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A monotonic algorithm for a mean field games model in

economics

Aimé Lachapelle, Julien Salomon and Gabriel Turinici

CEREMADE, UMR CNRS 7534, Université de Paris-Dauphine,

Place du Maréchal De Lattre De Tassigny, 75775 Paris cedex 16, France.

Abstract

Motivated by a mean field games stylized model for the choice of technologies (with
externalities and economy of scale), we consider the associated optimization problem and
prove the existence of a solution corresponding to a mean field equilibrium. To complement
the theoretical result, we introduce a monotonic algorithm to find the mean field equilibria.
We close with some numerical results, including the multiplicity of equilibria describing
the possibility of a technological transition.

Keywords : Mean field games, dynamic equilibrium, externalities, monotonic algorithms,
optimal control, non-convex optimization.

1 Introduction

The mean field games (hereafter MFG), introduced recently by Jean-Michel Lasry and Pierre-
Louis Lions ( [9, 10, 11]), appear to be well adapted to economic modeling.

While in standard game theory there are a finite number of players, MFG studies the
behavior of a continuum of agents.

Over a finite time horizon T , each rational player minimizes a criterion:

E

{∫ T

0
L(Xt, αt) + φ(mt(Xt))dt

}
,

over all eligible controls αt. The state of a generic player is X(t), which is a diffusion process
governed by the controlled stochastic differential equation dXt = σdWt + αtdt, starting at
X0 = x0.
Here Wt is a Brownian motion, L is a cost for changing states, and φ corresponds to the
state cost. All players solve the same stochastic control problem but differ in their initial
characteristic x0 distributed under a given probability measure m0.

The criterion depends on the population density m and this dependence models interac-
tions between players but reflects the insignificance of the individual influence (the agent is
atomized in the economy). This aspect will also be used to traduce a scale effect and exter-
nalities. Each player chooses a rational strategy taking into account its own parameters but
more especially the global distribution of agents m.
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Mathematically, a mean field equilibrium (i.e. Nash point for an infinite number of play-
ers), leads to a new kind of PDEs system coupling an Hamilton-Jacobi-Bellman equation and
a Kolmogorov equation (see [11]):

{
∂tm− σ2

2 ∆m+ div(−∂pH(x,∇v)m) = 0

∂tv + σ2

2 ∆v −H(x,∇v) = −φ′(m),
(1)

where H is the Legendre transform of L (see more details in Section 2.5). The MFG are
suitable to describe huge systems e.g., population dynamics ( [8]), group interactions, etc. ...,
in a stylized mathematical way amenable to numerical studies.

In this paper we focus on an application of MFG. The model enables us to design and
test an efficient algorithm that finds the corresponding optimal points. The origins of the
algorithm are in the field of quantum chemistry (see [12], [13], [17]).

We will proceed as follows: in Section 2 we present a model for the choice of insulation
technology of households. We define the optimization problem and prove that it admits a
minimizer. Then we introduce Equations (1) using the optimal control framework. Section 3
is devoted to numerical settings and to the description of the algorithm. Finally, in Section
4, we show the efficiency of our method on some simulations. In particular we obtain a result
showing the bundling due to the positive externality, and explore numerically the multiplicity
of equilibria.

2 The model

As mentioned before, our aim is not to give an exhaustive economic model, but to document
qualitative behaviors related to the MFG model and propose an adapted numerical method.
We choose to work in a continuous time setting, i.e. on the time interval [0, T ] where the MFG
gives a very convenient characterization of a dynamic equilibrium. We look at a large economy
and consider a continuum of consumer agents (think of a country or an economical area like
France or the EU). We consider a population of households arbitrating between heating or
better insulating their home. Let us now describe more precisely the modeling of the agents
and their action.

2.1 The agents

Two important characteristics are assumed. First, any household own exactly one house and
cannot move to another one before horizon T . Secondly, we consider that all the houses are
similar and that any household aims to live with the same temperature at home.

One of our goals is to find a dynamic equilibrium when there is the possibility of a techno-
logical transition (from energy consumption to insulation material). Introducing externalities
and economy of scale impacts the strategy of households. Intuitively, we deal with a model
where two particular behaviors are expected: either all the people continue heating their home
or they all decide to insulate it.

Thus, each player is associated to an insulation level, denoted by x ∈ [0, 1], which fully
characterizes her state. The null insulation level x = 0 corresponds to a house with only thin
walls, whereas in the maximal insulation level x = 1 all existent technologies of insulation are
used. The dynamics of the agent corresponds to the following controlled process:
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dXt = σdWt + αtdt+ dNt(Xt).

In this expression, the control variable is αt, which can be interpreted as effort required to
insulate. The agent optimizes its cost (described in the next section) with respect to αt.
The term Wt is a standard real valued Brownian motion centered in zero. The multiplicative
factor corresponding to Wt is the noise σ, which is related to the technological innovations and
the climate (change of temperatures, storm, etc.); σ is assumed to be a datum of the model.
The variable Xt is a diffusion process with reflexion. In the above formula, the reflexion part
has been denoted by Nt(Xt). In our model, this guarantees that the process stays in [0, 1].
For more details about this formulation, we refer to [5]. Finally, the initial density of agents,
denoted by m0, is a datum of the model. It describes agents’ ownership of insulation material
at t = 0, and we have X0 ∼ m0(dx).

Remark 2.1. In what follows, we consider the evolution of the density of agents m(t, .) for
every t in [0, T ]. We recall that for a simple diffusion process of the type dYt = σdWt + αtdt
in R, with initial distribution m0, the evolution of the law of Yt is the solution of the forward
Kolmogorov equation (we refer to [6] for a proof of this result):

∂tm−
σ2

2
∆m+ div(αm) = 0 in R × (0, T ] , m(0, .) = m0(.) . (2)

Equivalently, it means:
∫

R

ψ(y)m(t, y)dy =

∫

R

E(ψ(Y y
t ))m0(y)dy,

for every test-function ψ.
The reflexive part of process Xt leads on the same equation in [0, 1]× (0, T ] with homogeneous
Neumann boundary conditions (m′(t, 0) = m′(t, 1) = 0 for all t ∈ (0, T )). In other contexts
this equation is also called the controlled Fokker-Planck equation.

We are now ready to model, as the minimization of a cost, how the agents control their
insulation level.

2.2 The costs

In our model, any agent is assumed to solve a minimization problem. The following costs
are a stylized model. The global cost functional is composed of three terms: the insulation
acquisition cost, the insulation maintenance cost and the heating cost.

The cost of acquiring insulation is modeled as the cost to change the state; we introduce
the quadratic cost for the control variable:

h(αt) :=
α2

t

2
.

The second term is a state cost, namely the insulation maintenance cost:

g(t, x,m) :=
c0x

c1 + c2m(t, x)
,

with c0, c1 and c2 are some positive constants. In this setting, this term is increasing with
respect to x which means that the higher is the insulation level the higher is the maintenance
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cost. On the other hand, it is decreasing with respect to the global density of agents m. This
property is related to two economical concepts: economy of scale and positive externality.
Basically, this term encourages the agents to do similar choices: the higher is the number of
players having chosen a given insulation level, the lower is its cost.

Finally, the heating cost is taken into account by introducing the third term:

f(t, x) := p(t)(1 − βx).

In this definition, datum β belongs to [0, 1], and p(t) stands for the unit price of energy
(electricity, gas, ...) that mays depend on time; by unit we mean the price of energy for a
quantity needed to heat a not insulated full apartment. Various forms of this price are studied
in the last section (simulations). The factor (1 − βx) is introduced to take into account the
discount rate of the heating price with respect to the insulation level.

The addition of these three costs will constitute the functional to be minimized, as we will
see in the next paragraph.

2.3 Minimization problem and MFG

We are now in the position to write the minimization problem we consider in this paper. A
first formulation is:





inf
α adm

E

[∫ T
0 h(α(t,Xx

t )) + f(t,Xx
t ) + g(t,Xt,m(t,Xx

t ))dt
]
,

dXx
t = αtdt+ σdWt + dNt(X

x
t ),

Xx
0 = x,

(3)

where “adm” means admissible. For sake of simplicity, we consider that there is no constraint
on the control variable. This is a Lagrangian formulation, dealing with the microscopic scale
(the agent). As mentioned in Remark (2.1), it is standard to write the Eulerian formulation
of the problem:





inf
α adm

∫ T
0

∫ 1
0

[
α(t,x)2

2 + f(t, x) + g(t, x,m(t, x))
]
m(t, x)dxdt,

∂tm− σ2

2 ∆m+ div(αm) = 0 , m(0, .) = m0(.) ,
(4)

with the boundary conditions: m′(., 0) = m′(., 1) = 0 , α(., 0) = α(., 1) = 0. Our study is
related to the optimal control of the forward Kolmogorov equation. In this model, the agents
are rational and they have rational expectations, indeed in the minimization problem, the
households see m(t, .) as a datum for every t in [0, T ]. A solution of this problem will present
many similarities with an equilibrium with rational expectations.

Writing our problem as a MFG problem with a finite horizon (as in [11]) means that
the critical points of Problem (4) correspond to mean field equilibria. As announced in the
introduction, these are approximations of Nash equilibria of a N -players game, for large values
of N . This tool enables to handle a continuum of agents, hence atomized in the economy.
Consequently, there is no need to build a representative agent. We consider all the agents,
from the macroscopic point of view. Before writing the critical points equations, we should
prove that Problem (4) admits a minimizer.
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2.4 Existence

In this section we consider a more general setting. We are interested in the following mini-
mization problem:





inf
(α,m)

∫ T
0

[∫
Rd α(t, x)2m(t, x)dx+ φ(m)(t)

]
dt,

∂tm− σ2

2 ∆m = −div(αm) , m(0, .) = m0(.).
(5)

To make it simple, we consider in what follows the case σ2

2 = 1. We introduce, as in [1], the
transformation q = αm so that (5) can be rewritten:





inf
(q,m)

∫ T
0

[∫
Rd

|q(t,x)|2

m(t,x) dx+ φ(m)(t)
]
dt,

∂tm− ∆m = −div(q) , m(0, .) = m0(.) ,
(6)

where φ(m)(t) :=
∫

Rd β(m(t, x))dx.
The explicit solution of the Kolmogorov equation reads (see [3]):

m(t, x) = Gt ⋆ m0(x) −

∫ t

0
Gt−s ⋆ div(qs)(x)ds, (7)

where G is the heat Kernel: G(t, x) = e−
x2

4t

(2πt)d/2 , ⋆ denotes the convolution product, and m0 is

given.

Theorem 2.2. If β is nonnegative, continuous, and m0 has a finite total variation, then the
minimization problem (6) admits a solution.

Before giving a proof of this theorem, we need some auxiliary lemmas. LetX be a separable
Banach space. We introduce the notations: E := L2(0, T ;X∗) and F := L2(0, T ;X).

Lemma 2.3. The embedding E ⊂ F is continuous.

Proof. Let p be in E. An element Jp of F ∗ is defined by the linear application:

ϕ ∈ F ∗ →< Jp, ϕ >F ∗,F =

∫ T

0
< p(t), ϕ(t) >X∗,X dt

6

∫ T

0
‖p(t)‖X∗‖ϕ(t)‖Xdt 6 ‖p‖F ∗‖ϕ‖F ,

(8)

by the Cauchy-Schwartz inequality. Thanks to this inequality one can easily prove that the
linear form is bounded and consequently continuous:

‖ < Jp, . > ‖F ∗ = inf{< Jp, ϕ >F ∗,F ; ‖p‖F ∗ 6 1, ‖ϕ‖F 6 1} 6 1

Lemma 2.4. Define for all h ∈ F , ‖h‖F =
∫ T
0 ‖h(t)‖Xdt, then (F, ‖.‖F ) is a separable Banach

space.
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Proof. The implication (X, ‖.‖X) is Banach ⇒ (F, ‖.‖F ) is Banach is obvious.
To see that F is separable, consider the family, for k ∈ N:

Fk =
{
f : [0, T ] → Y := V ect(Xn)n : {Xn} = X and f is constant on [ p

k ,
p+1
k ], ∀p =

0, ..., k − 1
}
.

Let us now prove Theorem (2.2).

Proof. Let (qn,mn) be a minimizing sequence of Problem (6).

Bounds on the minimizing sequence:

Since φ is nonnegative and using the Jensen Inequality, one obtains:

J(qn,mn) >

∫ T

0

( ∫

Rd

α2
ndmn

)
>

∫ T

0

( ∫

Rd

|qn|
)2
, (9)

hence the coercivity of functional J and a bound for qn in L2(0, T ;Mb(R
d)). Moreover, the

mass conservation and the choice of an initial measure m0 with finite total variation implies
that mn ∈ L1(Q), with Q := [0, T ] × R

d.

Convergence of qn:

In this step we apply Lemmas 2.3, and 2.4 to the space:

X := C0(R
d) := {f ∈ C(Rd); lim

|x|→∞
f(x) = 0}.

It is well known that X∗ = Mb(R
d), the space of bounded measures (Riesz’ Theorem, see

[14]). Since qn is bounded in L2(0, T ;Mb(R
d)) (see (9)), Lemma 2.3 implies that qn is bounded

in
(
L2(0, T ; C0(R

d))
)∗

. And since L2(0, T ; C0(R
d)) is a separable Banach space (Lemma 2.4),

there exists a subsequence (denoted again by qn) which converges weak-∗ to a limit q in(
L2(0, T ; C0(R

d))
)∗

.

Convolution and regularity:

Our goal is now to show that mn has enough regularity to pass to the limit in functional
J(qn,mn) (recall that φ is possibly not convex). We then study the explicit solution (7)
corresponding to qn:

mn(t, x) = G(t) ⋆ m0(x) −

∫ t

0
G(t− s) ⋆ div(qn(s))(x)ds. (10)

Since m0 has finite total variation and G is the gaussian kernel, G(t) ⋆ m0(x) belongs to
C∞(Rd).
Moreover qn is a bounded measure so that we have in the weak sense, for i = 1, ..., d:
G(t− s) ⋆ ∂xiqn(s) = ∂xiG(t− s) ⋆ qn(s), and ∂xiG(t− s) ⋆ qn(s) is in C∞(Rd).

Taking limits:
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Let us first define for i = 1, ..., d, and (t, x) ∈ Q the function: ϕi
t,x(s, y) = ∂xiG(t− s)(x− y).

On the one hand, it is a simple matter to check that ∀s, ϕi
t,x(s, .) ∈ C0(R

d). On the other hand,
for all y, we should prove that ξ : s → ϕi

t,x(s, y) ∈ L2(0, T ). These two assertions imply that
ϕi

t,x(., y) ∈ F . Let us prove that there exists a positive constant C such that
∫
0 Tξ(s)

2ds 6 C.

∫ t

0
ξ(s)2ds =

4(yi − xi)
2d

(2π)d
e−|x−y|2/2

∫ t

0

1

t− s
e−

1

t−sds

= C1(x, y, d)

∫ t

0
θ−de−1/θdθ

6 C1(x, y, d)C2(t, d).

We obtain a L2(0, T ) bound by choosing t = T , and noting that:

sup
i,x,y

4(yi − xi)
2d

(2π)d
e−|x−y|2/2 <∞.

We can now apply the definition of the weak-∗ convergence to function ϕi
t,x:

d∑

i=1

∫ t

0
< ϕi

t,x(s, .), qi
n(s, .) >X,X∗ ds→

d∑

i=1

∫ t

0
< ϕi

t,x(s, .), qi(s, .) >X,X∗ ds. (11)

Combining Equation (10) and the weak ∗ convergence (11) we compute the limit of mn:

lim
n∞

mn(t, x) = lim
n∞

[
G(t) ⋆ q0(x) − Σd

i=1

∫ t

0
∂xiG(t− s) ⋆ qi

n(s)(x)ds
]

= G(t) ⋆ q0(x) − Σd
i=1

∫ t

0
∂xiG(t− s) ⋆ qi(s)(x)ds.

= m(t, x).

By means of the regularity results, one concludes that:

mn → m, a.e.

The last remaining point is the limit of the functional. Thanks to the lower semicontinuity of
the left hand side of J (see [2]), the convergence a.e. of mn to m, the continuity of β and
Fatou’s Lemma, we have:

J(q,m) = lim J(qn,mn)

= lim inf J(qn,mn)

>

∫

Q

q2

m
+ β(m) = J(q,m),

which shows that (q,m) is a minimizer of Problem (6).

Theorem (2.2) can easily be extended to the case of a compact subset of R with homoge-
neous Neumann boundary conditions, so that there exists a minimizer of Problem (4). In the
next section, we write the critical points equations.
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2.5 Optimality conditions

In this section, we describe in a formal way how to obtain optimality conditions for Problem
(4). We refer the reader to [9, 10, 11] for a mathematically rigorous derivation. Let us start
by introducing the notation:

J(m,α) :=

∫ T

0

[∫ 1

0

α(t, x)2

2
m(t, x)dx+ φ(m)(t)

]
dt. (12)

with notations φ(m)(t) :=
∫ 1
0 f(t, x) + g(t, x,m)dm(x). Let us now note that (2) can be

written in the weak form as:
∫ 1

0
(v(T, .)m(T, .) − v(0, .)m0(x)) =

∫ T

0

[
φ(m) +

∫ 1

0
(∂tv +

σ2

2
∆v + α · ∇v)m

]
(13)

for every v ∈ C∞
c (R × R). We define the Lagrangian of Problem (4):

L(m,α, v) := J(m,α) +

∫ T

0

[
φ(m) +

∫ 1

0
(∂tv +

σ2

2
∆v + α · ∇v)m

]

−

∫ 1

0
v(T, .)m(T, .) +

∫ 1

0
v(0, .)m0

The minimization problem (4) can be rewritten as a saddle-point problem:

inf
(m,α)

sup
v

L(m,α, v),

and the conditions characterizing the saddle-point of L read as (2) together with:

α = −∇v, (14)

∂tv +
1

2
α2 + α · ∇v +

σ2

2
∆v = −φ′(m), (15)

v(T, .) = 0. (16)

We obtain the critical point equations that include, in addition to the equation for m,
the formula for the optimal control α := −∇v and the backward Hamilton-Jacobi-Bellman
equation for v

∂tv +
σ2

2
∆v −

1

2
|∇v|2 = −φ′(m), (17)

v(T, .) = 0.

Remark 2.5. By introducing the Hamiltonian of the system, defined as the Legendre transform

of the changing state cost: H(x, p) = supααp −
α2

2 = p2

2 , it is easy to see that the optimality
system of critical points equations reads:

∂tm−
σ2

2
∆m+ div(αm) = 0 , m(0, .) = m0,

α = −∂pH(x,∇v),

∂tv +
σ2

2
∆v −H(x,∇v) = −φ′(m) , v(T, .) = 0.
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Finally, we introduce a mean field equilibrium as the solution of the mean field system:





∂tm− σ2

2 ∆m+ div(αm) = 0 , m(0, .) = m0

−∇v = α

∂tv + σ2

2 ∆v + α2

2 + α · ∇v = −φ′(m) , v(T, .) = 0

(18)

consisting in two coupled Partial Differential Equations (PDEs), one being backward (the
Hamilton-Jacobi-Bellman equation) and the other one being forward (the Kolmogorov equa-
tion). This coupling will be important for the choice of the numerical method.

2.6 Some remarks

We conclude this section with some observations about the modeling with the "tool" MFG. The
MFG seem to be particularly adapted to describe a situation that combines two economical
ideas, positive externality and scale effect. In our model, we introduced a positive externality
(if one insulates better her home, her neighbor has a better insulation of her apartment). We
saw that there is a clear incentive on any agent to choose some insulation level.

This can be understood considering the form of the insulation maintenance cost, which
is decreasing in the global distribution of agents m. In addition, the negative slope in m
means that there is also an economy of scale in terms of savings that a firm obtains due
to expansion (think of the maintenance costs). We will see in the last section (using some
numerical simulations) that people indeed stay together i.e., tend to agglomerate.

Let us add some comments about the characteristics of the model. First of all, recall
that the model is in continuous time and space. This is adapted to the study of transition
effects (in particular the possibility for the population to change the consumed technology).
Moreover the modeling of an infinite number of agents is strongly linked with the atomization
of the agents in the economy. The MFG enables to handle such a situation. On the one
hand every household is atomized (she takes into account that her action has no influence
on the global density) and on the other hand she has rational expectations (thus she sees
the global density as a datum), and the Nash point approximation leads consequently to a
non-cooperative equilibria.

To conclude our remarks, we emphasize that our model is a stylized model from the
industrial point of view. It is not completely realistic (heating price, maintenance cost) nor a
simplification of statistical data. A work of calibration can be done, but is beyond the scope
of the present paper. Before some comments on the behavior of a population of agents with
this modeling, let us give the algorithm that will be used for simulations.

3 Numerical simulations

In this section, we describe the algorithm that we use to solve our problem. This algorithm is
an adaptation of a procedure initially developed in the field of quantum chemistry [16, 17] (see
also [12, 13]) following an approach introduced by Krotov [7]. It has recently been extended
to some transport problems in [4] (see also [8]). For a general presentation of this algorithm,
see [15]. This approach shows excellent results on non-convex problems, where usual gradient
methods fail to converge.

Before presenting the optimization algorithm, we introduce a relevant discretization of the
problem. Even if what follows easily generalizes to 2D and 3D situations, we focus in the rest
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of the paper on the 1D-case for its simplicity and the consistence with the initial dimension
of the problem. Given a matrix C, we denote by C∗ its transpose.

Let us consider two positive integers M,N . We consider here the case of the bounded
space domain [0, 1] for (2). We define the time and space steps by dt = 1

N and dx = 1
M and

denote for j = 0, ...,M , i = 0, ..., N by mi
j the numerical approximations of m(i.dt, j.dx). For

reasons that will appear later, the discrete control is defined at the points (i.dt, (j + 1/2).dx),
and is therefore denoted by αi

j+1/2. We shall also use the notations αi = (αi
j+1/2)j=1...M−1

and mi = (mi
j)j=1...M−1. Finally, we denote by φj(m

i) the approximation of the maintenance
cost φ(m, t, x) at the point (m(i.dt, j.dx), i.dt, j.dx). Remember that the total mass of [0, 1] is
constant in time, so that at the discrete level, we impose the homogeneous Neumann boundary
condition expressed by αi

1/2 = αi
M−1/2 = 0, for i = 0...N − 1.

3.1 Discretized cost functional

From now on, α stands for the discrete control (αi
j+1/2)i,j and g(mi) is the real number defined

by g(mi) = dx
∑M−1

j=1 Φj(m
i) where Φj(m

i) = φj(m
i)mi

j .
We consider the following discrete version of the cost functional J :

Jdt,dx(α) : = dt.dx

N−1∑

i=0

M−1∑

j=1

(
1

2
qj(α

i)mi
j + Φj(m

i)

)

= dt
N−1∑

i=0

(
1

2
〈mi, q(αi)〉 + g(mi)

)

where 〈·, ·〉 is the scalar product on R
M−1 defined by:

〈u, v〉 = dx
M−1∑

j=1

ujvj .

The vector q(αi) = (qj(α
i))j=1...M−1 is defined from αi by:

qj(α
i) =

(αi
j−1/2)

2 + (αi
j+1/2)

2

2
,

and corresponds to use a trapezoid rule to approximate |α|2 in the integral of (12).

3.2 Numerical scheme for the controlled Kolmogorov equation

The preservation of the positivity of m at the discrete level appears in numerical simulation
as a crucial issue, especially for small values of σ. Indeed, the concavity of J with respect
to m leads to numerical instabilities when using schemes which do not possess this property,
independently of their order of accuracy. This fact motivates the use of a low order Godunov
scheme for the advective part of (2) which ensures both small computational cost and positivity
of the numerical solutions.

Remark 3.1. In addition, this framework enables us to avoid the introduction of Lagrange
multipliers corresponding to the constraint m ≥ 0.
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We are now in the position to define the numerical solver of (2). Starting from m0
j =

m0(j.dx), m
i
j is computed iteratively for j = 1...M − 1 by:

mi+1
j = mi

j +
σ2

2

dt

dx2
(mi

j+1 − 2mi
j +mi

j−1)

−
dt

dx
(mi

j+1/2α
i
j+1/2 −mi

j−1/2α
i
j−1/2). (19)

In this equation, the terms mi
j+1/2 and mi

j−1/2 of the advective part are defined according to
a Godunov scheme, i.e. using up-winding:

mi
j+1/2 =

{
mi

j+1 if αi
j+1/2 < 0

mi
j if αi

j+1/2 ≥ 0.

For more details about this type of schemes, we refer to [19, 18].
To simplify our notations, we rewrite (19) as:

mi+1 =
(
A+B(αi)

)
mi, (20)

Here A corresponds to the identity matrix plus the discrete Laplace operator, i.e. the first
two terms of the right hand-side of (19) and B is associated to the advective part, i.e. the
last term of the right hand-side of (19). The choice of such a scheme ensures the positivity of
the density at the discrete level, under the condition of the following Lemma:

Lemma 3.2. For i = 1, ..., N , if for every j = 1, ...,M − 1, mi ≥ 0 and:

|αi
j+1/2| ≤ λ :=

dx

2dt
−
σ2

2

1

dx
, (21)

then mi+1 ≥ 0.

Proof. Let us fix i, 1 ≤ i ≤ N , and j, 1 ≤ j ≤ M − 1. Suppose that (21) holds, αi
j+1/2 ≥ 0

and αi
j−1/2 ≥ 0. Thanks to (19), mi+1

j reads as a linear combination of mi
j+1,m

i
j and mi

j−1,

with coefficients σ2

2
dt

dx2 , 1 − σ2 dt
dx2 − αi

j+1/2
dt
dx and σ2

2
dt

dx2 + αi
j−1/2

dt
dx . Condition (21) then

guarantees that these coefficients are positive, so that the linear combination is indeed a
convex combination. Other cases shall be dealt similarly.

3.3 Adjoint state

In the approach we follow, a crucial role is played by the adjoint state vi = (vi
j)j=1...M−1 that

is defined iteratively for i = 0...N , by the backward propagation (Hamilton-Jacobi-Bellman
PDE):

vN = 0,

vi =
(
A∗ +B∗(αi)

)
vi+1 +

dt

2
q(αi) + dtΦ′(mi). (22)

where Φ′(mi) is the vector with components Φ′
j(m

i). This variable is the discrete version of
the Lagrange multiplier defined by (14-16).

11



3.4 Variations in Jdt,dx

We present now the algebraic manipulations at the heart of the monotonic schemes. Let us
consider two controls α and α′ and the corresponding solutions (mi)i=0...N and (m′

i)i=0...N of
(19). In what follows, the adjoint v = (vi)i=0...N corresponds to α. One has:

Jdt,dx(α′) − Jdt,dx(α) =
dt

2

N−1∑

i=0

〈m′i, q(α′i) − q(αi)〉 +
dt

2

N−1∑

i=0

〈m′i −mi, q(αi)〉

+
N−1∑

i=0

〈m′i+1 −mi+1, vi+1〉 − 〈m′i −mi, vi〉

+dt

N−1∑

i=0

g(m′i) − g(mi). (23)

A crucial fact is that, for j = 1, ...,M − 1, functions Φj are concave in m. Consequently, we
get:

N−1∑

i=0

g(m′i) − g(mi) ≤
N−1∑

i=0

〈
Φ′(mi),m′i −mi

〉
, (24)

where Φ′ is defined in Section 3.3. Combining (23) with (24) we can write:

Jdt,dx(α′) − Jdt,dx(α) ≤
dt

2

N−1∑

i=0

〈m′i, q(α′i) − q(αi)〉

+

N−1∑

i=0

〈
(
A+B(α′i)

)
m′i −

(
A+B(αi)

)
mi, vi+1〉

+
N−1∑

i=0

〈m′i −mi,−vi +
dt

2
q(αi) + dtΦ′(mi)〉.

We finally obtain:

Jdt,dx(α′) − Jdt,dx(α) ≤
dt

2

N−1∑

i=0

〈m′i, q(α′i) − q(αi)〉 +
N−1∑

i=0

〈
(
B(α′i) −B(αi)

)
m′i, vi+1〉. (25)

This inequality can also be expressed through the formula:

Jdt,dx(α′) − Jdt,dx(α) ≤ dt.dx
N−1∑

i=0

M−2∑

j=1

∆i
j(α

′, α), (26)

where:

∆i
j(α

′, α) =
m′i

j +m′i
j+1

2

((α′i
j+1/2)

2 − (αi
j+1/2)

2

2

)

+
(
m′i

j+1/2α
′i
j+1/2 − m̃′

i

j+1/2α
i
j+1/2

)(vi+1
j+1 − vi+1

j

dx

)
. (27)
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In this equation we introduced

m̃′
i

j+1/2 =

{
m′i

j+1 if αi
j+1/2 < 0

m′i
j if αi

j+1/2 ≥ 0.

Note that inequality (26) disintegrates the variables of J into a sum of local growth ele-
ments. This inequality that reads as a factorization enables to build a monotonic optimization
method for functional J .

Remark 3.3. Given α, note that the value of m′i
j+1/2 depends on the sign of α′i

j , so that

α′i
j 7→ ∆i

j(α
′, α) is a continuous, piecewise polynomial function.

3.5 Optimization procedure

3.5.1 The method

This section provides a brief summary of the optimization strategy we follow to solve our
problem.
Given α and a positive real number θ, we define α′i

j+1/2 as a solution of

∆i
j(α

′, α) = −θ
m′i

j +m′i
j+1

2
(α′i

j+1/2 − αi
j+1/2)

2. (28)

According to Remark 3.3, this equation may have one, two or four roots, including the trivial
one α′i

j+1/2 = αi
j+1/2. When possible, we define α′i

j+1/2 as the root of (28) that is closer

to αi
j+1/2; otherwise we set α′i

j+1/2 = αi
j+1/2. Thus, the monotonicity of our algorithm is

guaranteed.

Let us give the explicit formula corresponding to this procedure. We suppose that
m′i

j +m′i
j+1

2 >
0, otherwise the contribution of this term is zero for all choice of α′i

j+1/2. We introduce

δ =
2

θ + 1
, νi

j+1/2 =
2m̂′i

j+1/2

m′i
j +m′i

j+1

, ν̃i
j+1/2 =

2m̃′
i

j+1/2

m′i
j +m′i

j+1

,

m̂′i
j+1/2 =

{
m′i

j+1 if m̃′i
j+1/2 = m′i

j

m′i
j if m̃′i

j+1/2 = m′i
j+1.

Consider now:

ξi
j+1/2 = (1 − δ)αi

j+1/2 + δν̃i
j+1/2

vi+1
j+1 − vi+1

j

dx
, (29)

βi
j+1/2 =

−bij+1/2 − sign(αi
j+1/2)

√
(bij+1/2)

2 − 4ai
j+1/2.c

i
j+1/2

2ai
j+1/2

,

where sign is the function

sign(x) =

{
1 if x ≥ 0
−1 if x < 0,

13



and :

ai
j+1/2 = 1 + θ,

bij+1/2 = −2(θαi
j+1/2 + νi

j+1/2

vi+1
j+1 − vi+1

j

dx
),

cij+1/2 = (θ − 1)(αi
j+1/2)

2 + 2αi
j+1/2ν̃

i
j+1/2

vi+1
j+1 − vi+1

j

dx
.

The control α′i
j can be expressed by :

α′i
j+1/2 =

{
ξi
j+1/2 if αi

j+1/2.ξ
i
j+1/2 ≥ 0

βi
j+1/2 if αi

j+1/2.ξ
i
j+1/2 < 0.

(30)

Proposition 3.4. Under the condition (21), the scheme (30) ensures Jdt,dx(α′) ≤ Jdt,dx(α)
i.e., the functional Jdt,dx decreases.

Proof. The monotonicity is a trivial consequence of Inequality (26) and Lemma (3.2).

We recall that the bound (3.2) on the control α is very important for the positivity of the
density. As the stability of our optimization scheme is based on the positivity of the variable
m, the strategy presented in the next section has to include a slope-limiter such that (3.2)
prevails. Instead of defining α′i

j+1/2 through (30), we alternatively denote by α̌i
j+1/2 the value

obtained in (30) and consider the definition:

α′i
j+1/2 = sign(α̌i

j+1/2).min(λ, |α̌i
j+1/2|). (31)

It is easy to check that this modification does not spoil the monotonicity of our procedure, as
soon as α satisfies (3.2).

3.5.2 The algorithm

We can now define precisely our optimization algorithm. Suppose that αk is given. The
computation of αk+1 is achieved as follows.

• Define vk by (22) with α = αk.

• Define m0 = m0 and compute iteratively mi from mi−1 according to the sub-steps:

– define (αk+1)i−1 by (31) where α̌i
j+1/2 is computed with v = vk,

– define (mk+1)i by (19) with αi−1 = (αk+1)i.

A possible termination criterion is obtained by checking the discrete optimality conditions,
i.e., given a tolerance threshold Tol > 0:

sup
1≤i≤N−1,1≤j≤M−1

∣∣∣∣
(mk)i

j+(mk)i
j+1

2 (αk)i
j+1/2 +(mk)i

j+1/2

(vk)i+1

j+1
−(vk)i+1

j

dx

∣∣∣∣≤ Tol.

(32)

The choice of a monotonic algorithm comes from specific properties of the MFG model
such as the bi-linearity of the state evolution and special concavity in the cost functional (cf.
work in [15] for a detailed description of the required properties). Let us mention that the
algorithm converges numerically very quickly.
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4 Simulations, some results for our model

We present in this section some numerical results.
First, let us write the particular forms that we have chosen for the state costs. We recall

that the heating cost is: f(t, x) = p(t)(1 − βx). From now on, we take β = 0, 8 which means
that it is five times cheaper to heat a home that is fully insulated (than a non-insulated one).
The choice that we did for the constants in the insulation maintenance cost lead to take:
g(t, x,m) = x

0.1+m(t,x) . In our algorithm, we choose θ = 1. We present in what follows three
results that exhibit three qualitatively different phenomena.

In the first one, the unit price of energy p(t) is a constant parameter. With this example,
we want to check some simple behaviors of agents. In the second example we look at a
non-constant unit price of electricity; more precisely, p(t) reaches a peak. We exhibit in this
simulation two numerical equilibria. Finally, in the third example, we consider a more realistic
case with irreversibility in the investment in insulation material. In the following and for each
example, we fixed the horizon T = 1 and the noise σ2

2 = 0, 07.
In figures, the horizontal axis is the level of insulation, the depth is the time and the

vertical line is the density of agents.

4.1 Positive externality: the households choose the same technology

We consider here a Gaussian distribution centered in x = 0, 5 as initial density of players. In
other words, the households started already to acquire insulation material, but there are still
new technologies that enable them to insulate better the houses.

In the next three figures, we present the curve of the density for three different values of
the unit price of energy p(t). The energy will be successively free (p(t) = 0), then it will have
an intermediate price (p(t) = 3, 2), and finally it will be expensive (p(t) = 10).

Figure 1: Evolution of m for p(t) = 0
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Figure 2: Evolution of m for p(t) = 3, 2

On Fig.1, we note that, as expected for very low prices of energy, all agents choose to
heat their home and they move to this choice together. On Fig.2, for an intermediate price of
energy, the households stay more or less in the same configuration. The important point here
is that they are grouped around the same state. And in the third case, we can see on Fig.3
that when the cost related to energy is high, the population wants to be better insulated. And
once again, all the players have the same behavior. These solution involve pure bundling.

The economic reasons that explain the behavior observed in the three cases, which consists
in bundling (without dispersion), are the positive externality and the economy of scale. These
two aspects make the households choose the same technology, the same level of insulation.

4.2 Multiplicity of solutions: the possibility of a technological transition

First, we look at a situation in which the agents are poorly equipped with insulation material
at time t = 0. Thus, the initial density is an approximation of a Dirac mass in x = 0, 1.
Another difference with the first example is the form of the unit price of energy p(t). In the
present case, it starts from a low level, then reaches a peak and decreases until its initial level
as represented in Fig.4.

With this data, we found numerically two MFG equilibria by taking different initializations
for the control variable α0. These two numerical solutions are presented in Fig.5 and Fig.6.

Fig.5 shows the solution corresponding to the choice of high insulation levels. In this case
the optimum corresponds to an insulation equilibrium.

The solution in which the households stay heating their apartment stands for a sort of
energy consumption equilibrium and is described on Fig.6.

We can explain intuitively the behavior in the following way. If one expects that everybody
will still heat their apartment then it is in her interest to do the same, and we get the energy
consumption equilibrium. However, if one expects that all the households will improve their
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Figure 3: Evolution of m for p(t) = 10

Figure 4: Evolution of the unit price of energy p(t)
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Figure 5: Evolution of m, the "insulation equilibrium"

Figure 6: Evolution of m, the "energy consumption equilibrium"

18



insulation, then it is better for her to choose a higher insulation level. In this case we obtain
an insulation equilibrium.

By adding a constraint, one can select an equilibrium (e.g. an ecologic equilibrium).
In brief, this simple model (based on the MFG) and these simulations (using a monotonic
algorithm), enable us to study quantitatively the way the technologies can impact the culture.
With this example, we can imagine the design of incentives or policies, in order to change the
habits of a population.

4.3 Dispersion in the case of irreversibility

Let us show in a last example how additional constraint on the control can be introduced.
We impose α ≥ 0, so that an investment in insulation material is irreversible. Whereas it is
possible to decide to insulate better the apartment, it is not allowed to choose a lower level
of insulation. The introduction of such a constraint enables us to handle a more realistic
situation.

In order to make sense, we have chosen as initial distribution a Gaussian centered in 0, 25
- the households did not yet choose a high insulation level. Every other parameter is defined
as in the second example (unit price of energy reaching a peak, noise, horizon...).

Figure 7: Evolution of m, irreversibility and dispersion

We observe on Fig.7 a dispersion in the household choices. During the first part of the
period, the agents choose higher insulation levels, and then there is a spreading. Actually
some agents that have chosen to be well equipped with insulation material can not go back.
Moreover, in this case, the risk has a more important influence. These two reasons explain
intuitively the dispersion that is observed in this example.
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