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URBAN RADIO NETWORK PLANNING FOR MOBILE PHONES

by Patrice Calégari, Frédéric Guidec, Pierre Kuonen, EPFL - DI - GRIP/LITH

La planification de réseaux radio pour la téléphonie
mobile en milieu urbain est une nécessite de gros calculs,
qu'il est préférable d'exécuter sur plusieurs processeurs en
parallèle. D'une part, il faut simuler la propagation des
ondes radio afin de pr

�
dire les zones qui peuvent être

couvertes. Le programme ParFlow++ a été développé dans
ce but. D'autre part, il faut choisir l'ensemble d'antennes qui
couvre une vill e au meill eur coût. Ce dernier point est un
problème d'optimisation combinatoire d'une grande
complexité.  Nous le traitons avec un algorithme génétique,
ainsi nommé pour ses similit udes avec des systèmes
biologiques.

Urban radio network planning for mobile phones
requires costly computation that are better to run on
processors in parallel. First, radio wave propagation must
be simulated in order to predict the area that can be covered
by a Base Transceiver Station (BTS). The ParFlow++ piece
of software was developed with this goal. Second, the set of
BTSs that cover a city with the lowest cost must be found.
The latter task is a hard combinatorial optimization
problem, that we try to solve with a bio-inspired genetic
algorithm.

RADIO NETWORK PLANNING

One of the issues telecommunication operators must face
when deploying a cellular network in a city is the selection
of good locations for Base Transceiver Stations (BTSs). The
problem comes down to finding out the best possible sites
for BTSs, while guaranteeing that all —or at least a given
percentage of the surface of— the streets are covered, and
that the global cost of the radio network is kept at a
minimum. Assuming that a set of potential sites is
available, our goal is to select the best subset of sites
capable of satisfying the coverage requirements. The first
step, that is, the computation for each BTS of the zone that
it can cover, is achieved by a radio wave propagation
simulation piece of software called ParFlow++. The second
step, that is, the selection of the best BTS sites, is done by a
bio-inspired piece of software called Paragene. These two
parallel pieces of software are parts of the STORMS1

project, which aims at the definition, the implementation,
and the validation of a software tool to be used for the
design and the planning of the future UMTS2 network.

                                                       
1 STORMS (Software Tools for the Optimization of Resources in
Mobile Systems) is an ACTS project funded by the EC and by the
Swiss Government.

2 UMTS: Universal Mobile Telecommunication System.

RADIO WAVE PROPAGATION
SIMULATION

The ParFlow method

The ParFlow method was designed at the University of
Geneva by Chopard, Luthi and Wagen [1]. It compares with
the so-called Lattice Boltzmann Model, that describes a
physical system in terms of the motion of fictitious
microscopic particles over a lattice [2], and it permits the
simulation of outdoor radio wave propagation in urban
environment. As the ParFlow method operates on a 2D
model of the terrain it is appropriate for simulating radio
wave propagation when fixed antennas are placed below
rooftops, as is the case in urban radio networks composed of
micro-cell s.

According to the Huygens principle, a wave front
consists of a number of spherical wavelets emitted by
secondary radiators. The ParFlow method is based on a
discrete formulation of this principle. Space and time are
represented in terms of finite elementary units ∆r and ∆t,
related by the velocity of light C0 

3. Space is modeled by a
grid with a mesh size of length ∆r, and flow values are
defined on the edges connecting neighboring grid points.

The flows entering a grid point at time t are scattered at
time t+∆t among the four neighboring points. For each grid
point, outgoing flows at time t are a linear combination of
incoming flows at that time, and an incoming flow at time t
corresponds to the outgoing flow calculated on a
neighboring grid point at time t-∆t (see Figure 1).
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Fig. 1: Discretization of space and time in the ParFlow model

These rules apply for all grid points but those modeling
the source (i.e., the BTS) and obstacles. The source point
radiates a signal through its four outgoing flows, but it does
not propagate incoming flows. Obstacles (typicall y, city

                                                       
3 ∆t = ∆r / (C0. √2)



FOR SUPERCOMPUTING REVIEW 1997
buildings) are modeled by two kinds of grid points: wall
points, and indoor points (see Figure 2).

Fig. 2: Obstacles modelli ng in the ParFlow method. The input is a
digital terrain model that permits to distinguish between outdoor

points (blue), wall points (white), and indoor points (gray)

In the current version of the ParFlow model, it is
assumed that radio waves do not penetrate buildings. As a
consequence, indoor points are not involved in the
computation: wall points are perfectly reflecting points that
return any incident wave with opposite sign, and whose
reflection coeff icient and matrix elements can be modified
in order to model different kinds of walls [1].

Irregular implementation in ParFlow++

ParFlow++ is an object-oriented, irregular
implementation of the ParFlow method, targeted at
distributed memory parallel platforms. Its main originalit y
with respect to former implementations of the ParFlow
method [1] is that it was implemented as an irregular
application. Since the method does not allow for radio wave
propagation through buildings, ParFlow++ does not model
indoor points.  Experience shows that this approach permits
a significant reduction of memory space and of
computational power (when modeling an urban area,
buildings can represent up to 30 % of the surface
considered). But such an approach inevitably leads to the
creation and the management of an irregular data structure.
As they provide powerful features to describe and to
manipulate complex, irregular data structures, object-
oriented languages are perfectly suited to an irregular
implementation of the ParFlow method. This is the reason
why ParFlow++ was implemented in C++. All kinds of
non-indoor points are described in a hierarchy of C++
classes, whose instances are assembled at runtime so as to
constitute an irregular structure that preserves the
neighborhood relationships.

Data parallelism

A major advantage of the ParFlow method is that,
although the calculations made during each iteration step
are theoreticall y synchronous, updates of points require
independent computation. The ParFlow algorithm is
therefore a good candidate to parallel implementation.

The first parallel version of the ParFlow method was
implemented by Chopard, Luthi and Wagen on Thinking

Machine Corporation's CM-200, whose SIMD4 architecture
provides thousands of synchronous processors [1]. The
ParFlow method can be readily and eff iciently implemented
on SIMD platforms, because it is possible to take advantage
of the regular grid data structure and of the synchronous
progress of the computation. However, the main
disadvantage of such an implementation is its lack of
scalabilit y. An irregular data structure such as that
discussed in the former paragraph can hardly be mapped on
the synchronous regular architecture of the CM-200. The
consequence is that, on such a platform, many processing
units (those modeling indoor points) remain idle throughout
the entire computation.  Moreover, since each point of the
grid must be allocated to one processing element, the size of
the grid is constrained by the size of the parallel machine.

MIMD platforms are more versatile than SIMD
platforms when it comes to implementing irregular
applications. Actuall y, the ParFlow method has already
been implemented on several MIMD platforms by Chopard,
Luthi and Wagen [1]. Yet, every time it was implemented
as a regular algorithm, in C or in Fortran. ParFlow++
contrasts sharply with these former implementations, not
only because of its object-orientation, but also because it
results from the first attempt to implement the ParFlow
method for MIMD-DM platforms while operating on an
irregular data structure with an irregular algorithm.
Another characteristic of ParFlow++ is that it was
developed so as to be easil y portable on any kind of MIMD-
DM platform.

Because of the large amount of outdoor points that must
be considered in a simulation (typicall y, several thousands
of outdoor points for  a single city district), an appropriate
policy must be chosen to allocate each point to a processing
element of the target platform. Many partitioning poli cies
can be considered for an irregular structure such as that of
ParFlow++. Yet, exotic partitioning poli cies often require
costly mechanisms for locating remote data, and for
ensuring eff icient data exchanges.  For these reasons, and
in order to obtain good load balancing, ParFlow++ relies on
a simple, yet eff icient static data distribution. The
simulation zone is split i n horizontal stripes, which are then
allocated to processors based on a round-robin poli cy, as
shown in Figure 3.

P2

P1

P0

P3

P2

P1

P0

Fig. 3: Simulation zone partiti oning and mapping

                                                       
4 SIMD: Single Instruction stream, Multiple Data stream.
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In ParFlow++ each stripe basicall y consists of a

structured collection of points. It also manages two
`frontiers' internall y.  A frontier can be perceived as a
collection of references to points that are either on the
northern edge or on the southern edge of a partition.  The
behavior of frontier points differs slightly from that of other
points, for they have to interact with `neighboring' points
that are actuall y stored on remote processors. A frontier
thus ensures the propagation of flows between a partition
and one of its neighbors. Communications between
neighboring partitions are based on call s to routines of the
PVM library [3].

Experimental results and performances

ParFlow++ was compiled and tested on the Cray T3D of
the Swiss Federal Institute of Technology5. We ran an  800
step radio wave propagation simulation on a 500x500 point
zone modeling a 1 km2 district of the city of Geneva.
Figure 4 shows snapshots of the simulation. Each picture is
a path-loss map.

Fig. 4: Snapshots of a radio wave propagation simulation achieved
with the ParFlow method. These pictures show how the wave

propagates and covers a growing surface

On the Cray T3D we measured the speedups observed
for various simulation zone sizes. Figures 5 and 6 confirm
the scalabilit y of the parallel implementation. The table in
Figure 5 shows the actual computation times observed on
each test case, and Figure 6 shows the speedups calculated
from these times. (For the 1024x1024 and 2048x2048
zones, the simulation was not possible on a single processor
because of memory limitation, so we had to estimate the
sequential reference times).

                                                       
5 EPFL, CH-1015 Lausanne.

# procs 512 x 512 1024 x 1024 2048 x 2048
1 1366.04 - -
2 641.46 - -
4 363.50 2993.71 -
16 172.96 1382.78 -
16 105.58 739.14 5676.88
32 52.30 371.87 2891.31
64 27.85 209.14 1537.96

128 16.16 111.69 799.27
256 9.32 63.80 449.33

Fig. 5: Parallel simulation duration on the Cray T3D, for
512 x 512, 1024 x 1024, and 2048 x 2048 point simulation
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Fig. 6: Speedups observed on the Cray T3D, for 512 x 512,
1024 x 1024, and 2048 x 2048 point simulation zones

Covered cells computation

Once a propagation simulation is complete for a given
BTS, the geographical area in which the coverage is good
for mobile phone communication must be delimited. This
area is called the covered cell of the BTS. A threshold
value is determined based on different radio qualit y criteria
(guessed traff ic demand, etc.), and each grid point where
the power of the received signal is bigger than the threshold
value belongs to the covered cell . Such a covered cell i s
shown in Figure 7.

   

Fig. 7: Result of a radio wave propagation simulation on a district
of the city of Geneva (left), and shape of the covered cell hence

identified (right).

BTS SITING

Modelling

The aim of the first step was to generate the set of
covered cell s associated to a set of potential BTSs. These
data will be used to find the best subset of BTSs that covers
an area. In order to store the huge amount of information
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about BTSs and covered cell s, a data structure was
developed. This structure connects a subset of BTSs to the
intercells they can cover, where an intercell is a set of
locations that are potentiall y covered by exactly the same
BTSs. A simple example of such a structure is shown in
Figure 8.

BTS1 BTS2

cell1 cell2cell1∩ ∩ 2

Fig. 8 The  covered cell s associated to the BTSs are discretized on
a grid. Each BTS is connected to the intercell s it covers.

Complexity

Definition: A set system (X,ℜ) is a set X, with a
collection ℜ of subsets of X

Let us consider:

• X is the set of all i ntercell s.

• ℜ is the set of all subsets R of X such that:

  
xi = One covered cell

xi ∈R
U

Definition: a set cover is a subcollection C ⊆ ℜ, whose
union is X, and the size of C is the number of sets in C [4].

With such a modelli ng, the problem of finding the
minimum number of BTSs that cover an area comes down
to finding a set cover of minimum size. Unfortunately,
finding a set cover of minimum size is NP-complete [5].
Thus unless P=NP, if we want a polynomial time algorithm,
we must use an approximation algorithm and look for
possibly sub-optimal —yet satisfactory— solutions. To
achieve this goal, we investigate several approaches, which
are said to be ‘bio-inspired’ because they use heuristics that
have some analogies with natural or social systems [6].

The genetic approach

To date, we most especiall y focus on the so-called
genetic approach. This work is done in cooperation with the
LEOPARD6 project. A genetic algorithm is a population-
based algorithm, which means that its state at any time is a
population of candidate solutions. A population is a set of
individuals that represent candidate solutions for a given
                                                       
6 The LEOPARD project (Parallel population-based methods for
combinatorial optimisation) is funded by  the Swiss National Science
Foundation (project # 21-45070.95/1)

problem, and that are generall y encoded as chromosome-
li ke bit strings. The algorithm uses selection and
recombination operators to generate new sample points in a
search space [7]. The bit strings we consider represent the
whole set of possible  BTS locations. Whether a location is
actuall y selected in a potential solution depends on the
value of the corresponding entry in the bit string. Figure 9
shows how a possible solution to our problem is encoded as
the bit string of an individual.

E n co di n g  o f
th i s  so l u t i o n

as  a  b i t  st r i ng

Set  o f
po ssi b l e

B T Ss
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A  so l u t i o n
to  o ur

p r o bl em

1
0
1
1
0

Fig. 9 Encoding of a candidate solution in an individual bit string.

The first step in the execution of a genetic algorithm
consists in the creation of an initial population. In our
implementation, the initial population is built randomly.
Each iteration step of the algorithm on the population (see
Figure 10) is called a generation. During the execution of a
genetic algorithm, a generation can be thought of as a two
stage process. First, selection is applied to the current
population to create an intermediate population. Then,
crossover and mutation operators are applied to the
intermediate population to create the next population. The
execution terminates when a satisfactory individual has
been produced or when a predefined number of generations
has been run through. Figure 10 describes the different
steps in the evolution of a population.

Population
of

Individuals

selection of
individuals according

to their fi tness
Intermediate
Population

generation
of the new
population

through
random

mutations

selection of
couples of
individuals

generation of
offsprings

through random
crossovers

Fig. 10 Global overview of a genetic algorithm. One iteration of
the loop is called a generation.

The selection is achieved based on the fitness value
associated with each individual, which may be perceived as
an allocation of reproductive opportunities: the higher the
fitness value of an individual, the li kelier it is to
` reproduce' . The function returning the fitness value is:
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fitness(individual) =
CoverRateα

number of selected BTSs

where CoverRate is the percentage of locations covered
by the selected BTSs (in relation to the number of locations
covered by the initial set of BTSs). The parameter α can be
tuned to favor the cover rate with respect to the number of
transmitters. Figure 11 shows the influence of the
parameter α on the characteristics of the results. It shows
that for α<1.5 the coverage is unacceptable, for 1.5<α<4
the coverage grows quickly while the number of BTS grows
slowly, and for 4<α<10 the coverage remains almost
constant while the number of BTSs keeps growing. A good
value for α is thus 4 (this value will be used in the
remainder of this article).

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

alpha parameter value

Coverage

Nb BTSs

Fig. 11: Average number of BTSs and average coverage of
solutions found with different values of the parameter α.

The crossover operator we use achieves a ‘one-point-
crossover’ . It split s the bit strings of two randomly selected
individuals at a randomly chosen position, and it then
recombines the bit strings by exchanging their ends, hence
producing two new bit strings. In the current
implementation of Paragene, each couple of individuals
taken from the intermediate population has a probabilit y of
0.9 to achieve a crossover. In the case no crossover is
performed, the couple of individuals is put back into the
new population without changes. Our mutation operator
simply flips the value of a randomly chosen bit of the bit
string with a probabilit y of 0.67. The execution terminates
after a predefined number of generations.

First experimental results

Experiments were conducted for the district of Geneva
introduced in the first part of this article. Starting with 99
user-provided potential BTS locations, 99 cell s were
computed with ParFlow++. Figure 12 shows the coverage
that would be obtained if these 99 BTSs were all selected in
the final radio network. Locations that are covered exactly
once are colored in blue, those covered twice are colored in
green, those covered three times are colored in red and
those covered four times and more are colored in pink. It

                                                       
7 These probability rates have been carefully chosen, after a
comprehensive study of their impact on the quality of the results
returned by Paragene.

can be noticed that the gray locations cannot be covered by
any of the user-provided potential BTSs. As a lot of points
are covered many times, it is clear that some of the
proposed BTSs are useless. Moreover, too many
transmitters covering a same zone can lead to radio
interference. On the other hand it can also be useful to
cover a same location with two different BTSs, as this
permits roaming: when a user moves from one cell to
another.

Fig.12 Coverage obtained with the 99 potential BTSs. Pink
locations are covered 4 or more times.

Figure 13 shows a solution returned by Paragene after
320 generations of a 160 individual population. The
algorithm meets our demand by returning solutions with
large coverage and few BTSs. It has however two major
shortcomings. First, it is too slow (3mn31s for this solution)
to be used interactively, as required by telecommunication
operators. Second, the solutions still contain quite too many
BTSs in the operators opinion.

Fig. 13 A solution obtained, with a 160 individual population,
after 320 generations. The 36 selected BTSs cover 94.09% of the

initi all y covered surface.
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Island concept and parallelism

In order to improve the quality of the results obtained
with the genetic algorithms, the population can be
distributed in subpopulations that evolve independently.
These subpopulations, called islands, increase the chances
for the algorithm to find good solutions by having many
genetic algorithms competing, each of them operating on
small populations. In order to let some islands benefit from
the information found by others, some individuals are
allowed to move from an island to another. This
mechanism is called migration.

In order to speedup the execution, the parallelisation of
the island-based algorithm was investigated. The fact that
the islands evolve almost independently suggests that the
algorithm is parallel in essence. The computation time can
thus be decreased by distributing the islands on several
processors. This MIMD-DM8 approach enables to run the
program on clusters of workstations, which are more
commonly available and cheaper than parallel
supercomputers. The islands are virtually positioned on an
oriented ring, and migrations are only allowed along that
ring (see Figure 14).

I s l a n d - 4

Is l a n d - 0

Is l a n d - 3 Is l a n d - 2

Is l a n d - 1

Fig. 14 Distribution of islands on an oriented ring. Migrations are
only allowed along the oriented ring.

This topology was chosen so as to minimize the amount
of migrations, and thus to minimize the communication
overhead due to migrations between remote islands. Every
time a new generation is computed, a copy of the best
individual (that with the best fitness value) ever met by
each island is sent to the next island on the ring. Each
island thus receives a new individual that replaces one of its
individual selected randomly. The only requirement is that
the number of islands be greater or equal to the number of
available processors because each processor must be in
charge of at least one island (see Figure 15). Our parallel
implementation of Paragene [8] was designed using object-
oriented techniques, and it was written in C++. It uses the
PVM library [3] for inter-processor communications.

                                                       
8 MIMD: Multiple Instruction stream Multiple Data stream - Distributed
Memory
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Fig. 15 Parallel version of our island-based genetic algorithm.

Quality of the results and speedup

Figure 16 shows a solution returned by our island-based
genetic algorithm after 320 generations when running on
40 workstations that were in charge of one island each. The
total population size (40 * 4 = 160 individuals) was the
same as that used for computing the result shown in
Figure 13. This new result is of better quality: its associated
fitness value is 0.03051, whereas that of the previous
solution was only 0.02177, and it was found in 10 seconds
(against 3mn31s. for the previous solution).

Fig. 16: A solution obtained with 40 islands of 4 individuals, after
320 generations. The 19 selected BTSs cover 87.26% of the initial

covered surface.

Figure 17 shows the speedup observed on a network of
40 workstations, when running 320 generations over 40
islands of 4 individuals each. It can be noticed that the
speedup is almost linear for less than 10 workstations, and
that the efficiency on 40 workstations amounts to 52.75%,
which is satisfying.
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Fig. 17 Speedup of the parallel algorithm observed when running
320 generations over 40 islands of 4 individuals each.

CONCLUSION

In this article we have presented a cellular automaton
approach to simulate radio wave propagation in urban
environment on a MIMD-DM computer. A very good
speedup was achieved by using an original static load
balancing technique. The development was reali zed using
object-oriented techniques, leading to a strict distinction
between what belongs to the physical problem (radio wave
propagation) and what belongs to the computing model
(cellular automaton). In the future we intend to reuse this
computing model to simulate other physical phenomena
such as flowing fluids.

Using radio wave propagation predictions computed by
the former algorithm, we tackled the problem of selecting
optimal BTS sites for urban mobile phone networks. A
parallel genetic algorithm was implemented on a network
of up to 40 workstations. Taking into account that fact the
links between the workstations are rather slow the
eff iciency of the parallel execution measured on 40
workstations (52.75%) is good. It was obtained with an
island-based genetic algorithm which tries to minimize the
communication between the workstations.

Again, the development was reali zed using object-
oriented techniques, because we intend to reuse this island-
based parallel genetic algorithm to solve other diff icult
combinatorial optimization problems.
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