′ its tangent map, and by Detϕ :
DetY −→ DetY ′ its determinant.

2.4.2 — Consider η : G ×P (λ) C+ −→ X as in Section 2.1.
Definition. We say that (G,X,C, λ) is genericaly finite if d(G,X,C, λ) 6= 0.
We say that (G,X,C, λ) is well genericaly finite if it is genericaly finite and
there exists x ∈ C such that Tη[e:x] is invertible.

2.4.3 — Consider the restriction of Tη to C:

Tη|C+ : T (G ×P C+)|C+ −→ T (X)|C+ ,

and the restriction of Detη to C+:

Detη|C+ : Det(G ×P C+)|C+ −→ Det(X)|C+ .

Since η is G-equivariant, the morphism Detη|C+ is P -equivariant; it can be
thought as a P -invariant section of the line bundle D := Det(G×P C+)∗|C+⊗

Det(X)|C+ over C+. For any x ∈ C, K
∗ acts linearly via λ on the fiber Dx

over x in D: this action is given by a character of K
∗, that is an interger m.

Moreover, this integer does not depends on x in C: we denote by µD(C, λ)
this interger.

Lemma 4 We assuma that X is smooth. The, the following are equivalent:

(i) (G,X,C, λ) is well genericaly finite;

(ii) (G,X,C, λ) is genericaly finite and µD(C, λ) = 0.

Proof. Let us assume that (G,X,C, λ) is well genericaly finite and let x ∈ C
be such that Tηx is invertible. Then, Detηx is a non zero K

∗-fixed point in
Dx: the action of K

∗ on the line Dx must be trivial.
Let us now assume that (G,X,C, λ) is genericaly finite and µD(C, λ) = 0.

Since the base field is assumed to be of characteristic zero, the exists a point
in G ×P (λ) C+ where the Tη is invertible. Since η is G-equivariant, one
can find such a point y in C+. In particular, Detη|C+ is a non zero P (λ)-

invariant section of D. Since µD(C, λ) = 0, [Res07, Proposition 5] implies
that Detη|C is non identacaly zero. �

2.4.4 — The well genericaly finite pairs provide a nice standing to apply
Theorem 1:
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Theorem 2 We use notation of Theorem 1 and assume that X is smooth.
Let us also assume that (G,X,Cε, λε) is well genericaly finite.

Then, (G,X,C, λ) and (L,C,Cε, λε) are well genericaly finite.

Proof. If V is a vector space endowed with a linear action of a one parameter
subgroup λ we denote by V λ

<0 the set of v ∈ V such that limt→0 λ(t−1)v = 0.

Let x ∈ Cε be such that Tηε
is invertible at [e : x]. Consider the subtorus

S of dimension two containing the images of λ and λε. It fixes x. The tangent
map of ηε at the point [e : x] induces a S-equivariant linear isomoprhim:
θ : g/pε ≃ gλε

<0 −→ (TxX)λε

<0. By assumption, gλ
<0 ⊂ gλε

<0 and (TxX)λ<0 ⊂

(TxX)λε

<0. Since θ is S-equivariant, it follows that it induces an isomorphism
between gλ

<0 and (TxX)λ<0. In particular, δ(G,X,C, λ) = 0.
Now, the second assertion of Lemma 1 implies that T[e : x]η is invertible.

It follows that (G,X,C, λ) is well genericaly finite.
Since δ(G,X,Cε, λε) = 0, Theorem 1 implies that δ(L,C,Cε, λε) = 0.

Now, Lemma 1 implies that T[e : x]ηP is invertible. By Lemma 3, it follows
that T[e : x]ηL is invertible. Then, (L,C,Cε, λε) is well genericaly finite.

�

3 Application to Belkale-Kumar’s product

3.1 An interpretation of coefficient structures

3.1.1 — Let P be a parabolic subgroup of the semisimple group G. Let
T ⊂ B ⊂ P be a maximal torus and a Borel subgroup of G. Let W denote
the Weyl group of T and G. For w ∈ W , we set X(w) = BwP/P , X◦(w) =
BwP/P and denote by [X(w)] ∈ H∗(G/P, Z) the Poincaré dual class of
X(w) in cohomology. Let w1, · · · , ws ∈ W be such that

∑

i codimX(wi) =
dim G/P . Let c be the non negative integer such that

[X(w1)]. · · · .[X(ws)] = c[pt].

Let λ be a one parameter subgroup of T such that P = P (λ). Consider
X = (G/B)s and the following T -fixed point x = (w−1

1 B/B, · · · , w−1
s B/B).

Let C denote the irreducible component of Xλ containing x. An easy con-
sequence of Kleiman’s transversality Theorem (see [Kle76]) is the following
lemma which express c has a degree.

Lemma 5 We have: δ(G,X,C, λ) = 0 and c = d(G,X,C, λ).
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Proof. See [Res07, proof of Lemma 14]. �

3.1.2 — Lemma 5 explains how to express the structure coefficients of
H∗(G/P, Z) in the basis of Schubert classes in terms of maps η’s as in Sec-
tion 2. We are now going to discuss Levi-movability, a notion introduced in
[BK06]:

Definition. Let wi ∈ W such that
∑

i codim(X(wi),X) = dim(X). Then,
(X(w1), · · · ,X(ws)) is said to be Levi-movable if for generic l1, · · · , ls ∈ L
the intersection l1X

◦(w1) ∩ · · · ∩ lsX
◦(ws) is transverse at P/P .

Lemma 6 The following are equivalent:

(i) (X(w1), · · · ,X(ws)) is Levi-movable;

(ii) there exists y ∈ C such that the tangent map T[e:y]η of η at [e : y] is
invertible.

Proof. Let y ∈ C and l1, · · · , ls ∈ L such that y = (l1w
−1
1 B/B, · · · , lsw

−1
s B/B).

Since η extends the immersion of C+ in C+; the tangent map Tη[e : y] re-
stricts to the identity on T[e : y]C+. In particular, it induces a linear map:

Tη[e:y] : N[e:y](C
+, G ×P C+) −→ Ny(C

+,X)

such that T[e:y]η is an isomorphism if and only if Tη[e:y] is. By π, N[e:y](C
+, G×P

C+) identifies with TeG/P that is with g/p. Moreover, Ny(C
+,X) equals

⊕

i Nliw
−1

i
B/B(Pliw

−1
i B/B,G/B) which identifies with ⊕ig/(p+liw

−1
i bwili).

Moreover, after composing by these isomorphisms Tη[e:y] is the canonical

map g/p −→ ⊕ig/(p + liw
−1
i bwili). The lemma follows immediately. �

3.2 Azad-Barry-Seitz’s Theorem

For later use, we recall in this section the main result of [ABS90]. Let G be
a semisimple group and P be a parabolic subgroup of G. We choose a Levi
subgroup L of P and denote by U its unipotent radical. We are interested
in the action of L on the Lie algebra u of U .

Let T be a maximal torus of L and B be a Borel subgroup of G containing
T . Let g denote the Lie algebra of G. Let ∆ ⊂ Φ+ ⊂ Φ (resp. ∆L ⊂ Φ+

L ⊂
ΦL) be the set of simple roots, positive roots and roots of G (resp. L) for T
corresponding of B (resp. B ∩ L). For any α ∈ Φ, we denote by uα the line
generated by the eigenvectors in g of weight α.
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Since u has no multiplicity for the action of T , it has no multiplicity
for the action of L: we have a canonical decomposition of u as a sum ⊕iVi

of irreducible L-modules. Since T ⊂ L, each Vi is a sum of uα for some
α ∈ Φ+ − Φ+

L : the decomposition u = ⊕iVi corresponds to a partition
Φ+ − Φ+

L =
⊔

i Φi.
Let β and β′ be two positive roots. We write

β =
∑

α∈∆L

cαα +
∑

α∈∆−∆L

dαα, (3)

with cα and dα in N. We also write β′ in the same way with some c′α and
d′α. We write β ≡ β′ if and only if

∑

α∈∆−∆L
dαα =

∑

α∈∆−∆L
d′αα. The

relation ≡ is obviously an equivalence relation. Let S denote the set of
equivalence classes in Φ+ −Φ+

L for ≡. We can now rephrase the main result
of [ABS90]:

Theorem 3 (Azad-Barry-Seitz) For any s ∈ S, Vs := ⊕α ∈ suα is an
irreducible L-module. In particular,

⊔

i Φi is the partition in equivalence
classes for ≡.

For any α ∈ Φ, we denote by Kerα the Kernel of the character α of
T . Let Z be the center of L. Let Z◦ denote the neutral component of Z
and X(Z◦) denote the group of characters of Z◦. Under the action of Z◦, u

decompose as
V = ⊕χ∈X(Z◦)Vχ,

where Vχ is the vector subspace of weight χ. Since Z◦ is central in L, each
Vχ is L-stable.

Note that Z◦ ⊂ Z ⊂ T ; and more precisely

Z =
⋃

α∈∆L

Kerα.

It follows that for β as in Equation 3, the restriction β|Z◦ of β to Z◦ equals
∑

α∈∆−∆L
dαα|Z◦. Moreover, the family (α|Z◦)α∈∆−∆L

is free in the rational
vector vector space containing the characters of the torus Z◦. We obtain
that

β ≡ β′ ⇐⇒ β|Z◦ = β′
|Z◦ .

In particular, each Vs is one Vχ with above notation. In particular, we have:

Corollary 1 Each Vχ (with χ ∈ X(Z◦)) is an irreducible L-module.
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3.3 A multiplicative formula for structure coefficients of ⊙0

3.3.1 — Let now Q ⊂ P be two parabolic subgroups of the semisimple
group G. Let T ⊂ B ⊂ Q be a maximal torus and a Borel subgroup of G.

Let L denote the Levi subgroup of P containing T . Let W (resp. WP )
denote the Weyl group of T and G (resp. L).

For any w ∈ W , w−1Bw ∩ L is a Borel subgroup of L containing T . So,
there exists a unique w ∈ WP such that

w−1(B ∩ L)w = w−1Bw ∩ L. (4)

To any w ∈ W , we now associated three Schubert varieties in G/P , G/Q
and L/L ∩ Q respectively:

XG/P (w) = BwP/P , XG/Q(w) = BwQ/Q

and
XL/L∩Q(w) = (L ∩ B)w(L ∩ Q/L ∩ Q).

Theorem 4 Let w1, · · · , ws ∈ W . We assume that
∑

i codimXG/Q(wi) =
dim G/Q and (XG/Q(w1), · · · ,X

G/Q(ws)) is Levi-movable. Then, we have:

(i)
∑

i codimXG/P (wi) = dim G/P and
∑

i codimXL/L∩Q(wi) = dim L/(L∩
Q);

(ii) (XG/P (w1), · · · ,X
G/P (ws)) and (XL/L∩Q(w1), · · · ,X

L/L∩Q(ws)) are Levi-
movable.

Moreover, by Assertion (i) we can define three integers by the formulas:

[XG/Q(w1)]. · · · .[X
G/Q(ws)] = c

G/Q
w1,···,ws

[pt],

[XG/P (w1)]. · · · .[X
G/P (ws)] = c

G/P
w1,···,ws

[pt] and

[XL/L∩Q(w1)]. · · · .[X
L/L∩Q(ws)] = c

L/L∩Q
w1,···,ws

[pt].

Then, we have:

c
G/Q
w1,···,ws

= c
G/P
w1,···,ws

.c
L/L∩Q
w1,···,ws

.

Proof. We begin the proof by making some remarks about the tangent space
TQ/QG/Q of G/Q at Q/Q. Let LQ denote the Levi subgroup of Q containing
T and Z◦ denote its connected center. We decompose TQ/QG/Q as a sum
⊕χ∈X(Z◦)Vχ of eigenvector spaces for the action of the torus Z◦. Note that
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TQ/QP/Q ⊂ TQ/QG/Q is stable by the action of LQ. Now, Corollary 1
implies that there exists S ⊂ X(Z◦) such that

TQ/QP/Q = ⊕χ∈SVχ. (5)

Let l ∈ LQ and w ∈ W . We set Y ◦(w) = w−1BwQ/Q. One easily checks
that lY ◦(w) is stable by the action of Z◦. Since Q/Q ∈ lY ◦(w) is a point
fixed by Z◦, Z◦ acts on TQ/QlY ◦(w). In particular,

TQ/QlY ◦(w) = ⊕χ∈X(Z◦)Vχ ∩ TQ/QlY ◦(w). (6)

Since (XG/Q(w1), · · · ,X
G/Q(ws)) is Levi-movable, there exist l1, · · · , ls ∈

LQ such that

TQ/Ql1Y
◦(w◦

1) ⊕ · · · ⊕ TQ/QlsY
◦(w◦

s) = TQ/QG/Q. (7)

Consider now the G-equivariant projection π : G/Q −→ G/P . Note that
the Kernel of the tangent map TQ/Qπ of π at Q/Q is TQ/QP/Q. So, Equa-
tions 5 and 6 imply that for any i = 1, · · · , s, TQ/Q induces an isomorphism
from TQ/QliY

◦(wi) ∩ ⊕χ 6∈SVχ onto TQ/Qliπ(Y ◦(wi)). Now, Equation 7 im-
ply that ⊕iTP/P liπ(Y ◦(wi)) = TP/P G/P . Moreover, LQ is contained in L;
Assertions (i) and (ii) of the theorem follows for G/P .

Recall that X is the variety (G/B)s and x = (w−1
1 B/B, · · · , w−1

s B/B).
Let λ (resp. λε) be a one parameter subgroup of T such that P (λ) (resp.
P (λε)) equals P and Q. Let C (resp. Cε) denote the irreducible component
of Xλ (resp. Xλε) containing x. With notation of Section 2, Lemma 5 im-
plies that δ(G,X,Cε, λε) and δ(G,X,C, λ) equal zero. Theorem 1 implies
that δ(L,C,Cε, λε) = 0. Assertion (i) for L/L∩Q follows. Now, the second
assertion of Theorem 1 with Lemma 5 imply the last formula of the theorem.

It remains to prove that (XL/L∩Q(w1), · · · ,X
L/L∩Q(ws)) is Levi-movable.

Since (XG/Q(w1), · · · ,X
G/Q(ws)) is Levi-movable, Lemma 6 shows that

there exists y ∈ Cε such that T[e:y]ηε is invertible. Now, Lemmas 1 and
3 imply that T[e:y]ηL is invertible. So, Lemma 6 allows to conclude. �

Remark. In the case when G = SLn, Theorem 4 was already obtained in
[Ricar] for a lot of pairs Q ⊂ P .

3.3.2 — If one know how to compute in (H∗(G/P, Z),⊙0) for any max-
imal P and any G, then Theorem 4 can be used to compute the structure
coefficients of (H∗(G/Q, Z),⊙0) for any parabolic subgroup Q. To illustrate
this principle, we state an analogous to [Ricar, Corollary 23]:
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Corollary 2 Let G = Sp2n. The non-zero coefficients structures of the ring
(H∗(G/B, Z),⊙0) are all equal to 1.

Proof. The proof proceeds by induction on n. Let c be a non-zero coefficient
structure of (H∗(G/B, Z),⊙0). Let (w1, w2, w3) be such that [X(w1)].[X(w2)].[X(w3)] =
c[pt]. Since c is non-zero, (X(w1),X(w2),X(w3)) is Levi-movable.

Consider the stabilizer P in G of a line in K
2n. Theorem 4 applied with

B ⊂ P shows that c is the product of coefficient structure of (H∗(G/P, Z),⊙0)
and one of (H∗(Sp2n−2/B, Z),⊙0). The fact that G/P is a projective space
and the induction allow to conclude. �

4 Application to quiver representations

4.1 Definitions

In this section, we fix some classical notation about quiver representations.
Let Q be a quiver (that is, a finite oriented graph) with vertexes Q0 and

arrows Q1. An arrow a ∈ Q1 has initial vertex ia and terminal one ta. A
representation R of Q is a family (V (s))s∈Q0

of finite dimensional vector
spaces and a family of linear maps u(a) ∈ Hom(V (ia), V (ta)) indexed by
a ∈ Q1. The dimension vector of R is the family (dim(V (s)))s∈Q0

∈ N
Q0.

Let us fix α ∈ N
Q0 and a vector space V (s) of dimension α(s) for each

α ∈ Q0. Set

Rep(Q,α) =
⊕

a∈Q1

Hom(V (ia), V (ta)).

Consider also the groups:

GL(α)
∏

s∈Q0

GL(V (s)) and SL(α)
∏

s∈Q0

SL(V (s).

Let α, β ∈ Z
Q0. The Ringle form is defined by

〈α, β〉 =
∑

s∈Q0

α(s)β(s) −
∑

a∈Q1

α(ia)β(ta).

Assume now that α, β ∈ N
Q0. Following Derksen-Schofield-Weyman (see [DSW07]),

we define α ◦ β to be the number of α-dimensional subrepresentation of a
general representation of dimension α + β if it is finite, and 0 otherwise.
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4.2 Dominant pairs

4.2.1 — Let λ be a one parameter subgroups of GL(α). For any i ∈ Z and
s ∈ Q0, we set Vi(s) = {v ∈ V (s) |λ(t)v = tiv} and αi(s) = dimVi(s). Obvi-
ously, almost all αi are zero; and, α =

∑

i∈Z
αi. Moreover, λ is determined

up to conjugacy by the αi’s.
The parabolic subgroup P (λ) of GL(α) associated to λ is the set of

(g(s))s∈Q0
such that for all i ∈ Z g(s)(Vi(s)) ⊂ ⊕j≤iVj(s).

Now, Rep(Q,α)λ is the set of the (u(a))a∈Q1
’s such that for any a ∈ Q1

and for any i ∈ Z, u(a)(Vi(ia)) ⊂ Vi(ta). It is isomorphic to
∏

i Rep(Q,αi).
In particular, it is irreducible and denoted by C from now on.

Moreover, C+ is the set of the (u(a))a∈Q1
’s such that for any a ∈ Q1 and

for any i ∈ Z, u(a)(Vi(ia)) ⊂ ⊕j≤iVj(ta).
Consider the morphism ηλ : G ×P (λ) C+ −→ Rep(Q,α). Note that,

P (λ), C and C+ only depend on the list (ordered by the index i) of non-
zero αi’s.

4.2.2 — The last observation allows the following

Definition. A decomposition of the vector dimension α, is a family (β1, · · · , βs)
of non-zero vector dimensions such that α = β1 + · · · + βs. We denote the
decomposition by α = β1+̃ · · · +̃βs.

Any one parameter subgroup λ induces a decomposition of α = β1+̃ · · · +̃βs

where the βj’s are the non-zero αi’s ordered by the index i. Note that, up
to conjugacy, P (λ), C and C+ only depend on this decomposition. In par-
ticular, one can define (up to conjugacy) the map ηβ1+̃···+̃βs

associated to a
decomposition of α.

4.2.3 — Consider a decomposition α = β1+̃β2 with two dimension-
vectors and the associated morphism η. In this section, we collect some easy
properties of η. Let (u, v) ∈ Rep(Q,β1)×Rep(Q,β2) = C ⊂ Rep(Q,α) = X.
Since η extends the immersion of C+ in X, the tangent map T(u,v)η induces
the identity on T(u,v)C

+. In particular, it induces a linear map

Tη[e:(u,v)] : N[e:(u,v)](C
+, G ×P C+) −→ N(u,v)(C

+,Rep(Q,α)).

Moreover, N[e:(u,v)](C
+, G ×P C+) identifies with ⊕s∈Q0

Hom(V (s),W (s))
and N(u,v)(C

+,Rep(Q,α)) with ⊕a∈Q1
Hom(V (ia),W (ta)). A direct com-

putation gives the following
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Lemma 7 With the above identification, we have:

Tη[e:(u,v)](
∑

s∈Q0

ϕ(s)) =
∑

a∈Q1

v(a)ϕ(ta) − ϕ(ha)u(a).

In particular, the Kernel of Tη(u,v) is Hom(u, v) and its Image is Ext(u, v).

The quantities δ(η) and d(η) are also particularly interesting:

Lemma 8 Consider a decomposition α = β1+̃β2 and the associated map η.
Then,

(i) δ(η) = −〈β1, β2〉, and

(ii) d(η) = β1 ◦ β2.

Proof. By the discussion preceding Lemma 7, δ(η) equals the difference be-
tween the dimension of ⊕a∈Q1

Hom(V (ia),W (ta)) and of ⊕s∈Q0
Hom(V (s),W (s)).

The first assertion follows.
Let u ∈ Rep(Q,α). Using Immersion 1, one identifies the fiber η−1(u)

with the set u-stable subspaces of V of dimension β1. In particular, η−1(u)
identifies with the set of β1-dimensional subrepresentations of u. Since the
characteristic of k is assumed to be zero, when u is generic this numbers
equals d(η) on one hand and β1 ◦ β2 on the other one. �

If Y is a smooth variety of dimension n, T Y denotes its tangent bundle.
The line bundle

∧n T Y over Y will be called the determinant bundle and
denoted by DetY . If ϕ : Y −→ Y ′ is a morphism between smooth variety, we
denote by Detϕ : DetY −→ DetY ′ the determinant of its tangent map Tϕ.
We consider now the restriction of Detη to C+: it is a P -invariant section
of the P -linearized line bundle Det over C+ defined by Det = Det(G ×P

C+)∗|C+ ⊗Det(X)|C+ .

Recall that for any s ∈ Q0, we have fixed a vector space V (s) of di-
mension α(s). Let us fix, for any s ∈ Q0 a decomposition V (s) = V1(s) ⊕
V2(s) such that dimVi(s) = βi(s) for i = 1, 2. Consider the one param-
eter subgroup λ of GL(α) defined by λ(s)(t) stabilizes the decompostion
V1(s)⊕ V2(s), equals to Id when restricted to V1(s) and tId when restrected
to V2(s). It satisfies P (λ) = P , Rep(Q,α)λ = C and C+(λ) = C+.

Lemma 9 We assume that 〈β1, β2〉 = 0. The one parameter subgroup λ
acts trivially on Det|C .
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Proof. Since C is an affine space, λ acts by the same character on each fiber
of Det|C . Since η extend the identity on C+, its character is the difference
between the weights of λ in

N0(C
+,X) ≃ ⊕a∈Q1

Hom(V1(ia), V2(ta))

and in

N0(C
+, G ×P C+) ≃ TeG/P ≃ ⊕s∈Q0

Hom(V1(s), V2(s)).

So, this character equals:

∑

a∈Q1

β1(ia)β2(ta) −
∑

s∈Q0

β1(s)β2(s);

that is, −〈β1, β2〉. The lemma follows. �

4.3 Two formulas for d(ηβ1+̃···+̃βs
)

Here comes the main result of this section:

Theorem 5 Let α = β1+̃ · · · +̃βs be a decomposition of α such that for all
i < j, 〈βi, βj〉 = 0.

Then, δ(ηβ1+̃···+̃βs
) = 0 and

d(ηβ1+̃···+̃βs
) = (β1 ◦ α − β1).(β2 ◦ α − β1 − β2). · · · .(βs−1 ◦ βs)

= (α − βs ◦ βs).(β − βs − βs−1 ◦ βs−1). · · · .(β1 ◦ β2).

Proof. By Section 4.2.1, the codimension of C+ in G ×P C+ is

∑

i<j

∑

s∈Q0

βi(s)βj(s);

and, the codimension of C+ in Rep(Q,α) is

∑

i<j

∑

a∈Q1

βi(ia)βj(ta).

Since ∀i < j 〈βi, βj〉 = 0, this implies that δ(ηβ1+̃···+̃βs
) = 0.

We will just prove the first formula for d(ηβ1+̃···+̃βs
). The second one can

be proved in a similar way. When s = 2, the theorem follows from Lemma 8.
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Assume that s = 3. A direct application of Theorem 1 with ηε = ηβ1+̃β2+̃β3

and η = ηβ1+̃(α−β1) gives

d(ηβ1+̃β2+̃β3
) = (β1 ◦ α − β1).d(ηβ2+̃β3

)

= (β1 ◦ α − β1).(β2 ◦ β3).

One can easily ends the proof by an induction on s. �

Remark. In the proof of Theorem 5, the induction was made by the
paranthésages β1+̃ · · · +̃βs = β1+̃(β2+̃ · · · +̃βs) and β1+̃ · · · +̃βs = (β1+̃(β2 · · · +̃βs).
All other paranthésage gives a similar formula.

4.3.1 — We now want to discuss the assumption “∀i < j 〈βi, βj〉 = 0”.
This assumption is actually similar to Levi-movability. Indeed, we have the
equivalent of Lemma 6:

Lemma 10 Let α = β1+̃ · · · +̃βs be a decomposition of α such that δ(ηβ1+̃···+̃βs
) =

0. Then, the following are equivalent:

(i) for all i < j, 〈βi, βj〉 = 0 and d(ηβ1+̃···+̃βs
) 6= 0;

(ii) there exists y ∈ C such that the tangent map of ηβ1+̃···+̃βs
at [e : y] is

invertible.

Proof. Let V = ⊕iV i be a decomposition of V such that dimV i = βi. Con-
sider the linear action of the torus Z = G

s
m on V such that (t1, · · · , ts).v = tiv

for all ti ∈ Gm and v ∈ V i(s) for any s ∈ Q0. Since Z is embedded in GL(α)
it also acts on G ×P C+.

Let y be a point in C satisfying Assertion (ii). Since, Z fixes [e : y] and η
is G-equivariant, Tηβ1+̃···+̃βs

is Z-equivariant for the tangent action of Z. It
follows that for all i < j, Tηβ1+̃···+̃βs

induces an isomorphism from the eigen-

subspaces of T[e:y]G ×P C+ and TyRep(Q,α) of weight tjt
−1
i . In particular,

these two eigensubspaces have the same dimension. But, a direct compution
shows that the difference between these two dimension is precisely 〈βi, βj〉.
Assertion (i) follows.

Conversely, let us assume that Assertion (i) follows. Since d(ηβ1+̃···+̃βs
) 6=

0, there exists a point G ×P C+ where the tangent map of ηβ1+̃···+̃βs
is

invertible. Since η is G-equivariant, its determinant is not identicaly zero
on C+. Using the fact for all i < j 〈βi, βj〉 = 0, a direct computation
(like in the proof of Lemma 9) shows that Z acts trivialy on Det|C . By
[Res07, Proposition 5], the determinant of η is not identicaly zero on C.
Assertion (ii) follows. �
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4.3.2 — The dimension of Ext(u, v) for generic α and β dimensional
representations u and v is denoted by ext(α, β).

Corollary 3 We assume that Q has no oriented cycle. Let α, β and γ be
three dimension-vectors. We assume that 〈α, β〉 = 〈α, γ〉 = 0 and β ◦ γ = 1.

Then, α ◦ β + γ = (α ◦ β).(α ◦ γ).

Proof. Theorem 5 applied to α+̃β+̃γ gives:

(α + β ◦ γ).(α ◦ β) = (α ◦ β + γ).(β ◦ γ) = (α ◦ β + γ),

since (β ◦ γ) = 1. If α ◦ β = 0, the corollary follows. Now assume that
α◦β 6= 0. Lemma 10 implies that the determinant of ηα+̃β is not identically
zero on C. But, Lemma 7 implies that ext(α, β) = 0. Now, the corollary is
a direct consequence of Lemma 11 below. �

Lemma 11 We assume that Q has no oriented cycle. Let α, β and γ be
three vector dimensions. We assume that β ◦ γ = 1 and ext(α, β) = 0.

Then, α + β ◦ γ = α ◦ γ.

Proof. In [DSW07], Derksen-Schofield-Weyman prove that α ◦γ equals the
dimension of K[Rep(Q, γ)]〈α,·〉. Consider the multiplication morphism:

m : K[Rep(Q, γ)]〈α,·〉 ⊗ K[Rep(Q, γ)]〈β,·〉 −→ K[Rep(Q, γ)]〈α+β,·〉.

We claim that m is an isomorphism. The lemma will follow directly. Since
dim(K[Rep(Q, γ)]〈β,·〉) = 1 and K[Rep(Q, γ)] has no zero-divisors, m is in-
jective.

Since ext(α, β) = 0, ηα+̃β is dominant. But, it is proper; so, it is surjec-
tive.

In [DW00], Derksen-Weyman prove that K[Rep(Q, γ)]〈α+β,·〉 is generated

by functions cV associated to various α + β-dimensional representation V
(see also [DZ01]). Since ηα+̃β is surjective, there exists an α-dimensional

subrepresentation V ′ of V . By [DW00, Lemma 1], cV = cV ′

.cV/V ′

. It follows
that m is surjective. �
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