A COMPOSITIONAL TESTING FRAMEWORK
DRIVEN BY PARTIAL SPECIFICATIONS
TESTCOM/FATES 2007, Tallinn, Estonia

Ylies Falcone, Jean-Claude Fernandez, Laurent Mounier,
Jean-Luc Richier

Verimag Laboratory
LIG Laboratory

Grenoble Universities

Friday, June 29

Ylies Falcone (Verimag) Friday, June 29 1/1

Testing a security policy ?

Inspired from protocol conformance testing:
@ definition, generation and execution of test cases:

» sequences of interactions between a testing tool and a SUT
» deliver a verdict € {Pass, Fail, Inconc}

@ test generation can be (partially) automated

o well-defined theory

But:

@ needs a “complete” (functional) specification of the system under
test,

@ test interactions performed at a precise interface level

= not the case when testing a security policy ...

Ylies Falcone (Verimag) Friday, June 29 2/1

Proposed approach ... (1)

@ security policy = set of requirements expressed by logical formula

@ property-oriented test generation based on the structure of each
formula ¢

More precisely:

@ elementary predicates of ¢ = test pattern t;, designed by
administrators or security experts

@ global test case t, obtained by connecting t; with test controllers
corresponding to logical operators of .

= structural correspondance between formula and test cases

Ylies Falcone (Verimag) Friday, June 29 3/1

Proposed approach (2)

Informal Requirements R Implementation /
(using abstract predicates P;) /
Loglc Plug-in Elementary test cases { Tc;}

'

Formal requirements {4}

Test Generation / est Instantiation/V Test Execution

Abstract testers {AT,, } Concrete testers { T, } Verdict

Ylies Falcone (Verimag) Friday, June 29 4/1

Proposed approach (2)

Informal Requirements R Implementation /
(using abstract predicates P;) /
Loglc Plug-in Elementary test cases { Tc;}

'

{¢} € LTL, ERE

Test Generation / est Instantiation/V Test Execution

{AT,} € ProcessAlgebra Concrete testers { T, } Verdict

Ylies Falcone (Verimag) Friday, June 29 4/1

Outline

Ylies Falcone (Verimag) Friday, June 29 5/1

Test Process Algebra

Test cases: test processes manipulating data and interacting with the SUT
o Parallelise test executions

@ Exception mechanism

Ylies Falcone (Verimag) Friday, June 29 6/1

Test Process Algebra

Test cases: test processes manipulating data and interacting with the SUT
o Parallelise test executions

@ Exception mechanism

Basic test cases

t = [blyot|t+t]|nil]|reXt|X
b = true|false | bV b|bAb|—b| expr = expr:
voon= X = exprr | le(expry) | 7e(xr)

Test cases (test processes)

pu=t|t]est|txtt

Ylies Falcone (Verimag) Friday, June 29 6/1

Test verdicts

Test execution of t, delivers a test verdict:
@ Pass: ¢ was not violated during the test execution
@ Fail: ¢ was violated during the test execution

@ Inconc: test execution did not allow to conclude about validity of ¢

Test verdict computation:

@ a "local” verdict is produced by each basic tester (basic predicates of
)

@ each controller combines its local verdicts and propagate the result
“upward” (using communication channels)

@ the final verdict is computed by the main controller

Ylies Falcone (Verimag) Friday, June 29 7/1

Test generation

Principle : produce t, = GenTest(y)

@ basic tester t, associated with each abstract predicate p;

e each) = F"(¢1,--- ,1p) — test process ty
< ty : parallel composition of ty,, ..., ty, and Cgn called a test
controller for operator F".

Example : ¢ = @1 * o

—e verdict for ¢

BK -+—» External com

/ x <+— Internal com

SUT

Ylies Falcone (Verimag) Friday, June 29 8/1

Basic tester:
@ test pattern associated to basic predicates of ¢

@ depending on the control/observation level of the SUT

Controllers:
@ Test execution management (sub-tests scheduling) :

@ Verdict computation : “implement” logic operator semantics
(one generic controler per operator of)

e verdict for ¢

E -+ External com

/ \ <+— Internal com

Ylies Falcone (Verimag) Friday, June 29 9/1

Test function generation

GenTest(y) def GT (i, cs) ||{c_start,cvery (c_start()o?c_ver(x) o nil)

?c_loop()

le_ver(ver

Ylies Falcone (Verimag) Friday, June 29 10/1

Test function generation

GenTest(p) " GT (i, cs) [|{cstort,cvery (lc_start()o?c_ver(x) o nil)

Basic case

e

GT(pi,cs) " Test(t,,, cs)

Test(t,, { c_start, c_stop, c_loop, c_ver}) =

?c_loop()

le_ver(ver

Ylies Falcone (Verimag) Friday, June 29 10/1

Test function generation

GenTest(p) " GT (i, cs) [|{cstort,cvery (lc_start()o?c_ver(x) o nil)

Basic case

e

GT(pi,cs) " Test(t,,, cs)

Test(t,, { c_start, c_stop, c_loop, c_ver}) =

?c_loop()

le_ver(ver

Inductive case

GT(F"(¢1,...,0n), cs)

(GT(¢1,¢51) || -+ || GT(én,c5n)) lles' Crnlcs, cs1,-- -, csp)
Friday, June29 10 /1

Outline

Ylies Falcone (Verimag) Friday, June 29 1/1

Instanciation on two “logics”

Testing framework instanciated:
@ Action based LTL-X

o Extended Regular Expressions

How instanciate this framework?
@ Give GenTest function

@ Prove its soundnesss

— GenTest is made explicit by giving controllers
e LTL-X : CA,C-,Cy
e EREs : (-, C.,Cchoice,Ct

Ylies Falcone (Verimag) Friday, June 29 12/1

The C, controller (simplified)

[:v@l = fail V y, = faillzy := fail

Te.verp (zy,.)

Tcvery (mvl)

[othercases|zy := inc

lever(zy) 0
le_startp()
' Tcverp(zy,.) - _ —

feverp Ty, [z”l = pass A gy, = pass|zy = pass

P () ?c_veTl(a:vl)
?c-loop()

Testart()

< (e 0
leloop; () leloopy()

Ylies Falcone (Verimag) Friday, June 29 13/1

The C, controller (simplified)

[~timeout A aci) = pass]!cloop’ ()

2cver! (z%)

lestart! ()

start_-timer
U

>

/

[—\(xvl = pass)|zy = a:gj [timeout]zy 1= 2,

< D({C-St‘)p}7c-stop()O!C-St0P/() o nil > O

Ylies Falcone (Verimag) Friday, June 29 14 /1

Soundness result

Abstract test cases are always sound

Hypothesis needed: basic test cases are sound

Theorem

Let ¢ be a formula, and t = GenTest(y), o a test execution sequence, the
proposition is:

VExec(o) = pass = o satisfies ¢
VExec(o) = fail = o does not satisfy ¢

Ylies Falcone (Verimag) Friday, June 29 15/1

Outline

Ylies Falcone (Verimag) Friday, June 29 16 /1

Test generation

Inputs

@ SUT interface : controllable and observable actions
o ATC library

writing test case
use SUT interface

@ Requirement in a trace-based formalism

— abstract test case corresponding to the requirement

Ylies Falcone (Verimag) Friday, June 29 17 /1

Test Execution

Architecture overview:

Tester modified SUT

AT]é?l’gi%e jg[Arclﬁtrf[:gure]
N/

verdict Communication
Device

+ Messages over Java—RMI ‘

“Black-box" approach : interface calls

Ylies Falcone (Verimag) Friday, June 29 18 /1

Conclusion

Testing framework
@ Produce and execute test cases
High level requirement (trace-based formalism: LTL-X, EREs)
syntax driven
structured tests
no need for a complete specification of the SUT

... but need some expertise to design the initial basic tester

Prototype tool, basic experiments

Ylies Falcone (Verimag) Friday, June 29 19/1

Current work

Implementation within a test environment
@ test generation and test execution tools
@ abstract test case library

@ connection to existing security policy description languages (e.g.,
OrBac)

@ more case studies ...

Use MOP technology [Chen, Rosu 05]
@ connection with monitoring technique

@ integration abilities (abstract aspects)

Ylies Falcone (Verimag) Friday, June 29 20/1

	Our approach
	Test process algebra
	Test verdicts
	Test generation

	Application to a variant of LTL, and EREs
	Tool overview
	Test generation
	Test execution

	

