
HAL Id: hal-00346061
https://hal.science/hal-00346061

Submitted on 11 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

j-POST: a Java Toolchain for Property-Oriented
Software Testing

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

To cite this version:
Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier. j-POST: a Java Toolchain
for Property-Oriented Software Testing. MBT’08: Model-Based Testing, 2008, pp.29-41. �hal-
00346061�

https://hal.science/hal-00346061
https://hal.archives-ouvertes.fr

MBT 2008

j-POST: a Java Toolchain for

Property-Oriented Software Testing

Yliès Falcone
1

Laurent Mounier
1

Jean-Claude Fernandez
1

Verimag
Université Grenoble I, INPG, CNRS

Grenoble, France

Jean-Luc Richier
1

LIG Laboratory
Université Grenoble I, INPG, CNRS

Grenoble, France

Abstract

j-POST is an integrated toolchain for property-oriented software testing. This toolchain includes a test
designer, a test generator, and a test execution engine. The test generation is based on an original approach
which consists of deriving a set of communicating test processes obtained both from a requirement formula
(expressed in a trace-based logic) and a behavioral specification of some specific parts of the software under
test. The test execution engine is then able to coordinate the execution of these test processes against a
distributed Java program. j-POST was applied to check the correct deployment of a security policy for a
travel management application.

Keywords: property testing, tool, composition, Java

1 Introduction

Testing is a validation technique aimed to find defective behaviours on a system

either during its development, or once a final version is issued. It remains one of

the most feasible methodologies to ensure the expected behaviour of a software.

This is notably due to its ability to cope with continual growth of system complex-

ity. However, reducing its cost and time consumption remains a very important

challenge sustained by a strong industrial demand.

In previous work [5,6] we have presented a black-box test generation method

able to construct abstract test cases from a formal requirement (a property that

the system is expected to fulfill). This method (implemented in a prototype tool)

is based on a test calculus allowing the method to be compositionally and formally

1 Email: FirstName.LastName@imag.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

file:FirstName.LastName@imag.fr

Falcone, Mounier, Fernandez, Richier

defined. In this framework, a requirement is expressed by a logical formula built

upon a set of (abstract) predicates. Each predicate corresponds to a (possibly non-

atomic) operation to be performed on the system under test, and is user-provided as

a test module indicating how to perform this operation on the actual implementa-

tion, and how to decide whether its execution succeeds or not. The test generation

step consists in building, by composition of test modules, a set of communicating

test processes from this property. In this paper we present a significant step from

this previous work. First off, we present formally how the previously generated test

can be executed. Besides we present j-POST, an integrated toolchain for property-

oriented software testing. In addition to a full implementation of the test generation

tool, we present the associated test designer and test execution engine resulting in

a fully integrated toolchain. The test designer helps the user to provide inputs

to the test generator. The test execution engine is able to coordinate the execu-

tion of the generated processes against a possibly distributed program, leading to a

satisfiability verdict with respect to the given requirement.

Comparison with classical model-based testing.

This approach offers several advantages over more classical model-based test

generation techniques [15] implemented in several existing tools (e.g. TGV [9],

TorX [16], see [2,7] for more exhaustive surveys). First, j-POST is able to deal with

piecewise specifications restricted to specific functionalities. We strongly believe

that this feature is really important in practice, especially in application domains

where formal modeling of software is not a common practice. Specifying only some

global requirement and some specific implementation features in an operational

way (i.e. the test modules) seems much easier for test engineers than building a

complete model of a software. As a consequence, the test generation step will not

require the exploration of such a complete model, avoiding the well-known state

explosion problem. Furthermore, this toolchain remains open in the sense that

various logics can be considered to express the requirements, and new logic plugins

can be easily added. Finally, this toolchain integrates a large spectrum of the whole

test process, from the test design to the test execution.

The remainder of this paper is organized as follows. Sect. 2 describes the un-

derlying theory of j-POST and Sect. 3 describes the toolchain itself. In Sect. 4, we

depict one of the experiments conducted with j-POST on a travel agency applica-

tion. Sect. 5 exposes some conclusions and perspectives opened by this work.

2 Underlying testing theory

This section briefly presents the background of j-POST, namely how to produce and

execute test cases from a formal requirement following a syntax-driven approach.

More details can be found in the research reports available in [8].

We consider in the following that the behaviour of the software under test (SUT)

can be modelled using a labelled transition system (LTS), noted Sut, namely a

quadruplet (QSut, ActSut,→, q0) where Q is a set of states, ActSut a set of actions

2

Falcone, Mounier, Fernandez, Richier

(labels), →⊆ QSut × ActSut × QSut the transition relation and q0 ∈ QSut the initial

state. In black-box testing this behaviour can be accessed only through a SUT

interface, namely a set of visible actions Actvis ⊆ ActSut. Non visible actions are

supposed to be labelled by τ . We will denote by p
a

−→ q when (p, a, q) ∈→, and

by p1
τ∗a
=⇒ q when there exist p2, p3, . . . , pn s.t. pi

τ
−→ pi+1 and pn

a
−→ q. Finally,

we define the execution sequences of Sut as the set of finite sequences of visible

actions that can be performed from its initial state: Exec(Sut) = {a1.a2. · · · .an |

∃q1, . . . , qn+1 s.t. qi
τ∗ai=⇒ qi+1 ∧ q1 = q0}.

2.1 The properties to test

We assume in the following that the properties to test are expressed using a logic

L . Formulas of L are built upon a finite set of n-ary operators Fn and a finite set

of predicates {p1, p2, . . . , pn}. The abstract syntax of such a logic could be defined

as follows: formula ::= Fn(formula1, formula2, . . . , formulan) | pi.

Formulas of L are interpreted over finite execution sequences. However, this se-

mantics also takes into account two other important features:

• First, this semantics is defined on two levels. Predicates are not atomic, i.e. they

do not necessarily correspond to occurrences of single visible actions, but rather

of (concrete) sequences of visible actions. Operators Fn are then interpreted over

abstract execution sequences, i.e., sequences of predicates.

• Second, since our objective is to test either the validity or the non-validity of a

formula ϕ, the semantics of ϕ defines three kinds of execution sequences, corre-

sponding to the possible verdicts delivered by a tester: the ones that satisfy ϕ

(pass), the ones that do not satisfy ϕ (fail), and the ones for which we cannot

conclude about the satisfiability of ϕ (inconc).

More formally, a triplet of finite languages (LP
pi

, LF
pi

, LI
pi

) is associated with each

predicate pi. These three languages define respectively concrete execution sequences

that satisfy pi, that do not satisfy pi, and for which the satisfiability of pi is unknown.

The following assumptions are required:

• LP
pi

, LF
pi

and LI
pi

are defined over an alphabet Api
⊆ Actvis. Intuitively, Api

is the

set of visible actions whose occurrences influence the truth value of pi.

• This set of three languages defines a partition of (Api
)∗.

• For two distinct predicates pi, pj , Api
and Apj

are disjoint.

The semantics of a non-atomic formula ϕ(p1, p2, . . . , pn) is then defined by three

sets [[ϕ]]P , [[ϕ]]F , [[ϕ]]I , inductively computed from LP
pi

, LF
pi

and LI
pi

for each pi

appearing in ϕ.

Finally, we say that an LTS S satisfies ϕ (we note S |= ϕ) iff all sequences of

Exec(S) belong to [[ϕ]]P , and we say that it does not satisfy ϕ iff there exists a

sequence of Exec(S) that belongs to [[ϕ]]F .

3

Falcone, Mounier, Fernandez, Richier

2.2 A set of communicating test processes

The test cases we aim to produce consist of a set of sequential communicating test

processes. Roughly speaking, each test process is built from classical programming

primitives such as variable assignment, sequential composition, (non-deterministic)

choice, and iteration. It can also perform communications with the other test pro-

cesses, and interact with the SUT. This sequential behaviour can be modelled by

an LTS extended with variables.

Test processes run asynchronously and communicate with each other either by

“rendez-vous” on dedicated communication channels or through shared variables.

The semantics of a whole test process Tϕ can be expressed by an LTS STϕ . A

complete syntax and semantics of such a “test calculus” can be found in [5], but

other classical process algebra could be used as well.

2.3 Test generation

The purpose of the test generation phase [6] is to produce a test case Tϕ (i.e. a set

of communicating test processes) associated to the L -formula ϕ under test. We

distinguish two kinds of test processes (which are both LTSs):

• test modules tpi
, provided by the user, and associated with the predicates pi of

ϕ. Their purpose is to produce a test verdict indicating whether a given concrete

execution sequence belongs either to LP
pi

, LF
pi

or LI
pi

. Examples of such test

modules are given on Fig. 5 in Sect. 4.

• test controllers tF n , associated with each n-ary operator Fn of the logic L . Their

purpose is to control the execution of the test process associated to each of their

operands by means of basic signals (start, stop, loop), and to collect their verdicts

in order to produce a resulting verdict corresponding to this instance of operator

Fn. One can find controllers for several logics in the research reports provided

in [8].

This test generation technique can be formalized by a function called GenTestL ,

such that GenTestL (ϕ) = Tϕ. This function is inductively defined on the syntax of

L in the following way:

• If ϕ = pi, then GenTestL (ϕ) returns the test module tpi
(associated with the

predicate pi) extended with the communication operations required to make it

controlable by another test process (see Fig. 3 in Sect. 3).

• If ϕ = Fn(ϕ1, · · · , ϕn), then GenTestL (ϕ) returns a parallel composition between

(recursively defined) test processes tϕ1 , . . . , tϕn and an instance of the (generic)

test controller tF n .

Finally, a special test process tmain is added to launch the whole test execution

and collect the final verdict. According to this generation technique, the architecture

of a test case Tϕ exactly matches the abstract syntax tree corresponding to formula

ϕ: the root is tmain, leaves are test modules corresponding to predicates pi of ϕ,

and intermediate nodes are controllers associated with operators of ϕ (see Fig. 6 in

Sect. 4.2 for an example).

4

Falcone, Mounier, Fernandez, Richier

2.4 Test selection and execution

From a formal point of view, the test execution sequences are the execution se-

quences of a parallel composition between the LTS S modelling the SUT behaviour

and the test case STϕ , with a “rendez-vous” synchronization on the visible actions

appearing in STϕ .

However, this LTS product may still contain a bunch of possible test executions

(due to possible non-determinism both inside the test modules and introduced by

the parallel composition). Moreover, the test generation function only ensures that

the verdicts produced by the test execution are sound with respect to the initial

formula ϕ: it does not help to select the interesting test executions that are likely

to exhibit an incorrect behaviour of the SUT. To solve this problem we propose to

use behavioural test objectives, already introduced in several model-based testing

tools (e.g. in [9,14]). Their purpose is to inject some execution scenario in the

test cases produced by the test generation phase, either by enforcing the execution

order of some visible actions, or by introducing other additional visible actions to

lead the SUT into some particular state. Most of the time, in specification based

testing, this test selection is performed during the test generation phase, by pruning

the undesired test executions from the whole SUT specification. In our approach,

the selection is not performed during test generation, but during the test execution

(similarly to walk guidance in TorX). This is due to the fact that we do not rely

on such a specification. So, the test selection phase is combined with the test

execution: the test objective is expressed by an LTS with accepting states, and the

test sequences leading to such states are privileged during the text execution.

This approach is formalized below. In a LTS S, for two states q, q′ we note

q′ ∈ ReachS(q) the fact that q′ is accessible from q in S. Also, when q′ ∈ ReachS(q),

we note dS(q, q′) the distance between q and q′, i.e. the minimal length of the

existing paths between q and q′.

Definition 2.1 [Behavioural test objective] A test objective O relatively to a test

case t which semantics can be expressed by a LTS (QSt , ActSt ,→St , q
St
0) is a de-

terministic LTS (QO, ActO,→O, qO
0) complete wrt. ActSt (i.e. ∀q ∈ QSt ,∀a ∈

ActSt ,∃q′ ∈ QO · q
a
→O q′). QO contains two sink states AcceptO and RejectO, and

ActO ⊆ Actvis.

Using a test objective, it is possible to operate “on the fly” a test selection on

the test case during the execution.

Definition 2.2 [Selection using a behavioural test objective] Let t be a test case

which semantics can be expressed by St = (QSt , ActSt ,→St , q
St

0), and a behavioural

test objective O = (QO, ActO,→O, qO
0). The execution of t guided by O can be

defined as a synchronous product SO
t = St × O such as ActS

O
t = ActO, QSO

t ⊆

QSt × QO ∪ Inc, and →SO
t

is defined by the following rules. Note that control and

observation actions are not distinguished.

t
a
→St

t′ AcceptO ∈ ReachO(o), o
a
→O o′ dS(o′, AcceptO) < dS(o, AcceptO), a ∈ ActSt

(1)
(t, o)

a
→SO

t

(t′, o′)

5

Falcone, Mounier, Fernandez, Richier

Test
Designer

SUT

Informal
Requirement

Engine
Execution

Test

ATM Library

Test
Generator

Test Objective

Formal Requirement

(pass,fail,inc)

Logging informationSUT
Interface

test cases
abstract

pi ↔ ti

F(pi) ∈ ERE, LTL Verdict for F

Fig. 1. Abstract view of the j-POST testing toolchain

AcceptO ∈ ReachO(o), o
a
→SO

o′ dS(o′, AcceptO) < dS(o, AcceptO), a /∈ ActSt

(1′)
(t, o)

a
→SO

t

(t, o′)

t
a
→St

t′ AcceptO ∈ ReachO(o), o
a
→O o′ dS(o′, AcceptO) ≥ dS(o, AcceptO)

(2)
(t, o)

a
→SO

t

(t′, o′)

o
a
→O RejectO

(3)
(t, o)

a
→SO

t

Inc

Some priorities are associated with these rules to favour the execution of tran-

sitions bringing closer to an Accept state. The rules (1) and (2) are of the highest

prioriy, then is rule (2), and at last the rule (3) is of the lowest priority.

Finally, the set of test execution sequences obtained from an SUT S and a test

case STϕ when taking into account a test objective O is defined as the execution

sequences of the parallel composition between the SUT S and the LTS STϕ × O.

Note that when the Inc state is reached in this composition, the whole test execu-

tion is stopped and an inconclusive verdict is issued. This general framework has

been instantiated for two particular logics, namely LTL-X, and extended regular

expressions (see Sect. 3.2).

3 Architecture and functionalities of j-POST

The architecture of the toolchain is depicted in Fig. 1. It is built upon three main

components, a test designer, a test generator and a test execution engine. Two

interfaces are provided: a command-line mode and a graphic interface.

The purpose of j-POST is to check through black-box testing whether a Java

application fulfills a given requirement. To do so, the test designer (step 1) helps

the user both to formalize this requirement in a trace-based logic and to elaborate

a test module library. Each test module (corresponding to a predicate used in

the requirement) is obtained by combining some of the actions offered by the SUT

interface. The test modules are used by the test generator (step 2), according to a

logic plugin, to produce a test case as a set of communicating test processes. Finally,

this test case can be launched by the test engine (step 3), taking into account a test

objective to select the more promising test sequences.

3.1 Test designer

The test designer of j-POST is a user assistant that helps to elaborate the formal re-

quirements and the corresponding test modules through dedicated editors available

within the Eclipse Modeling Framework. Each test module is stored into an XML

file (their j-POST internal representation). Moreover, the test designer provides

6

Falcone, Mounier, Fernandez, Richier

ATM Library

Graph representation

Informal Requirement

Test ModuleTest Modules

Formal requirement

Visualizer

DesignerTest

SUT Interface

Editor
Requirement

Editor
Test Module

pi ↔ mi

(png, jpeg, . . .)

F(pi) ∈ ERE, LTL

Test

Instanciation

Requirement
Parser

GeneratorTest

Test Tree
Builder

LTL
plugin plugin

ERE

Formal Requirement ATM Library

Test case

F(pi) ∈ ERE, LTL pi ↔ mi

m1 ‖ · · · ‖ mn communicating

Fig. 2. Abstract view of the j-POST test designer and test generator architecture

a tool (based on GraphViz [1]) to vizualise them in a more intelligible way. This

avoids any error-prone manipulations of XML files from the user.

3.2 Test generator

The j-POST test generator consists mainly in implementing the GenTestL function.

It produces a test case following the syntax-driven approach recalled in Sect. 2.3 in

two stages:

The first stage is the construction of a communication tree obtained from the

abstract syntax tree of the formula. This tree expresses the communication archi-

tecture between the test processes that will be produced by the test generator. Its

leaves are abstract test modules (ATM) corresponding to the atomic predicates of

the formula, taken from the library. Its internal nodes are (copies of) generic test

controllers, corresponding to the logical operators appearing in the formula (they

are obtained from a finite set of generic controllers provided by the logic plugin).

Finally, the root of this tree is a special test process, called testCaseLauncher,

whose purpose is to initiate the test execution and deliver the resulting verdict.

The second stage consists of instantiating the communication tree by associating

fresh channel names to each local communication between test processes. It relies

on a traversal of this communication tree in order to modify the test modules.

In particular the test modules provided by the user are automatically extended

with additional communication actions to be managed by the test controllers, e.g.

starting signal, verdict emission (see Fig. 3). The resulting test case is a set of XML

files, one per test process.

Generic test controllers and test generation algorithms have been defined for

different specification formalisms. So far, j-POST TestGenerator supports two

common-use formalisms, by means of logic plugins:

• Temporal logics [12] like LTL are frequently used in the verification community

to express requirements on reactive systems. We consider here fragments of such

logics whose models are set of finite execution traces. We did not include the

next operator in order to be insensitive to stuttering [3]. The complete definition

of the variant of LTL-X we use is given in [6].

• Extended Regular Expressions [10] are another formalism to define behavior pat-

7

Falcone, Mounier, Fernandez, Richier

?c loop()

?c loop()

tp?c start() !c ver(ver)

?c stop()

. . .?c stop() . . .

?c stop()

Fig. 3. Instantiation of an abstract test component tp

ATC Engine

Scheduler

Logger

Objective
Engine

Test case
Loader

SUT

EngineTest Execution

information
execution

Execution traces

Execution graphs

Test Objective

abstract external
actions

Concretisation

pluginplugin
Mapping communication

RMI JMS

Abstract test case

(pass,fail,inc)

Wrapper

Verdict for F

m1 ‖ · · · ‖ mn communicating

Fig. 4. Abstract view of the j-POST test execution engine

terns expressed by finite execution traces. They are commonly used and well-

understood by engineers.

3.3 Test execution engine

The purpose of the test execution engine is to produce a verdict for the initial

requirement. It takes as inputs the test case produced by the test generator, a test

objective, and a mapping describing how to execute SUT interactions used in the

test modules.

The architecture of the engine is depicted in Fig. 4. First the test case (a set of

XML files) is loaded using the test case loader. Each test process is executed in a

separate Java thread. A centralized scheduler implements both the internal commu-

nications between the test processes (based on “rendez-vous” and shared variables),

and solves the priority conflicts between their actions (according to a predefined

policy). Moreover, interactions to be performed on the SUT transit through a Con-

cretisation Wrapper. This component is in charge of transforming these interactions

into executable operations on the SUT (depending on the communication medium

used, e.g. Java RMI). This transformation may also add some parameters omitted

at the test module level (for the sake of simplicity), but mandatory for the test

execution. Finally, the test selection operation described in Sect. 2.4 is performed

by the Objective Engine. When the test execution terminates a verdict is issued

and the Logger produces some execution traces that help the diagnostic phase.

8

Falcone, Mounier, Fernandez, Richier

4 j-POST at work

We describe in this section the use of j-POST on an example. Tests are designed,

generated, executed using the j-POST toolchain to check some properties on a travel

agency application [4], called Travel. We take as inputs an informal requirement

extracted from the functional specification of Travel and the application interface.

The requirement we choose for the demonstration purpose is informally expressed

as “it is impossible to create a mission in Travel before being connected”.

4.1 Test design

We start by presenting the test design stage, that is the requirement formalization

and the edition of test modules.

Requirement formalization.

A possible understanding of our requirement could be that a behaviour in

which it is possible to create a mission before performing the identification ac-

tion is not desired. In other words, we can say that we require no mission cre-

ation until a connection is open. This informal statement refers to two abstract

operations: “create a mission”, and “open a connection”. In the following we

respectively designate these two operations by the predicates missionCreation()

and connection(). The requirement can be expressed formally by an LTL formula:

(¬missionCreation()) U connection().

Test module edition.

Test modules have to be created by the user for the predicates

missionCreation() and connection(). Each of this module should describe:

• how to perform the abstract operation using the Travel interface;

• what is the test verdict obtained (depending on how Travel reacts).

Possible test modules are proposed in Fig. 5, produced with the j-POST test

designer. The connection test module (left-hand side) contains three possible ex-

ecution sequences: a correct call to the connection method identify (the user

is “Falcone”, the correct password is “azerty”, which corresponds to a registered

user of Travel), an incorrect one (the password is “qwerty”, it is not valid), and

an execution where the connection procedure is never called. Note that the call

to the identify() method returns an identification number which is stored in a

shared variable (between test components) called id. The createMission test mod-

ule (right-hand side) consists of calling the missionRequest() method, supplying

the shared variable id as an identification number. Depending on the return value

(createOk), it delivers the corresponding verdict.

Inside the toolchain these modules are represented using an XML format, but,

from a practical point of view, they can be written and viewed using the j-POST

test designer.

9

Falcone, Mounier, Fernandez, Richier

Fig. 5. Test modules for predicates connection and createMission

rootTestCase

Controller

until

Controller

not

connection

missionCreation

c start1, c stop1,

c loop1, c ver1

c start0, c stop,

c loop0, c ver

c start2, c stop2,

c loop2, c ver2,

c start3, c stop3,

c loop3, c ver3

Fig. 6. Test case produced from ¬(missionCreation)U connection

4.2 Test generation

The requirement stated, and the test modules designed (Fig. 5), we are now able to

perform the test generation. In order to illustrate such a process, we give an insight

of the generated test case on Fig. 6. The structure of this test case follows the

structure of the formula. It contains a test controller for each operator appearing

in the formula (Until and Not), and a test module for each predicate (missionCre-

ation() and Connection()). The testCaseLauncher is in charge of managing the

execution of the testcase and emitting the final verdict. The c start (resp. c stop,

c loop, c ver) channels are used by the processes to perform starting (resp. stopping,

rebooting, verdict transmission) operations.

4.3 Test execution

The next operation to perform is to choose a test objective in order to restrict the set

of potential test executions. Regarding the requirement we consider (“no mission

creation until a connection is open”), an interesting objective is to try to falsify this

requirement in order to exhibit an incorrect behaviour of the software under test.

Falsifying such a requirement means for instance producing an execution sequence

where :

• the verdict delivered by missionCreation() is pass (possibly after several previous

fail results) ;

• in the meantime, the verdict delivered by connection() remains always fail.

Such a test objective can be obtained from the test modules given on Fig. 5. How-

ever, obtaining a fail verdict for a connection operation can be fully controlled by

10

Falcone, Mounier, Fernandez, Richier

the test execution engine (e.g., by supplying an incorrect password), whereas the

verdict returned by a mission creation cannot be controlled (it only depends on the

SUT behaviour).

Three versions of the Travel application have been tested:

• Experiment 1. In the first (erroneous) version of Travel a mission creation request

is always accepted, therefore our requirement is false (a mission can be created

by a non connected user). The test execution engine detects this error (it delivers

a fail verdict) and produces the test execution traces and graphs for the test case

and each module.

• Experiment 2. In the second (erroneous) version of Travel a mission creation

request is accepted either if the identification number supplied is correct (it cor-

responds to a return value of a connection request), or if it is the third attempt

to create this mission. Therefore our requirement is still false: if a non connected

user tries repeatedly to create a mission, it eventually succeeds. This error is

detected by the test engine, which delivers a fail verdict.

• Experiment 3. Finally, the third version of Travel always refuses a mission request

as long as the identification number supplied is invalid. Thus, the only way for

a non connected user to create a mission is to “guess” a correct identification

number. This cannot be achieved by our test execution engine, which delivers

here a pass verdict.

5 Conclusion and perspectives

This paper presents an original approach for property-oriented software test-

ing (POST). Starting from a formula expressed in a trace-based logic, the user

first provides a test module (using the test designer) dedicated to each predicate

appearing in this formula. The test generation phase then consists of producing a

test case as a set of communicating test processes by combining the test modules

with some test controllers associated to each logical operator. This test case can be

executed by a test engine, able to take into account a test objective to constrain the

set of test sequences to execute. This whole testing approach has been implemented

in a working tool and applied to some non-trivial case studies. The architecture

makes it open, and easily allows the toolchain to support new logical formalisms by

adding logic plugins.

The main advantage of this approach is that it does not require a “global”

behavioural specification of the software under test, as is the case in many model-

based testing approaches. In fact the user only needs to make explicit the evaluation

of a predicate in the test modules. The test generation phase is therefore rather

straightforward and does not suffer from state explosion limitations. Of course, the

test case produced may encompass many possible test executions, but the use of

test objective allows the user to select the most interesting scenarios. This approach

seems particularly relevant to dealing with security or robustness testing, where the

functional model of the SUT can be very large (and hence not easily available

11

Falcone, Mounier, Fernandez, Richier

as a single formal specification), and where the requirements to be checked only

concern specific parts of this model. In fact, one of the motivations for this work

was the validation of the correct deployment of security policies within the French

Politess [13] project.

The Travel case study allowed many enhancements for j-POST and opens several

research perspectives. In particular, it appears that the design of test modules could

be facilitated by the use of abstract domains (e.g., at the test module level one only

needs to distinguish between correct passwords and incorrect ones, without referring

to a concrete value). These abstract domains could then be concretized only at the

test execution level by selecting relevant values within a concrete domain (which

may depend on the SUT’s current state). This concretisation could be performed,

for instance, according to coverage criteria that could be defined with respect to the

requirement under test. It seems particularly worthwile to relate this work with [11].

References

[1] AT&T Research, Graph Visualization Software, http://www.graphviz.org (2007).

[2] Belinfante, A., L. Frantzen and C. Schallhart, Tools for Test Case Generation., in: M. Broy, B. Jonsson,
J.-P. Katoen, M. Leucker and A. Pretschner, editors, Model-Based Testing of Reactive Systems, LNCS
3472, 2004, pp. 391–438.

[3] Clarke, E., O. Grumberg and S. Peled, “Model Checking,” The MIT Press, 1997.

[4] Falcone, Y., A Travel Agency Application, Technical report, Vérimag (2007).

[5] Falcone, Y., J.-C. Fernandez, L. Mounier and J.-L. Richier, A Test Calculus Framework Applied to
Network Security Policies., in: FATES/RV, LNCS 4262, 2006, pp. 55–69.

[6] Falcone, Y., J.-C. Fernandez, L. Mounier and J.-L. Richier, A Compositional Testing Framework Driven
by Partial Specifications, in: TestCom/FATES, LNCS 4581, 2007, pp. 107–122.

[7] Hartman, A., Model Based Test Generation Tools Survey, Technical report, AGEDIS Consortium
(2002).

[8] j-POST Reference Page (2007).
URL http://www-verimag.imag.fr/∼async/jpost.html

[9] Jard, C. and T. Jéron, TGV: theory, principles and algorithms, A tool for the automatic synthesis of
conformance test cases for non-deterministic reactive systems, Software Tools for Technology Transfer
(STTT) 6 (2004).

[10] Kleene, S. C., Representation of events in nerve nets and finite automata, in: C. E. Shannon and
J. McCarthy, editors, Automata Studies, Princeton University Press, Princeton, New Jersey, 1956 pp.
3–41.

[11] Lestiennes, G. and M.-C. Gaudel, Testing processes from formal specifications with inputs, outputs and
data types, in: ISSRE (2002), pp. 3–14.

[12] Manna, Z. and A. Pnueli, “Temporal verification of reactive systems: safety,” Springer-Verlag New
York, Inc., New York, NY, USA, 1995.

[13] Project Politess, ANR-05-RNRT-01301 (2007).
URL http://www.rnrt-politess.info

[14] Schmitt, M., M. Ebner and J. Grabowski, Test Generation with Autolink and Testcomposer, in: 2nd
Workshop of the SDL Forum Society on SDL and MSC - SAM’, 2002.

[15] Tretmans, J., Test Generation with Inputs, Outputs and Repetitive Quiescence, Software - Concepts
and Tools 17 (1996), pp. 103–120.

[16] Tretmans, J. and E. Brinksma, TorX: Automated Model Based Testing - Côte de Resyste, in:
Proceedings of the First European Conference on Model-Driven Software Engineering, 2003, pp. 13–25.

12

http://www-verimag.imag.fr/~async/jpost.html
http://www.rnrt-politess.info

	Introduction
	Underlying testing theory
	The properties to test
	A set of communicating test processes
	Test generation
	Test selection and execution

	Architecture and functionalities of j-POST
	Test designer
	Test generator
	Test execution engine

	j-POST at work
	Test design
	Test generation
	Test execution

	Conclusion and perspectives
	References

