
A Compositional Testing Framework
Driven by Partial Specifications

TESTCOM/FATES 2007, Tallinn, Estonia

Ylies Falcone, Jean-Claude Fernandez, Laurent Mounier,
Jean-Luc Richier

Verimag Laboratory

LIG Laboratory

Grenoble Universities

Friday, June 29

Ylies Falcone (Verimag) Friday, June 29 1 / 1

Testing a security policy ?

Inspired from protocol conformance testing:

definition, generation and execution of test cases:
I sequences of interactions between a testing tool and a SUT
I deliver a verdict ∈ {Pass, Fail, Inconc}

test generation can be (partially) automated

well-defined theory

But:

needs a “complete” (functional) specification of the system under
test,

test interactions performed at a precise interface level

⇒ not the case when testing a security policy . . .

Ylies Falcone (Verimag) Friday, June 29 2 / 1

Proposed approach ... (1)

security policy = set of requirements expressed by logical formula

property-oriented test generation based on the structure of each
formula ϕ

More precisely:

elementary predicates of ϕ ⇒ test pattern ti , designed by
administrators or security experts

global test case tϕ obtained by connecting ti with test controllers
corresponding to logical operators of ϕ.

⇒ structural correspondance between formula and test cases

Ylies Falcone (Verimag) Friday, June 29 3 / 1

Proposed approach (2)

Implementation I

Logic Plug-in

Test Execution

Verdict

Informal Requirements R

Abstract testers {ATϕ}

Formal requirements {ϕ}

Concrete testers {Tϕ}

Elementary test cases {Tci}

(using abstract predicates Pi)

Test InstantiationTest Generation

Ylies Falcone (Verimag) Friday, June 29 4 / 1

Proposed approach (2)

{ATϕ} ∈ ProcessAlgebra

Logic Plug-in

Test Execution

Verdict

Informal Requirements R

Concrete testers {Tϕ}

Elementary test cases {Tci}

(using abstract predicates Pi)

Test InstantiationTest Generation

Implementation I

{ϕ} ∈ LTL, ERE

Ylies Falcone (Verimag) Friday, June 29 4 / 1

Outline

Ylies Falcone (Verimag) Friday, June 29 5 / 1

Test process algebra

Test Process Algebra

Test cases: test processes manipulating data and interacting with the SUT

Parallelise test executions

Exception mechanism

Basic test cases

t ::= [b] γ ◦ t | t + t | nil | recX t | X
b ::= true | false | b ∨ b | b ∧ b | ¬b | exprτ = exprτ
γ ::= xτ := exprτ | !c(exprτ) | ?c(xτ)

Test cases (test processes)

p ::= t | t ‖cs t | t nI t

Ylies Falcone (Verimag) Friday, June 29 6 / 1

Test process algebra

Test Process Algebra

Test cases: test processes manipulating data and interacting with the SUT

Parallelise test executions

Exception mechanism

Basic test cases

t ::= [b] γ ◦ t | t + t | nil | recX t | X
b ::= true | false | b ∨ b | b ∧ b | ¬b | exprτ = exprτ
γ ::= xτ := exprτ | !c(exprτ) | ?c(xτ)

Test cases (test processes)

p ::= t | t ‖cs t | t nI t

Ylies Falcone (Verimag) Friday, June 29 6 / 1

Test verdicts

Test verdicts

Test execution of tϕ delivers a test verdict:

Pass: ϕ was not violated during the test execution

Fail : ϕ was violated during the test execution

Inconc: test execution did not allow to conclude about validity of ϕ

Test verdict computation:

a “local” verdict is produced by each basic tester (basic predicates of
ϕ)

each controller combines its local verdicts and propagate the result
“upward” (using communication channels)

the final verdict is computed by the main controller

Ylies Falcone (Verimag) Friday, June 29 7 / 1

Test generation

Principle : produce tϕ = GenTest(ϕ)

basic tester tpi associated with each abstract predicate pi

each ψ = F n(ψ1, · · · , ψn) −→ test process tψ
↪→ tψ : parallel composition of tψ1 , . . . , tψn and {F n called a test
controller for operator F n.

Example : ϕ = ϕ1 ∗ ϕ2

SUT

External com

Internal com

tϕ2

{∗
verdict for ϕ

tϕ1

Ylies Falcone (Verimag) Friday, June 29 8 / 1

Test generation

Basic tester:

1 test pattern associated to basic predicates of ϕ

2 depending on the control/observation level of the SUT

Controllers:

1 Test execution management (sub-tests scheduling) :

2 Verdict computation : “implement” logic operator semantics
(one generic controler per operator of ϕ)

SUT

External com

Internal com

tϕ2

{∗
verdict for ϕ

tϕ1

Ylies Falcone (Verimag) Friday, June 29 9 / 1

Test generation

Test function generation

GenTest(ϕ)
def
= GT (ϕ, cs) ‖{c start,c ver} (!c start()◦?c ver(x) ◦ nil)

Basic case

GT (pi , cs)
def
= Test(tpi , cs)

Test(tp, {c start, c stop, c loop, c ver}) def
=

?c loop()

tp?c start() !c ver(ver)

?c stop()

. . .?c stop() . . .

?c stop()

Inductive case

GT (F n(φ1, . . . , φn), cs)
def
=

(GT (φ1, cs1) ‖ · · · ‖ GT (φn, csn)) ‖cs′ {F n(cs, cs1, . . . , csn)

Ylies Falcone (Verimag) Friday, June 29 10 / 1

Test generation

Test function generation

GenTest(ϕ)
def
= GT (ϕ, cs) ‖{c start,c ver} (!c start()◦?c ver(x) ◦ nil)

Basic case

GT (pi , cs)
def
= Test(tpi , cs)

Test(tp, {c start, c stop, c loop, c ver}) def
=

?c loop()

tp?c start() !c ver(ver)

?c stop()

. . .?c stop() . . .

?c stop()

Inductive case

GT (F n(φ1, . . . , φn), cs)
def
=

(GT (φ1, cs1) ‖ · · · ‖ GT (φn, csn)) ‖cs′ {F n(cs, cs1, . . . , csn)

Ylies Falcone (Verimag) Friday, June 29 10 / 1

Test generation

Test function generation

GenTest(ϕ)
def
= GT (ϕ, cs) ‖{c start,c ver} (!c start()◦?c ver(x) ◦ nil)

Basic case

GT (pi , cs)
def
= Test(tpi , cs)

Test(tp, {c start, c stop, c loop, c ver}) def
=

?c loop()

tp?c start() !c ver(ver)

?c stop()

. . .?c stop() . . .

?c stop()

Inductive case

GT (F n(φ1, . . . , φn), cs)
def
=

(GT (φ1, cs1) ‖ · · · ‖ GT (φn, csn)) ‖cs′ {F n(cs, cs1, . . . , csn)

Ylies Falcone (Verimag) Friday, June 29 10 / 1

Outline

Ylies Falcone (Verimag) Friday, June 29 11 / 1

Instanciation on two “logics”

Testing framework instanciated:

Action based LTL-X

Extended Regular Expressions

How instanciate this framework?

Give GenTest function

Prove its soundnesss

=⇒ GenTest is made explicit by giving controllers

LTL-X : {∧, {¬, {U
EREs : {¬, {·, {choice, {+

Ylies Falcone (Verimag) Friday, June 29 12 / 1

The {∧ controller (simplified)

!c startl()

?c verr(xvr)

?c verl(xvl
)

?c verr(xvr)

?c verl(xvl
)

[othercases]xv := inc

[xvl
= fail ∨ xvr = fail]xv := fail

[xvl
= pass ∧ xvr = pass]xv := pass

!c ver(xv)

?c loop()

!c loopr()!c loopl()

!c startr()

?c start()

Ylies Falcone (Verimag) Friday, June 29 13 / 1

The {+ controller (simplified)

?c start()

[¬(xvl
= pass)]xv := x′

v

!c ver(xv)

⋉
{c stop}?c stop()◦!c stop′() ◦ nil

?c ver′(x′
v)

[timeout]xv := x′
v

!c start′() start timer

[¬timeout ∧ x′
v = pass]!c loop′()

Ylies Falcone (Verimag) Friday, June 29 14 / 1

Soundness result

Abstract test cases are always sound

Hypothesis needed: basic test cases are sound

Theorem

Let ϕ be a formula, and t = GenTest(ϕ), σ a test execution sequence, the
proposition is:

VExec(σ) = pass =⇒ σ satisfies ϕ
VExec(σ) = fail =⇒ σ does not satisfy ϕ

Ylies Falcone (Verimag) Friday, June 29 15 / 1

Outline

Ylies Falcone (Verimag) Friday, June 29 16 / 1

Test generation

Test generation

Inputs

SUT interface : controllable and observable actions

ATC library
I writing test case
I use SUT interface

Requirement in a trace-based formalism

→ abstract test case corresponding to the requirement

Ylies Falcone (Verimag) Friday, June 29 17 / 1

Test execution

Test Execution

Architecture overview:

verdict Stub

modified SUTTester

Communication

Messages over Java−RMI

Device

ATCATC
Architecture

SUT
interface

ATC
Engine

“Black-box” approach : interface calls

Ylies Falcone (Verimag) Friday, June 29 18 / 1

Conclusion

Testing framework

Produce and execute test cases

High level requirement (trace-based formalism: LTL-X, EREs)

syntax driven

structured tests

no need for a complete specification of the SUT

... but need some expertise to design the initial basic tester

Prototype tool, basic experiments

Ylies Falcone (Verimag) Friday, June 29 19 / 1

Current work

Implementation within a test environment

test generation and test execution tools

abstract test case library

connection to existing security policy description languages (e.g.,
OrBac)

more case studies . . .

Use MOP technology [Chen, Rosu 05]

connection with monitoring technique

integration abilities (abstract aspects)

Ylies Falcone (Verimag) Friday, June 29 20 / 1

	Our approach
	Test process algebra
	Test verdicts
	Test generation

	Application to a variant of LTL, and EREs
	Tool overview
	Test generation
	Test execution

	

