
HAL Id: hal-00346063
https://hal.science/hal-00346063

Submitted on 11 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesizing Enforcement Monitors wrt. the
Safety-Progress Classification of Properties

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

To cite this version:
Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier. Synthesizing Enforcement Monitors wrt.
the Safety-Progress Classification of Properties. ICISS’08: International Conference on Information
Systems Security, 2008, pp.41-55. �hal-00346063�

https://hal.science/hal-00346063
https://hal.archives-ouvertes.fr

Synthesizing Enforcement Monitors wrt. the

Safety-Progress Classification of Properties

Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier
Firstname.Lastname@imag.fr

Verimag, Université Grenoble I, INPG, CNRS

Abstract. Runtime enforcement is a powerful technique to ensure that
a program will respect a given security policy. We extend previous works
on this topic in several directions. Firstly, we propose a generic notion
of enforcement monitors based on a memory device and finite sets of
control states and enforcement operations. Moreover, we specify their
enforcement abilities w.r.t. the general safety-progress classification of
properties. It allows a fine-grain characterization of the space of enforce-
able properties. Finally, we propose a systematic technique to produce
an enforcement monitor from the Streett automaton recognizing a given
safety, guarantee, obligation or response security property.

1 Introduction

The growing complexity of nowadays programs and systems induces a rise of
needs in validation. With the enhancement of engineering methods, software
components tend to be more and more reusable. Although this trend clearly
improves programmers productivity, it also raises some important security issues.
Indeed, each individual component should guarantee some individual properties
at run-time to ensure that the whole application will respect some given security
policy. When retrieving an external component, the question of how this code
meets a set of proper requirements raises. Using formal methods appears as a
solution to provide techniques to regain the needed confidence. However, these
techniques should remain practical enough to be adopted by software engineers.

Runtime monitoring falls it this category. It consists in supervising at runtime
the execution of an underlying program against a set of expected properties.
With an appointed monitor, one is able to detect any occurrence of specific
property violations. Such a detection might be a sufficient assurance. However,
for certain kind of systems a misbehavior might be not acceptable. To prevent
this, a possible solution is then to enforce the desired property: the monitor
not only observe the current program execution, but it also controls it in order
to ensure that the expected property is fulfilled. Such a control should usually
remain transparent, meaning that it should leave any original execution sequence
unchanged when already correct, or output its longest correct prefix otherwise.

Runtime enforcement monitoring was initiated by the work of Schneider [1]
on what has been called security automata. In this work the monitors watch the
current execution sequence and halt the underlying program whenever it deviates
from the desired property. Such security automata are able to enforce the class
of safety properties [2], stating that something bad can never happen. Later,
Viswanathan [3] noticed that the class of enforceable properties is impacted
by the computational power of the enforcement monitor: since the enforcement
mechanism cannot implement more than computable functions, only decidable
properties can be enforced. More recently [4, 5], Ligatti and al. showed that it is
possible to enforce at runtime more than safety properties. Using a more powerful
enforcement mechanism called edit-automata, it is possible to enforce the larger
class of infinite renewal properties, able to express some kinds of obligations
used in security policies. More than simply halting an underlying program, edit-
automata can also “suppress” (i.e., froze) and “insert” (frozen) actions in the
current execution sequence. To better cope with practical resource constraints,
Fong [6] studied the effect of memory limitations on enforcement mechanisms.
He introduced the notion of Shallow History Automata which are only aware of
the occurrence of past events, and do not keep any information about the order
of their arrival. He showed that such a “shallow history” indeed leads to some
computational limitations for the enforced properties. However, many interesting
properties remain enforceable using shallow history automata.

In this paper, we propose to extend these previous works in several directions.
Firstly, we study the enforcement capabilities relatively to the so-called safety-
progress hierarchy of properties [7, 8]. This classification differs from the more
classical safety-liveness classification [9, 10] by offering a rather clear characteri-
zation of a number of interesting kinds of properties (e.g. obligation, accessibility,
justice, etc.), particularly relevant in the security context. Moreover this classifi-
cation features properties, such as transactional properties (i.e, an action pattern
to be repeated infinitely), which are neither safety nor liveness properties. Thus,
using this classification as a basis provides a finer-grain classification of enforce-
able properties. Moreover, in this safety-progress hierarchy, each property ϕ can
be characterized by a particular kind of (finite state) recognizing automaton Aϕ.
Secondly, we show how to generate an enforcement monitor for ϕ in a system-
atic way, from a recognizing automaton Aϕ. This enforcement monitor is based
on a finite set of control states, and an auxiliary memory. This general notion
of enforcement monitor encompasses the previous notions of security automata,
edit-automata and “shallow history” automata. The companion report [11] ex-
poses more details and complete proofs of the theorems of this paper.

The remainder of this article is organized as follows. The Sect. 2 introduces
some preliminary notions for our work. In Sect. 3 we recall briefly the necessary
elements from the safety-progress classification of properties. Then, we present
our notion of enforcement monitor and their properties in Sect. 4. The Sect. 5
studies the enforcement capability wrt. the safety-progress classification. Sect. 6
discusses some implementation issues. Finally, the Sect. 7 exposes some conclud-
ing remarks.

2 Preliminaries and notations

This section introduces some preliminary notations, namely the notions of pro-
gram execution sequences and program properties we will consider in the remain-
der of this article.

2.1 Sequences, and execution sequences

Sequences. Considering a finite set of elements E, we define notations about
sequences of elements belonging to E. A sequence σ containing elements of E
is formally defined by a function σ : N → E where N is the set of natural
numbers. We denote by E∗ the set of finite sequences over E (partial function
from N), and by Eω the set of infinite sequences over E (total function from
N). The set E∞ = E∗ ∪ Eω is the set of all sequences (finite or not) over E.
The empty sequence is denoted ǫ. The length (number of elements) of a finite
sequence σ is noted |σ| and the (i + 1)-th element of σ is denoted by σi. For
two sequences σ ∈ E∗, σ′ ∈ E∞, we denote by σ · σ′ the concatenation of σ and
σ′, and by σ ≺ σ′ (resp. σ′ ≻ σ) the fact that σ is a strict prefix of σ′ (resp. σ′

is a strict suffix of σ). The sequence σ is said to be a strict prefix of σ′ when

∀i ∈ {0, . . . , |σ| − 1} ·σi = σ′
i. When σ′ ∈ E∗, we note σ � σ′ def

= σ ≺ σ′ ∨σ = σ′.
For σ ∈ E∞, we will need to designate its subsequences.

Execution sequences. A program P is considered as a generator of execution
sequences. We are interested in a restricted set of operations the program can
perform. These operations influence the truth value of properties the program is
supposed to fulfill. We abstract these operations by a finite set of events, namely
a vocabulary Σ. We denote by PΣ a program for which the vocabulary is Σ.
The set of execution sequences of PΣ is denoted Exec(PΣ) ⊆ Σ∞. This set is
prefix-closed, that is ∀σ ∈ Exec(PΣ), σ′ ∈ Σ∗ · σ′ � σ ⇒ σ′ ∈ Exec(PΣ).

Such execution sequences can be made of access events on a secure system
to its ressources, or kernel operations on an operating system. In a software
context, these events may be abstractions of relevant instructions such as variable
modifications or procedure calls.

2.2 Properties

Properties as sets of of execution sequences. In this paper we aim to enforce
properties on program. A property ϕ is defined as a set of execution sequences,
i.e. ϕ ⊆ Σ∞. Considering a given execution sequence σ, when σ ∈ ϕ (noted
ϕ(σ)), we say that σ satisfies ϕ. A consequence of this definition is that properties
we will consider are restricted to single execution sequences, excluding specific
properties defined on powersets of execution sequences.

Reasonable properties. As noticed in [4], a property can be effectively enforced
at runtime only if it is reasonable in the following sense: it should be satisfied
by the empty sequence, and it should be decidable.This means that a program
which performs no action should not violate this property, and that deciding
whether any finite execution sequence satisfies or not this property should be a
computable function ([3]).

3 A Safety-Progress classification of properties

This section recalls and extends some results about the safety-progress [7, 8, 12]
classification of properties. In the original papers this classification introduced a
hierarchy between properties defined as infinite execution sequences. We extend
here this classification to deal also with finite-length execution sequences.

3.1 Generalities about the classification

The safety-progress classification is constituted of four basic classes defined over
infinite execution sequences:

– safety properties are the properties for which whenever a sequence satisfies
a property, all its prefixes satisfy this property.

– guarantee properties are the properties for which whenever a sequence satis-
fies a property, there are some prefixes (at least one) satisfying this property.

– response properties are the properties for which whenever a sequence satisfies
a property, an infinite number of its prefixes satisfy this property.

– persistence properties are the properties for which whenever a sequence sat-
isfies a property, all its prefixes continuously satisfy this property from a
certain point.

Furthermore, two extra classes can be defined as (finite) boolean combina-
tions of basic classes.

– The obligation class is the class obtained by positive boolean combinations
of safety and guarantee properties.

– The reactivity class is the class obtained by boolean combinations of response
and persistence properties.

Example 1. Let consider an operating system where a given operation op is
allowed only when an authorization auth has been granted before. Then,

– the property ϕ1 stating that “an authorization grant grant auth should pre-
cede any occurrence of op” is a safety property;

– the property ϕ2 stating that “the next authorization request req auth should
be eventually followed by a grant (grant auth) or a deny (deny auth)” is a
guarantee property;

– the property ϕ3 stating that “the system should run forever, unless a deny auth
is issued, meaning that every user should be disconnected and the system
should terminate” is an obligation property;

– the property ϕ4 stating that “each occurrence of req auth should be first
written in a log file and then answered either with a grant auth or a deny auth
without any occurrence of op in the meantime” is a response property;

– the property ϕ5 stating that “an incorrect use of operation op should imply
that any future call to req auth will always result in a deny auth answer” is
a persistence property.

The safety-progress classification is an alternative to the more classical safety-
liveness [9, 10] dichotomy. Unlike this later, the safety-progress classification is
a hierarchy and not a partition. It provides a finer-grain classification, and the
properties of each class can be characterized according to four views [7]. We shall
consider here only the so-called automata view.

3.2 The automata view

First, we define a notion of property recognizer using a variant of deterministic
and complete Streett automata (introduced in [13] and used in [7]).

Definition 1 (Streett automaton). A deterministic Streett automaton is a
tuple (Q, qinit, Σ,−→, {(R1, P1), . . . , (Rm, Pm)}) defined relatively to a set of events
Σ. The set Q is the set of automaton states, where qinit ∈ Q is the initial state.
The total function −→: Q × Σ → Q is the transition function. In the follow-
ing, for q, q′ ∈ Q, e ∈ Σ we abbreviate −→ (q, e) = q′ by q

e
−→ q′. The set

{(R1, P1), . . . , (Rm, Pm)} is the set of accepting pairs, in which for all i ≤ n,
Ri ⊆ Q are the sets of recurrent states, and Pi ⊆ Q are the sets of persistent
states.

We refer an automaton with m accepting pairs as a m-automaton. When
m = 1, a 1-automaton is also called a plain-automaton, and we refer R1 and P1 as
R and P . In the following (otherwise mentioned) σ ∈ Σω designates an execution
sequence of a program, and A = (QA, qinit

A, Σ,−→A, {(R1, P1), . . . , (Rm, Pm)})
a deterministic Streett m-automaton.

The run of σ on A is the sequence of states involved by the execution of σ on
A. It is formally defined as run(σ,A) = q0 · q1 · · · where ∀i · (qi ∈ QA ∧ qi

σi−→A

qi+1) ∧ q0 = qinit

A. The trace resulting in the execution of σ on A is the unique
sequence (finite or not) of tuples (q0, σ0, q1) · (q1, σ1, q2) · · · where run(σ,A) =
q0 · q1 · · · . We denote by vinf (σ,A) (or vinf (σ) when clear from context) the
set of states appearing infinitely often in run(σ,A). This set is formally defined
as follows: vinf(σ,A) = {q ∈ QA | ∀n ∈ N,∃m ∈ N · m > n ∧ q = qm with
run(σ,A) = q0 · q1 · · · .

The following definition tells whether an execution sequence is accepted or
not by a Streett automaton:

Definition 2 (Acceptance condition of a Street automaton).
For an infinite execution sequence σ ∈ Σω, we say that A accepts σ if ∀i ∈
{1, . . . ,m} · vinf (σ,A) ∩ Ri 6= ∅ ∨ vinf (σ,A) ⊆ Pi.

For a finite execution sequence σ ∈ Σ∗ such that |σ| = n, we say that the
m-automaton A accepts σ if either σ = ǫ or (∃q0, . . . , qn ∈ QA · run(σ,A) =
q0 · · · qn ∧ q0 = qinit

A and ∀i ∈ {1, . . . ,m} · qn ∈ Pi ∪ Ri).

Note that this definition of acceptance condition for finite sequences matches
the definition of finitary properties defined in [7] (see [11] for more details).

The hierarchy of automata. Each class of the safety-progress classification is
characterized by setting syntactic restrictions on a deterministic Streett automa-
ton.

– A safety automaton is a plain automaton such that R = ∅ and there is no
transition from a state q ∈ P to a state q′ ∈ P .

– A guarantee automaton is a plain automaton such that P = ∅ and there is
no transition from a state q ∈ R to a state q′ ∈ R.

– An m-obligation automaton is an m-automaton such that for each i in
{1, . . . ,m}:

• there is no transition from q ∈ Pi to q′ ∈ Pi,

• there is no transition from q ∈ Ri to q′ ∈ Ri,

– A response automaton is a plain automaton such that P = ∅
– A persistence automaton is a plain automaton such that R = ∅.
– A m-reactivity automaton is any unrestricted m-automaton.

Automata and properties. We say that a Streett automaton Aϕ defines a
property ϕ (defined as a subset of Σ∞) if and only if the set of exe-
cution sequences accepted by Aϕ is equal to ϕ. Conversely, a property ϕ ⊆
Σ∞ is said to be specifiable by an automaton if the set of execution se-
quences accepted by the automaton is ϕ. A property ϕ that is specifiable
by an automaton is a κ-property iff the automaton is a κ-automaton, where
κ ∈ {safety, guarantee, obligation, response,persistence, reactivity}. In the fol-
lowing we note Safety(Σ) (resp. Guarantee(Σ), Obligation(Σ), Response(Σ),
Persistence(Σ), Reactivity(Σ)) the set of safety (resp. guarantee, obligation, re-
sponse, persistence, reactivity) properties defined over Σ.

4 Property enforcement via enforcement monitors

A program P is considered as a generator of execution sequences. We want to
build an enforcement monitor (EM) for a property ϕ such that the two following
constraints hold:

soundness: any execution sequence allowed by the EM should satisfy ϕ;

transparency: execution sequences of P should be modified in a minimal way,
namely if a sequence already satisfies ϕ it should remain unchanged, other-
wise its longest prefix satisfying ϕ should be allowed by the EM.

4.1 Enforcement monitors

We define now the central notion of enforcement monitor. Such a runtime device
monitors a target program by observing relevant events and performing some
enforcement operation depending on its internal state.

Definition 3 (Enforcement monitor (EM)). An enforcement monitor A↓

is a 4-tuple (QA↓ , qinit

A↓ , StopA↓ ,−→A↓
) defined relatively to a set of events Σ

and a set of enforcement operations Ops. The finite set QA↓ denotes the control
states, qinit

A↓ ∈ QA↓ is the initial state and StopA↓ is the set of stopping states
(StopA↓ ⊆ QA↓). The partial function (but complete wrt. QA↓ × Σ) −→A↓

:
QA↓ ×Σ×Ops → QA↓ is the transition function. In the following we abbreviate

−→A↓
(q, a, α) = q′ by q

a/α
−→A↓

q′. We also assume that outgoing transitions
from a stopping state only lead to another stopping state: ∀q ∈ StopA↓ · ∀a ∈

Σ · ∀α ∈ Ops · ∀q′ ∈ QA↓ · q
a/α
−→A↓

q′ ⇒ q′ ∈ StopA↓ .

Notions of run and trace (see Sect. 3.2) are naturally transposed from Streett
automata. In the remainder of this section, σ ∈ Σ∞ designates an execution
sequence of a program, and A↓ = (QA↓ , qinit

A↓ , StopA↓ ,−→A↓
) designates an

EM.
Typical enforcement operations allow the EM either to halt the target pro-

gram (when the current input sequence irreparably violates the property), or
to store the current event in a memory device (when a decision has to be post-
poned), or to dump the content of the memory device (when the target program
comes back to a correct behavior). We first give a more precise definition of
such enforcement operations, then we formalize the way an EM reacts to an
input sequence provided by a target program through the standard notions of
configuration and derivation.

Definition 4 (Enforcement operations Ops). Enforcement operations take
as inputs an event and a memory content (i.e., a sequence of events) to produce
a new memory content and an output sequence: Ops ⊆ 2((Σ∪{ǫ})×Σ∗)→(Σ∗×Σ∗).
In the following we consider a set Ops = {halt, store, dump} defined as follows:
∀a ∈ Σ ∪ {ǫ},∀m · Σ∗

halt(a,m) = (ǫ,m) store(a,m) = (ǫ,m.a) dump(a,m) = (m.a, ǫ)

In the following we assume that outgoing transitions from a stopping state
are all labeled with an halt operation. That is: ∀q ∈ StopA↓ · ∀a ∈ Σ · ∀α ∈

Ops · ∀q′ ∈ QA↓ · q
a/α
−→A↓

q′ ⇒ α = halt.

Definition 5 (EM configurations and derivations). For an EM A↓ =
(QA↓ , qinit

A↓ , StopA↓ ,−→A↓
), a configuration is a triplet (q, σ, m) ∈ QA↓ ×Σ∗×

Σ∗ where q denotes the current control state, σ the current input sequence, and
m the current memory content.

We say that a configuration (q′, σ′,m′) is derivable in one step from the

configuration (q, σ, m) and produces the output o ∈ Σ∗, and we note (q, σ, m)
o
→֒

(q′, σ′,m′) if and only if σ = a.σ′ ∧ q
a/α
−→A↓

q′ ∧ α(a,m) = (o,m′).

We say that a configuration C ′ is derivable in several steps from a configura-
tion C and produces the output o ∈ Σ∗, and we note C

o
=⇒A↓

C ′, if and only if
there exits k ≥ 0 and configurations C0, C1, . . . , Ck such that C = C0, C ′ = Ck,

Ci
oi

→֒ Ci+1 for all 0 ≤ i < k, and o = o0 · o1 · · · ok−1.
Besides, the configuration C is derivable from itself in one step and produces

the output ǫ, we note C
ǫ
⇒ C.

4.2 Enforcing a property

We now describe how an EM can enforce a property on a given program,
namely how it transforms an input sequence σ into an output sequence o by
performing derivation steps from its initial state. For the upcoming definitions
we will distinguish between finite and infinite sequences and we consider an EM
A↓ = (QA↓ , qinit

A↓ , StopA↓ ,−→A↓
).

Definition 6 (Sequence transformation). We say that:

– The sequence σ ∈ Σ∗ is transformed by A↓ into the sequence o ∈ Σ∗, which

is noted (qinit

A↓ , σ) ⇓A↓
o, if ∃q ∈ QA↓ ,m ∈ Σ∗ such that (qinit

A↓ , σ, ǫ)
o

=⇒A↓

(q, ǫ,m).
– The sequence σ ∈ Σω is transformed by A↓ into the sequence o ∈ Σ∞, which

is noted (qinit

A↓ , σ) ⇓A↓
o, if ∀σ′ ∈ Σ∗ · σ′ ≺ σ · (∃o′ ∈ Σ∗ · (qinit

A↓ , σ′) ⇓A↓

o′ ∧ o′ � o).

Definition 7 (Property-Enforcement). Let consider a property ϕ, we say
that A↓ enforces the property ϕ on a program PΣ (noted Enf (A↓, ϕ,PΣ)) iff

– ∀σ ∈ Exec(PΣ) ∩ Σ∗,∃o ∈ Σ∗ · enforced(σ, o,A↓, ϕ), where the predicate
enforced(σ, o,A↓, ϕ) is the conjonction of the following constraints:

(qinit

A↓ , σ) ⇓A↓
o (1)

ϕ(o) (2)

ϕ(σ) ⇒ σ = o (3)

¬ϕ(σ) ⇒
(

∃σ′ ≺ σ · ϕ(σ′) ∧ o = σ′ ∧
(

6 ∃σ′′ ≻ σ′ · ϕ(σ′′) ∧ σ′′ � σ
)

)

(4)

– ∀σ′ ∈ Exec(PΣ) ∩ Σω,∀σ ≺ σ′,∃o ∈ Σ∗ · enforced(σ, o,A↓, ϕ).

(1) stipulates that the sequence σ is transformed by A↓ into a sequence o, (2)
states that o satisfies the property ϕ, (3) ensures transparency of A↓, i.e. if σ
satisfied already the property then it is not transformed, and (4) ensures in the
case where σ does not satisfy ϕ that o is the longest prefix of σ satisfying the
property.

Example 2 (Enforcement monitor). We provide on Fig. 1 two EMs to illustrate
the enforcement of some of the properties introduced in example 1.

1

2

{grant auth, deny auth}/dump

1

2

op/halt

req auth/store

Σ/dumpΣ/halt

A↓ϕ2
A↓ϕ1

3

grant auth/dump

Σ/dump

Fig. 1. Two examples of EMs

– The left-hand side of Fig. 1 is an EM A↓ϕ1 for the safety property ϕ1.
We assume here that the set Σ of relevant events is {op, grant auth} (other
events are ignored by the EM). A↓ϕ1 has one stopping state, Stop = {2}, and
its initial state is 1. From this initial state it simply dumps a first occurrence
of grant auth and moves to state 3, where all events of Σ are allowed (i.e.,
dumped). Otherwise, if event op occurs first, then it moves to state 2 and
halts the underlying program forever.

– The right-hand side of Fig. 1 is an EM A↓ϕ2 for the guarantee
property ϕ2. We assume here that the set Σ of relevant events is
{req auth, grant auth, deny auth}. The initial state of A↓ϕ2 is state 1, and it
has no stopping states. Its behavior is the following: occurrences of req auth
are stored in memory as long as grant auth or deny auth does not occur,
then the whole memory content is dumped. This ensures that the output
sequence always satisfies the property under consideration.

5 Enforcement wrt. the safety-progress classification

We now study how to practically enforce properties of the safety-progress hi-
erarchy (Sect. 3). More precisely, we show which classes of properties can be
effectively enforced by an EM, and more important, we provide a systematic con-
struction of an EM enforcing a property ϕ from the Streett automaton defining
this property. This construction technique is specific to each class of properties.

5.1 From a recognizing automaton to an enforcement monitor

We define four general operations those purpose is to transform a Streett au-
tomaton recognizing a safety (resp. guarantee, obligation, response) property
into an enforcement monitor enforcing the same property.

Definition 8 (Safety Transformation). Given a Streett safety-automaton
Aϕ = (QAϕ , qinit

Aϕ , Σ,−→Aϕ
, (∅, P)) recognizing a reasonable safety prop-

erty ϕ defined over a language Σ, we define a transformation (named

1

2

op/halt
1

2

op

Σ/halt

A↓ϕ1

3

grant auth/dump

Σ/dumpΣ

3

grant auth

Σ

Aϕ1

Fig. 2. Recognizing automaton and EM for the safety property ϕ1

TransSafety) of this automaton into an enforcement monitor A↓ϕ =
(QA↓ϕ , qinit

A↓ϕ , StopA↓ϕ ,−→A↓ϕ
) such that:

– QA↓ϕ = QAϕ , qinit

A↓ϕ = qinit

Aϕ , with qinit

Aϕ ∈ P
– StopA↓ϕ = P
– the transition relation →A↓ϕ

is defined from −→Aϕ
as the smallest relation

verifying the following rules:

• q
a/dump
−→ A↓ϕ

q′ if q′ ∈ P ∧ q
a

−→Aϕ
q′

• q
a/halt
−→ A↓ϕ

q′ if q′ /∈ P ∧ q
a

−→Aϕ
q′

Note that there is no transition (in the Streett automaton) from q /∈ P to q′ ∈ P ,
and R = ∅. We note A↓ϕ = TransSafety(Aϕ).

Informally, the behavior of an EM A↓ϕ obtained from TransSafety(Aϕ) can
be understood as follows. While the current execution sequence satisfies the
underlying property (i.e while Aϕ remains in P -states), it dumps each input
event. Once the execution sequence deviates from the property (i.e., when Aϕ

reaches a P -state), then it halts immediately the underlying program with a halt
operation. The following example illustrates this principle.

Example 3 (Safety Transformation). Fig. 2 (left-hand side) depicts a Streett
automaton defining the safety property ϕ1 of example 1. Its set of states is
{1, 2, 3}, the initial state is 1, and we have R = ∅ and P = {1, 3}. The right-hand
side shows the corresponding EM obtained using transformation TransSafety.

We now define a similar transformation for guarantee properties. The
TransGuarantee transformation uses the set ReachAϕ

(q) of reachable states from
a state q. Given a Street automaton Aϕ with a set of states QAϕ , we have

∀q ∈ QAϕ · ReachAϕ
(q) = {q′ ∈ QAϕ | ∃(qi)i, (ai)i, ·q

a0−→Aϕ
q0

a1−→Aϕ
q1 · · · q

′}.

Definition 9 (Guarantee Transformation). Let consider a Streett
guarantee-automaton Aϕ = (QAϕ , qinit

Aϕ , Σ,−→Aϕ
, (R, ∅)) recognizing a

property ϕ ∈ Guarantee(Σ). We define a transformation TransGuarantee of
this automaton into an EM A↓ϕ = (QA↓ϕ , qinit

A↓ϕ , StopA↓ϕ ,−→A↓ϕ
) such that:

1 2
{grant auth, deny auth}/dump

req auth/store Σ/dump

1 2
{grant auth, deny auth}

req auth Σ

A↓ϕ2

Aϕ2

Fig. 3. A guarantee-automaton and the corresponding EM for property ϕ2

– QA↓ϕ = QAϕ , qinit

A↓ϕ = qinit

Aϕ ,
– StopA↓ϕ = {q ∈ QA↓ϕ |6 ∃q′ ∈ ReachAϕ

(q) ∧ q′ ∈ R}
– the transition relation →A↓ϕ

is defined from −→Aϕ
as the smallest relation

verifying the following rules:

• q
a/dump
−→ A↓ϕ

q′ if q′ ∈ R ∧ q
a

−→Aϕ
q′

• q
a/halt
−→ A↓ϕ

q′ if q′ /∈ R ∧ q
a

−→Aϕ
q′∧ 6 ∃q′′ ∈ R · q′′ ∈ ReachAϕ

(q′)

• q
a/store
−→ A↓ϕ

q′ if q′ /∈ R ∧ q
a

−→Aϕ
q′ ∧ ∃q′′ ∈ R · q′′ ∈ ReachAϕ

(q′)

Note that there is no transition from q ∈ R to q′ ∈ R. And, as P = ∅, we do not
have transition from q ∈ P to q′ ∈ P . We note A↓ϕ = TransGuarantee(Aϕ).

An EM A↓ϕ obtained from TransGuarantee(Aϕ) behaves as follows. While
the current execution sequence does not satisfy the underlying property (i.e.,
while Aϕ remains in R-states), it stores each entered event in its memory. Once,
the execution sequence satisfies the property (i.e., when Aϕ reaches an R-state),
it dumps the content of the memory and the current event. The following example
illustrates this principle.

Example 4 (Guarantee Transformation). Fig. 3 (up) shows a Streett automaton
recognizing the guarantee property ϕ2 of example 1. Its set of states is {1, 2},
the initial state is 1, and we have R = {2} and P = ∅. At the bottom is
depicted the EM enforcing this same property, obtained by the TransGuarantee
transformation. One can notice that this EM has no stopping state.

We now define a transformation for obligation properties. Informally the
TransObligation transformation combines the effects of the two previously in-
troduced transformations on using information of each accepting pair.

Definition 10 (Obligation Transformation). Let consider a Streett
obligation-automaton Aϕ = (QAϕ , qinit

Aϕ , Σ,−→Aϕ
, {(R1, P1), . . . , (Rm, Pm)})

recognizing an obligation property ϕ ∈ Obligation(Σ) defined over a language
Σ. We define a transformation TransObligation of this automaton into an EM
A↓ϕ = (QA↓ϕ , qinit

A↓ϕ , StopA↓ϕ ,−→A↓ϕ
) such that:

– QA↓ϕ = QAϕ , qinit

A↓ϕ = qinit

Aϕ ,
– StopA↓ϕ =

⋃m
i=1(Pi

⋂

{q ∈ QA↓ϕ |6 ∃q′ ∈ ReachAϕ
(q) ∧ q′ ∈ Ri})

– the transition relation →A↓ϕ
is defined from −→Aϕ

as the smallest relation
verifying the following rule:

q
a/α
−→A↓ϕ

q′ if q
a

−→Aϕ
q′ and α = ⊓m

i=1(⊔(βi, γi)) where
• ⊓,⊔ designate respectively the infimum and the supremum with respect

to the complete lattice (Ops,⊑), where halt ⊑ store ⊑ dump (⊑ is a
total order),

• and the βi and γi are obtained in the following way:
∗ βi = dump if q′ ∈ Pi

∗ βi = halt if q′ /∈ Pi

∗ γi = dump if q′ ∈ Ri

∗ γi = halt if q′ /∈ Ri∧ 6 ∃q′′ ∈ Ri · q
′′ ∈ ReachAϕ

(q′)
∗ γi = store if q′ /∈ Ri ∧ ∃q′′ ∈ Ri · q

′′ ∈ ReachAϕ
(q′)

Note that there is no transition from q ∈ Ri to q′ ∈ Ri, and no transition from
q ∈ Pi to q′ ∈ Pi.

Finding a transformation for a response property ϕ needs to slightly extend
the definition of TransGuarantee to deal with transitions of a Streett automaton
leading from states belonging to R to states belonging to R (since such transi-
tions are absent when ϕ is a guarantee property). Therefore, we introduce a new
transformation called TransResponse obtained from the TransGuarantee trans-
formation (Def. 9) by adding a rule to deal with the aforementioned difference.

Definition 11 (Response Transformation). Let consider a Streett response-
automaton Aϕ = (QAϕ , qinit

Aϕ , Σ,−→Aϕ
, (R, ∅)) recognizing a response prop-

erty ϕ ∈ Response(Σ) defined over a language Σ. We define a trans-
formation TransResponse of this automaton into an enforcement monitor
A↓ϕ = (QA↓ϕ , qinit

A↓ϕ , StopA↓ϕ ,−→A↓ϕ
) using the transformations of the

TransResponse transformation and adding the following rules to define →A↓ϕ

from →Aϕ
:

q
a/store
−→ A↓ϕ

q′ if q ∈ R ∧ q′ /∈ R ∧ q
a

−→Aϕ
q′ ∧ ∃q′′ ∈ R · q′′ ∈ ReachAϕ

(q′)

q
a/halt
−→ A↓ϕ

q′ if q ∈ R ∧ q′ /∈ R ∧ q
a

−→Aϕ
q′∧ 6 ∃q′′ ∈ R · q′′ ∈ ReachAϕ

(q′)

An EM A↓ϕ obtained from TransGuarantee(Aϕ) behaves as follows. Infor-
mally the principle is similar to the one of guarantee enforcement, except that
there might be an alternation in the run between states of R and R. While the
current execution sequence does not satisfy the underlying property (the current
state of Aϕ is in R), it stores each event of the input sequence. Once, the exe-
cution sequence satisfies the property (the current state of Aϕ is in R), it dumps
the content of the memory and the current event.

Example 5 (Response Transformation). Fig. 4 (left-hand side) shows a Streett
automaton recognizing the response property ϕ4 introduced in example 1. Its
set of states is {1, 2, 3, 4}, the initial state is 1, and we have R = {1} and P = ∅.
The right-hand side shows the EM enforcement the same property, obtained by
the TransResponse transformation. One can notice there is one stopping state
4.

1 2 3

4

{deny auth, grant auth}

req auth log

Σ \ {log}

{op, req auth}

log

Σ

1 2 3

4

{deny auth, grant auth}/dump

req auth/store log/store

Σ \ {log}/halt

{op, req auth}/halt

log/store

Σ/halt

Fig. 4. A response-automaton and the corresponding EM for property ϕ4

5.2 Enforcement wrt. the safety-progress classification

Using the aforementioned transformations it is possible to derive an EM of a
certain property from a recognizing automaton for this (enforceable) property.
In the following, we characterize the set of enforceable properties wrt. the safety-
progress classification.

Enforceable properties. Now, we delineate the class of enforceable properties.
Notably, the safety (resp. guarantee, obligation and response) properties are
enforceable. Given any safety (resp. guarantee, obligation, response) property ϕ,
and a Streett automaton recognizing ϕ, one can synthesize from this automaton
an enforcing monitor for ϕ using systematic transformations. This also proves
the correctness of these transformations.

Theorem 1. Given a program PΣ, a reasonable safety (resp. guarantee, obli-
gation, response) property ϕ ∈ Safety(Σ) (resp. ϕ ∈ Guarantee(Σ), ϕ ∈
Obligation(Σ), ϕ ∈ Response(Σ)) is enforceable on P(Σ) by an EM obtained
by the application of the safety (resp. guarantee, obligation, response) transfor-
mation on the automaton recognizing ϕ. More formally, given Aϕ recognizing ϕ,
we have:

(ϕ ∈ Safety(Σ) ∧ A↓ϕ = TransSafety(Aϕ)) ⇒ Enf(A↓ϕ, ϕ,PΣ),
(ϕ ∈ Guarantee(Σ) ∧ A↓ϕ = TransGuarantee(Aϕ)) ⇒ Enf(A↓ϕ, ϕ,PΣ).
(ϕ ∈ Obligation(Σ) ∧ A↓ϕ = TransObligation(Aϕ)) ⇒ Enf(A↓ϕ, ϕ,PΣ).
(ϕ ∈ Response(Σ) ∧ A↓ϕ = TransResponse(Aϕ)) ⇒ Enf(A↓ϕ, ϕ,PΣ).

Complete proofs for each class of properties are provided in [11].

Non-enforceable properties. Persistence properties are not enforceable by
our enforcement monitors. Such a property is ϕ5 introduced in example 1 stat-
ing that “an incorrect use of operation op should imply that any future call
to req auth will always result in a deny auth answer”. One can understand the
enforcement limitation intuitively using the following argument: if this prop-
erty was enforceable it would imply that an enforcement monitor could decide
from a certain point that the underlying program will always produce the event

deny auth in response to a req auth. However such a decision can never be taken
without reading and memorizing first the entire execution sequence. This is of
course unrealistic for an infinite sequence.

As a straightforward consequence, properties of the reactivity class (contain-
ing the persistence class) are not enforceable by our enforcement monitors.

6 Discussion

An important question not yet addressed in this paper concerns the practical
issues and possible limitations raised by the approach we propose. These limita-
tions fall in several categories.

First, it is likely the case that not all events produced by an underlying
program could be freely observed, suppressed, or inserted. This leads to well-
known notions of observable and/or controllable events, that have to be taken
into account by the enforcement mechanisms. To illustrate such a limitation,
consider a system in which there is a data-flow dependence between two actions.
It seems in this case that the enforcement ability is impacted since the first
action cannot be frozen (otherwise, the second action could not be executed).
Another example is that some actions, important from the security point of view,
may not be visible from outside the system (and hence from any enforcement
mechanism). Solving these kinds of issues means either further refining the class
of enforceable properties (taking these limitations into account), or being able
to replace non-controllable or non-observable actions by “equivalent” ones.

Moreover, it could be also necessary to limit the memory resources consumed
by the monitor. A possible solution is to store only an abstraction of the sequence
of events observed (e.g. using a bag instead of a FIFO queue, or a set as in [6]).
From a theoretical point of view, this means defining enforcement up to some
abstraction preserving trace equivalence relations. We strongly believe that our
notion of enforcement monitors (with a generic memory device) is a suitable
framework to study and implement this feature.

Furthermore, an other working direction concerns confidence indebted to the
implementation of such enforcement monitors. Such an implementation should
remain in a size which permits to prove the adequacy between the enforced
property and the semantics of the original underlying program. Such a concern
follows the well-known principle of minimizing the trusted computing base.

7 Conclusion

In this paper our purpose was to extend in several directions previous works on
security checking through runtime enforcement. Firstly, we proposed a generic
notion of finite-state enforcement monitors based on generic memory device and
enforcement operations. Moreover, we specified their enforcement abilities wrt.
the general safety-progress classification of properties. It allowed a fine-grain cha-
racterization of the space of enforceable properties, which encompasses previous
results on this area. Finally, we proposed a set of (simple) transformations to

produce an enforcement monitor from the Streett automaton recognizing a given
safety, guarantee, obligation or response security property. This feature is partic-
ularly appealing, since it allows to automatically generate enforcement monitors
from high-level property definitions, like property specification patterns [14] com-
monly used in system verification.

Several perspectives can be foreseen from this work, but the most important
issue would be certainly to better demonstrate its practicability, as discussed
in Sect. 6. A prototype tool is currently under development, and we plan to
evaluate it on relevant case studies in a near future.

References

1. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3

(2000) 30–50
2. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-

ment mechanisms. ACM Trans. Program. Lang. Syst. 28 (2006) 175–205
3. Viswanathan, M.: Foundations for the run-time analysis of software systems.

PhD thesis, University of Pennsylvania, Philadelphia, PA, USA (2000) Supervisor-
Sampath Kannan and Supervisor-Insup Lee.

4. Jay Ligatti, Lujo Bauer, David Walker: Runtime Enforcement of Nonsafety Poli-
cies. ACM (07)

5. Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with pro-
gram monitors. In: ESORICS. (2005) 355–373

6. Fong, P.W.L.: Access control by tracking shallow execution history. sp 00 (2004)
43

7. Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification. Technical
report, Stanford University, Dept. of Computer Science (1992)

8. Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In: Automata, Languages and Programming. (1992) 474–486

9. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans.
Softw. Eng. 3 (1977) 125–143

10. Alpern, B., Schneider, F.B.: Defining liveness. Technical report, Cornell University,
Ithaca, NY, USA (1984)

11. Falcone, Y., Fernandez, J.C., Mounier, L.: Synthesizing Enforcement Monitors
wrt. the Safety-Progress Classification of Properties. Technical Report TR-2008-7,
Verimag Research Report (2008)

12. Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper, 1989).
In: PODC ’90: Proceedings of the ninth annual ACM symposium on Principles of
distributed computing, New York, NY, USA, ACM (1990) 377–410

13. Streett, R.S.: Propositional dynamic logic of looping and converse. In: STOC ’81:
Proceedings of the thirteenth annual ACM symposium on Theory of computing,
New York, NY, USA, ACM (1981) 375–383

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP ’98: Proceedings of the second workshop on
Formal methods in software practice, New York, NY, USA, ACM (1998) 7–15

