
Underlying theory The j-POST toolchain and its functionalities Conclusion

j-POST: a Java Toolchain for Property-Oriented
Software Testing

Model-Based Testing / ETAPS’08

Yliès Falcone Laurent Mounier Jean-Claude Fernandez
Jean-Luc Richier

Vérimag & LIG, Universities of Grenoble

March 30 2008, Budapest, Hungary

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 1 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Testing a policy ?

Notion of policy :

Expected behavior of nowadays systems

Specific domains, e.g. security

Issues when testing a policy :

Availability and faithfulness of the model

Discrepancy between the policy and the system

Proposed Approach

No functional specification of the system

policy = set of requirements expressed by logical formula

property-oriented test generation based on the structure of each
formula ϕ

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 2 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Testing a policy ?

Notion of policy :

Expected behavior of nowadays systems

Specific domains, e.g. security

Issues when testing a policy :

Availability and faithfulness of the model

Discrepancy between the policy and the system

Proposed Approach

No functional specification of the system

policy = set of requirements expressed by logical formula

property-oriented test generation based on the structure of each
formula ϕ

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 2 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Running example : a travel agency application

The Travel application

Management of mission of employees in an organization

Client/Server principle

Users request to perform operations on the application

A security policy for Travel

“It is impossible to create a mission in Travel before being connected”
Formalization :

elementary operation

use of a logical formalism

(¬mission creation(user ,mission)) U connection(user)

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 3 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Running example : a travel agency application

The Travel application

Management of mission of employees in an organization

Client/Server principle

Users request to perform operations on the application

A security policy for Travel

“It is impossible to create a mission in Travel before being connected”
Formalization :

elementary operation

use of a logical formalism

(¬mission creation(user ,mission)) U connection(user)

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 3 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Outline

1 Underlying theory : Property-Oriented Software Testing
Test generation
Test execution

2 The j-POST toolchain and its functionalities

3 Conclusion

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 4 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test generation

Test Generation : general principle

Aimed to produce a test case relatively to a logical formula

About the test case

A set of communicating test processes (typed process algebra)

test modules : evaluation of elementary predicates
e.g. : to connect, perform an operation

test controllers : associated to operators of the formal requirement

→ Defined compositionaly following the syntax of the formula

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 5 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test generation

ϕ = (¬mission creation()) U connection()

Inputs : test modules and controllers :

connectionmission creation

verdict

start,stop start,stop

verdict start,stop,verdict

start,stop

start,stop,verdict

start,stop

¬U

Test case :

connection

mission creation

channels

control

and observation

U

¬

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 6 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test generation

Compositional test generation

Test generation function

Produce tϕ = GenTest(ϕ)

test module tpi associated to each predicate pi

each ψ = F n(ψ1, · · · , ψn) −→ test process tψ
↪→ tψ : parallel composition of tψ1 , . . ., tψn and {F n called a test
controller for the operator F n.

Roles of the controllers :

execution management for sub-tests

combination of verdicts

verdict transmission

execution directives (start,stop)

tψn

CFn

tψ1

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 7 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution

Principle of test execution

Produce a verdict for the initial requirement
↪→ Parallel execution of the test case and the SUT with synchronisation
on common action

Issues for execution :

Generated test case contains lots of possible executions
I Non-determinism inside test modules
I Parallel execution of test modules

Information in the test case comes (only) from the formula (no
additional behavior)
e.g. : insert a disconnection after being connected

↪→ Problem of test selection
↪→ A classical solution : use a test objective during test generation (e.g.
TGV)

Not applicable directly : no complete specification

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 8 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution

Principle of test execution

Produce a verdict for the initial requirement
↪→ Parallel execution of the test case and the SUT with synchronisation
on common action

Issues for execution :

Generated test case contains lots of possible executions
I Non-determinism inside test modules
I Parallel execution of test modules

Information in the test case comes (only) from the formula (no
additional behavior)
e.g. : insert a disconnection after being connected

↪→ Problem of test selection
↪→ A classical solution : use a test objective during test generation (e.g.
TGV)

Not applicable directly : no complete specification

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 8 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution

Principle of test execution

Produce a verdict for the initial requirement
↪→ Parallel execution of the test case and the SUT with synchronisation
on common action

Issues for execution :

Generated test case contains lots of possible executions
I Non-determinism inside test modules
I Parallel execution of test modules

Information in the test case comes (only) from the formula (no
additional behavior)
e.g. : insert a disconnection after being connected

↪→ Problem of test selection
↪→ A classical solution : use a test objective during test generation (e.g.
TGV)

Not applicable directly : no complete specification

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 8 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution

Principle of test execution

Produce a verdict for the initial requirement
↪→ Parallel execution of the test case and the SUT with synchronisation
on common action

Issues for execution :

Generated test case contains lots of possible executions
I Non-determinism inside test modules
I Parallel execution of test modules

Information in the test case comes (only) from the formula (no
additional behavior)
e.g. : insert a disconnection after being connected

↪→ Problem of test selection
↪→ A classical solution : use a test objective during test generation (e.g.
TGV)

Not applicable directly : no complete specification

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 8 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution

Test Objectives (1) : definition

The test objective guides the test execution

Features : local priorities and inserable behavior

Reduce choices between actions

Definition (Behavioural test objective)

A test objective O relatively to a test case t which semantics can be
expressed by a LTS (QSt ,ActSt ,→St , q

St
0) is :

a deterministic LTS (QO ,ActO ,→O , q
O
0)

complete wrt. ActSt (i.e. ∀q ∈ QSt ,∀a ∈ ActSt ,∃q′ ∈ QO · q a→O q′)

QO contains two sink states AcceptO and RejectO

ActO ⊆ ActSt ∪ Actcom

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 9 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution

Test Objectives (1) : definition

The test objective guides the test execution

Features : local priorities and inserable behavior

Reduce choices between actions

Definition (Behavioural test objective)

A test objective O relatively to a test case t which semantics can be
expressed by a LTS (QSt ,ActSt ,→St , q

St
0) is :

a deterministic LTS (QO ,ActO ,→O , q
O
0)

complete wrt. ActSt (i.e. ∀q ∈ QSt ,∀a ∈ ActSt ,∃q′ ∈ QO · q a→O q′)

QO contains two sink states AcceptO and RejectO

ActO ⊆ ActSt ∪ Actcom

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 9 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution

Test Objectives (2) : test selection

Priorities for actions :

For a ∈ ActO , prio(a)

∀E ⊆ Act∗·
prioritary(E) = {a ∈ E | prio(a) = max{prio(act) | act ∈ E}}

Test selection via a test objective

For a ∈ Act · prioritary(O(o)) = {a},

a ∈ T (t) t
a→St t ′ o

a→O o ′
1

(t, o)
a→St×O (t ′, o ′)

a /∈ T (t) inserable(a) o
a→O o ′

2
(t, o)

a→St×O (t, o ′)

o
a→O RejectO

3
(t, o)

a→St×O Inc

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 10 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution

Test Objectives (2) : test selection

Priorities for actions :

For a ∈ ActO , prio(a)

∀E ⊆ Act∗·
prioritary(E) = {a ∈ E | prio(a) = max{prio(act) | act ∈ E}}

Test selection via a test objective

For a ∈ Act · prioritary(O(o)) = {a},

a ∈ T (t) t
a→St t ′ o

a→O o ′
1

(t, o)
a→St×O (t ′, o ′)

a /∈ T (t) inserable(a) o
a→O o ′

2
(t, o)

a→St×O (t, o ′)

o
a→O RejectO

3
(t, o)

a→St×O Inc

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 10 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Outline

1 Underlying theory : Property-Oriented Software Testing

2 The j-POST toolchain and its functionalities
Test designer
Test generator
Test execution engine

3 Conclusion

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 11 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Overview

What is it ?

A toolchain dedicated to Property-Oriented Software Testing.

Logging information

Test
Designer

SUT

Informal
Requirement

Abstract
Actions

Engine
Execution

Test

ATM Library

Test
Generator

Instanciated

Tests

Test Objective

RMI

Tests
TGV

Formal Requirement

(pass,fail,inc)

pi ↔ ti

F(pi) ∈ ERE , LTL Verdict for F

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 12 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Features

Several phases of testing are addressed :

design (manual)

generation (automatic)

execution (automatic)

Support for several logics :

Extended Regular Expressions

Linear Temporal Logic

Using open formats for internal representations (tests modules, test
controllers) :

interaction with other tools (e.g. : TGV)

logical formalism (plugin)

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 13 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Features

Several phases of testing are addressed :

design (manual)

generation (automatic)

execution (automatic)

Support for several logics :

Extended Regular Expressions

Linear Temporal Logic

Using open formats for internal representations (tests modules, test
controllers) :

interaction with other tools (e.g. : TGV)

logical formalism (plugin)

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 13 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Features

Several phases of testing are addressed :

design (manual)

generation (automatic)

execution (automatic)

Support for several logics :

Extended Regular Expressions

Linear Temporal Logic

Using open formats for internal representations (tests modules, test
controllers) :

interaction with other tools (e.g. : TGV)

logical formalism (plugin)

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 13 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Outline

1 Underlying theory : Property-Oriented Software Testing

2 The j-POST toolchain and its functionalities
Test designer
Test generator
Test execution engine

3 Conclusion

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 14 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test designer

Functionalities of the test designer

About abstract test modules

extended LTS

Actions : internal, communication (internal to the tester), with the SUT

A typed process algebra as an underlying formalism

Establishment of a test module library

Edition of test modules

I XML
I GUI (based on Eclipse RCP)

Visualization of test modules

I Generation of a graph
I GraphViz

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 15 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test designer

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 16 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test generator

Outline

1 Underlying theory : Property-Oriented Software Testing

2 The j-POST toolchain and its functionalities
Test designer
Test generator
Test execution engine

3 Conclusion

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 17 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test generator

Functionalities of the test generator

Implements the GenTest function

Construction of a set of communicating tests

Instantiation of test modules and generic controllers with information
from the formula (e.g. value of parameters)

Supported formalisms :

(Future) Linear Temporal Logic

Extended Regular Expressions

Extendable architecture via logic plugins

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 18 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test generator

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 19 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution engine

Outline

1 Underlying theory : Property-Oriented Software Testing

2 The j-POST toolchain and its functionalities
Test designer
Test generator
Test execution engine

3 Conclusion

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 20 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution engine

Functionalities of the test execution engine

Goal : produce a verdict for the initial requirement

Multithreaded execution

Java Thread / test process

Scheduling policy (test objective)

Priority order between actions

“on the fly” concretisation

Mapping between external abstract actions and the actions on the SUT

Remote Method Invocation

Web service invocation

. . .

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 21 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution engine

Functionalities of the test execution engine

Goal : produce a verdict for the initial requirement

Multithreaded execution

Java Thread / test process

Scheduling policy (test objective)

Priority order between actions

“on the fly” concretisation

Mapping between external abstract actions and the actions on the SUT

Remote Method Invocation

Web service invocation

. . .

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 21 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution engine

Functionalities of the test execution engine

Goal : produce a verdict for the initial requirement

Multithreaded execution

Java Thread / test process

Scheduling policy (test objective)

Priority order between actions

“on the fly” concretisation

Mapping between external abstract actions and the actions on the SUT

Remote Method Invocation

Web service invocation

. . .

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 21 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Test execution engine

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 22 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Outline

1 Underlying theory : Property-Oriented Software Testing

2 The j-POST toolchain and its functionalities

3 Conclusion

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 23 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Conclusion

A Java toolchain dedicated to property testing

Extendable architecture

Proposed approach

algebraic composition

property-driven

suitable for security policy testing

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 24 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

References

j-POST Web page : http ://www-verimag.imag.fr/˜async/jpost.html

Theory

“A Test Calculus Framework Applied to Network Security Policies”. In
FATES/RV’06 : Formal Approaches to TESting/Runtime Verification

“A Compositional Testing Framework Driven by Partial Specifications”. In
TESTCOM/FATES’07 : TESTing of COMmunicating Systems/Formal Approaches
to TESting

“A Partial-specification Driven Compositional Testing Method”. Vérimag
Technical Report [TR-2007-4]

Implementation

j-POST : a Java Toolchain for Property-Oriented Software Testing. Vérimag
Technical Report [TR-2007-7]

Experiments with j-POST on a Travel Agency Application

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 25 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Perspectives

Assessment of quality for produced tests

coverage criteria

mutation

Using Abstraction/Concretisation in test modules

Abstract types [Lestiennes,Gaudel’02]
I Domain : finite set of values
I Operations on abstract data types need corresponding concrete

operations

Issues :
I Test execution can modify concrete domains
I Coverage of concrete wrt. abstract domains

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 26 / 26

Underlying theory The j-POST toolchain and its functionalities Conclusion

Perspectives

Assessment of quality for produced tests

coverage criteria

mutation

Using Abstraction/Concretisation in test modules

Abstract types [Lestiennes,Gaudel’02]
I Domain : finite set of values
I Operations on abstract data types need corresponding concrete

operations

Issues :
I Test execution can modify concrete domains
I Coverage of concrete wrt. abstract domains

Yliès Falcone (Vérimag) j-POST 03/30/08, Budapest, Hungary 26 / 26

	Underlying theory: Property-Oriented Software Testing
	Test generation
	Test execution

	The j-POST toolchain and its functionalities
	Test designer
	Test generator
	Test execution engine

	Conclusion

