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URBAN RADIO NETWORK PLANNING FOR MOBILE PHONES

by Patrice Calégari, Frédéric Guidec, Pierre Kuonen, EPFL - DI - GRIP/LITH

La planification de réseaux radio pour la téléphonie
mohile en milieu urbain est une nécesste de gros calculs,
quil est préférable d'exécuter sur plusieurs processeurs en
paralde. D'une part, il faut simuler la propagation des
ondes radio afin de prZdire les zones qui peuvent étre
couvertes. Le programme ParFlow++ a éé développé dans
cebut. D'autre part, il faut choisir I'ensemble d'antennes qui
couvre une vill e au meill eur colt. Ce dernier point est un
probéeme doptimisation combinatoire dune grande
complexité. Nous le traitons avec un algorithme génétique,
ains nommé pour ses Smilitudes avec des gstemes
biol ogiques.

Urban radio network planning for mobile phones
reguires costly computation that are better to run on
procesors in parale. First, radio wave propagation must
be simulated in order to predict the area that can be mvered
by a Base Transceiver Station (BTS). The ParFlow++ piece
of software was developed with this goal. Seand, the set of
BTSs that cover a city with the lowest cost must be found.
The latter task is a hard combinatorial optimization
problem, that we try to solve with a bio-inspired genetic
algorithm.

RADIO NETWORK PLANNING

One of the isaues telecmmunication operators must face
when deploying a cdlular network in a city is the seledion
of goad locations for Base Transcdver Stations (BTSs). The
problem comes down to finding out the best posshble sites
for BTSs, while guaranteeéng that all —or at least a given
percentage of the surface of— the streds are @vered, and
that the global cost of the radio network is kept at a
minimum. Asauming that a set of potentia sites is
available, our goa is to sded the best subset of sites
capable of satisfying the mverage requirements. The first
step, that is, the omputation for each BTS of the zone that
it can cover, is achieved by a radio wave propagation
simulation pieceof software alled ParFlow++. The second
step, that is, the seledion of the best BTS sites, isdone by a
bio-inspired pieceof software @lled Paragene. These two
parald pieces of software are parts of the STORMS'
projed, which aims at the definition, the implementation,
and the validation of a software tod to be used for the
design and the planning of the future UMTS? network.

! STORMS (Software Tools for the Optimization of Resources in
Mobile Systems) is an ACTS project funded by the EC and by the
Swiss Government.

2 UMTS: Universal Mobile Telecommunication System.

RADIO WAVE PROPAGATION
SIMULATION

The ParFlow method

The ParFlow method was designed at the University of
Geneva by Chopard, Luthi and Wagen [1]. It compares with
the so-called Lattice Boltzmann Mode, that describes a
physical system in terms of the motion of fictitious
microscopic particles over a lattice[2], and it permits the
simulation of outdoor radio wave propagation in urban
environment. As the ParFlow method operates on a 2D
modd of the terrain it is appropriate for simulating radio
wave propagation when fixed antennas are placed below
rodftops, asisthe @asein urban radio networks composed of
micro-cdls.

According to the Huygens principle, a wave front
consists of a number of spherical wavelets emitted by
sewndary radiators. The ParFlow method is based on a
discrete formulation of this principle. Space and time are
represented in terms of finite dementary units Ar and At,
related by the velocity of light C, . Spaceis modeled by a
grid with a mesh size of length Ar, and flow values are
defined on the alges conneding neighboring grid points.

The flows entering a grid point at time t are scattered at
time t+ At among the four neighbaring points. For each grid
point, outgoing flows at time t are a linear combination of
incoming flows at that time, and an incoming flow at timet
corresponds to the outgoing flow calculated on a
neighboring grid point at timet-At (seeFigure 1).
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Fig. 1: Discretization of space and time in the ParFlow model

These rules apply for all grid points but those modeling
the source (i.e., the BTS) and obstacles. The source point
radiates a signal through its four outgoing flows, but it does
not propagate incoming flows. Obstacles (typically, city

3 At=Ar/ (Co. v2)
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buildings) are modeled by two kinds of grid points. wall
points, and indoor points (seeFigure 2).

Fig. 2: Obstacles modelli ng in the ParFlow method. Theinpu isa
digital terrain model that permits to distinguish between outdoor
points (blue), wall points (white), and indoor points (gray)

In the airrent verson of the ParFlow modd, it is
asauimed that radio waves do not penetrate buildings. As a
consequence  indoor points are not involved in the
computation: wall points are perfedly refleding points that
return any incident wave with opposite sign, and whose
refledion coefficient and matrix elements can be modified
in order to modd different kinds of walls[1].

Irregular implementation in ParFlow++

ParFlow++ is an  obed-oriented, irregular
implementation of the ParFlow method, targeted at
distributed memory paralle platforms. Its main originality
with resped to former implementations of the ParFlow
method [1] is that it was implemented as an irregular
appli cation. Sincethe method does not all ow for radio wave
propagation through buil dings, ParFlow++ does not model
indoor points. Experience showsthat this approach permits
a dgnificant reduction of memory space and of
computational power (when modeling an urban area,
buildings can represent up to 30% of the surface
considered). But such an approach inevitably leads to the
creation and the management of an irregular data structure.
As they provide powerful features to describe and to
manipuate @mplex, irregular data structures, objed-
oriented languages are perfedly suited to an irregular
implementation of the ParFlow method. This is the reason
why ParFlow++ was implemented in C++. All kinds of
non-indoor points are described in a hierarchy of C++
classes, whose instances are assembled at runtime so as to
congtitute an irregular structure that preserves the
neighborhood relationships.

Data parallelism

A magjor advantage of the ParFlow method is that,
athough the alculations made during each iteration step
are theoretically synchronous, updates of points require
independent computation. The ParFlow algorithm is
therefore a good candidate to parall € implementation.

The first parallel version of the ParFlow method was
implemented by Chopard, Luthi and Wagen on Thinking

Machine Corporation's CM-200, whose SIMD* architedure
provides thousands of synchronous processors[l]. The
ParFlow method can be readily and efficiently implemented
on SIMD platforms, because it is possble to take advantage
of the regular grid data structure and of the synchronous
progress of the @mputation. However, the main
disadvantage of such an implementation is its lack of
scalability. An irregular data structure such as that
discussed in the former paragraph can hardly be mapped on
the synchronous regular architedure of the CM-200. The
consequence is that, on such a platform, many processng
units (those modeling indoor points) remain idle throughout
the entire computation. Moreover, since ech point of the
grid must be all ocated to ane processng element, the size of
the grid is constrained by the size of the parall el machine.

MIMD platforms are more versatile than SIMD
platforms when it comes to implementing irregular
applications. Actualy, the ParFlow method has already
been implemented on several MIMD platforms by Chopard,
Luthi and Wagen [1]. Y&, every time it was implemented
as a reguar agorithm, in C or in Fortran. ParFlow++
contrasts dharply with these former implementations, not
only because of its obed-orientation, but also because it
results from the first attempt to implement the ParFlow
method for MIMD-DM platforms while operating on an
irreguar data structure with an irregular agorithm.
Ancther characteristic of ParFlow++ is that it was
developed so as to be easily portable on any kind of MIMD-
DM platform.

Because of the large amount of outdoor points that must
be mnsidered in a simulation (typically, several thousands
of outdoor points for a single aty district), an appropriate
policy must be chosen to all ocate each point to a processng
element of the target platform. Many partitioning policies
can be mnsidered for an irregular structure such as that of
ParFlow++. Yet, exotic partitioning policies often require
costly medhanisms for locating remote data, and for
ensuring efficient data exchanges. For these reasons, and
in order to oltain good load balancing, ParFlow++ relies on
a dmple, vyet efficient static data distribution. The
simulation zoneis lit in horizontal stripes, which are then
alocated to procesors based on a round-robin policy, as
shown in Figure 3.

Fig. 3: Simulation zone partiti oning and mapping

* SIMD: Single Instruction stream, Multiple Data stream.
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In ParFlow++ each stripe basically consists of a
structured colledion of points. It aso manages two
“frontiers' internally. A frontier can be perceved as a
colledion of references to points that are dther on the
northern edge or on the southern edge of a partition. The
behavior of frontier points differs dightly from that of other
points, for they have to interact with “neighboring' points
that are actually stored on remote procesors. A frontier
thus ensures the propagation of flows between a partition
and one of its neighbars. Communications between
neighboring pertitions are based on calls to routines of the
PVM library [3].

Experimental results and performances

ParFlow++ was compil ed and tested on the Cray T3D of
the SwissFederal Institute of Technology®. We ran an 800
step radio wave propagation simulation on a 500x500 int
zone modeling a 1 km? district of the dty of Geneva.
Figure 4 shows sapshots of the smulation. Each pictureis
a path-lossmap.

Fig. 4: Snapshots of a radio wave propagation simulation achieved
with the ParFlow method. These pictures show how the wave
propagates and covers a growing surface

On the Cray T3D we measured the speedups observed
for various smulation zone sizes. Figures 5 and 6 confirm
the scalability of the parallel implementation. The table in
Figure 5 shows the actual computation times observed on
each test case, and Figure 6 shows the speadups calculated
from these times. (For the 1024x1024and 2048x2048
zones, the simulation was not posshle on a single processor
because of memory limitation, so we had to estimate the
sequential referencetimes).

5 EPFL, CH-1015 Lausanne.

# procs 512 x 512 {1024 x 1024 { 2048 x 2048
1 1366.04 - -
2 641.46 -
4 363.50 2993.71
16 172.96 1382.78 -
16 105.58 739.14 5676.88
32 52.30 371.87 2891.31
64 27.85 209.14 1537.96
128 16.16 111.69 799.27
256 9.32 63.80 449.33

Fig. 5: Parallel simulation duration on the Cray T3D, for
512x 512 1024x 1024 and 2048x 2048 mint simulation
zones (times given in sends)
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Fig. 6: Speedups observed on the Cray T3D, for 512x 512,
1024x 1024 and 2048x 2048 mint simulation zones

Covered cells computation

Once a propagation simulation is complete for a given
BTS, the geographical area in which the cverage is good
for mohile phone communication must be delimited. This
area is caled the covered cell of the BTS. A threshold
value is determined based on different radio quality criteria
(guessd traffic demand, etc.), and each grid point where
the power of the receved signal is bigger than the threshold
value belongs to the @mvered cdl. Such a covered cdl is
shown in Figure 7.

Fig. 7: Result of aradio wave propagation simulation on a district
of the city of Geneva (left), and shape of the covered cell hence
identified (right).

BTSSITING

Modelling

The am of the first step was to generate the set of
covered cdls associated to a set of potential BTSs. These
data will be used to find the best subset of BT Ss that covers
an area. In order to store the huge amount of information
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about BTSs and covered cdls, a data structure was
developed. This gructure mnneds a subset of BTSs to the
intercells they can cover, where an intercell is a set of
locations that are potentially covered by exactly the same
BTSs. A smple example of such a structure is $iown in
Figure 8.

@ BTS1 OBTS2

7777777

celll cellln 2 cell2

Fig. 8 The covered cell s associated to the BTSs are discretized on
agrid. Each BTS s connected to the intercell sit covers.

Complexity

Definition: A set system (X,0) is a set X, with a
colledion O of subsets of X

Let us consider:
e Xistheset of al intercdls.

e [istheset of al subsets R of X such that:
Ux =One covered ce

x OR

Definition: a set cover is a subcolledion C O O, whose
union is X, and the size of C isthe number of setsin C [4].

With such a moddling, the problem of finding the
minimum number of BTSs that cover an area comes down
to finding a set cover of minimum size. Unfortunatdly,
finding a set cover of minimum size is NP-complete[5].
Thus unlessP=NP, if we want a polynomial time algorithm,
we must use an approximation agorithm and look for
possbly sub-optimal —yet satisfactory— solutions. To
achieve this goal, we investigate several approaches, which
are said to be ‘hio-inspired’ becuse they use heuristics that
have some anal ogies with natural or social systems[6].

The genetic approach

To date, we most espedally focus on the so-caled
genetic approach. Thiswork isdonein cogperation with the
LEOPARD® projed. A genetic algorithm is a population-
based algorithm, which means that its gate at any timeisa
population of candidate solutions. A population is a set of
individuals that represent candidate solutions for a given

® The LEOPARD project (Parallel population-based methods for
combinatorial optimisation) is funded by the Swiss National Science
Foundation (project # 21-45070.95/1)

probem, and that are generally encoded as chromosome-
like bit strings. The algorithm uses sledion and
recmbination operators to generate new sample pointsin a
search space[7]. The bit strings we @nsider represent the
whole set of posshle BTS locations. Whether a location is
actually sdleded in a potential solution depends on the
value of the crresponding entry in the bit string. Figure 9
shows how a posshle solution to aur problem is encoded as
the bit string of an individual.

iy ; i

i !

Set of A solution Encoding of
possible to our this solution
BTSs problem as a bit string

Fig. 9 Encoding o a candidate solution in an individual bit string.

The first step in the exeaution of a genetic algorithm
consists in the aeation of an initial population. In our
implementation, the initial population is built randomly.
Each iteration step of the algorithm on the population (see
Figure 10) is called a generation. During the exeaution of a
genetic algorithm, a generation can be thought of as a two
stage process First, seledion is applied to the arrent
population to create an intermediate population. Then,
crosover and mutation operators are applied to the
intermediate population to create the next population. The
exealtion terminates when a satisfactory individual has
been produced or when a predefined number of generations
has been run through. Figure 10 describes the different
steps in the evolution of a population.

selection of
individuals according
to their fitness

Population
of
Individuals

Intermediate

Population

generation

of the new selection of

porr]JuIatlgn couples of
throug individuals
random .

mutations generation of

off springs
through random
H n ! U Crossovers I |:| I |:|

Fig. 10 Global overview of a genetic algarithm. One iteration of
theloop is call ed a generation.

The sdedion is achieved based on the fitness value
asciated with each individual, which may be percdved as
an allocation of reproductive opportunities: the higher the
fitness value of an individual, the likdier it is to
" reproduce . The function returning the fitnessvalueis:
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CoverRate”

fitness(individual ) =
essl ) number of selected BT¢

where CoverRate is the percentage of locations covered
by the sdleded BTSs (in relation to the number of locations
covered by theinitial set of BTSs). The parameter a can be
tuned to favor the @ver rate with resped to the number of
transmitters. Figure11 shows the influence of the
parameter a on the dharacteristics of the results. It shows
that for a<1.5 the mverage is unacceptable, for 1.5<a<4
the @verage grows quickly whil e the number of BTS grows
dowly, and for 4<a<10 the @verage remains amost
constant whil e the number of BTSs kegos growing. A good
value for a is thus 4 (this value will be used in the
remainder of thisarticle).

100
80 ) “.
60 Yy —A— Coverage
&

40
20 -
0

> &6 —9¢ Nb BTSs

01 2 3 45 6 7 8 910
alpha parameter value

Fig. 11. Average number of BTSs and average overage of
solutions found with different values of the parameter a.

The aossover operator we use achieves a ‘one-point-
crosover’. It splits the bit strings of two randomly seleced
individuals at a randomly chosen position, and it then
recombines the bit strings by exchanging their ends, hence
producing two new bhit strings. In the airrent
implementation of Paragene, each couple of individuals
taken from the intermediate population has a probability of
0.9 to achieve a crosver. In the @se no crosover is
performed, the cuple of individuals is put back into the
new population without changes. Our mutation operator
simply flips the value of a randomly chosen bit of the bit
string with a probability of 0.6". The exeaution terminates
after a predefined number of generations.

First experimental results

Experiments were onducted for the district of Geneva
introduced in the first part of this article. Starting with 99
user-provided potential BTS locations, 99 cdls were
computed with ParFlow++. Figure 12 shows the @verage
that would be ohtained if these 99 BTSswere all sdleded in
the final radio network. Locations that are mvered exactly
onceare wlored in blue, those mvered twiceare @lored in
green, those @vered three times are wlored in red and
those mvered four times and more are wlored in pink. It

” These probability rates have been carefully chosen, after a
comprehensive study of their impact on the quality of the results
returned by Paragene.

can be noticed that the gray locations cannot be cvered by
any of the user-provided potential BTSs. As a lot of points
are mvered many times, it is clear that some of the
proposed BTSs are usdless Moreover, too many
transmitters covering a same zone @n lead to radio
interference On the other hand it can aso be useful to
cover a same location with two different BTSs, as this
permits roaming: when a user moves from one cdl to
another.

Fig.12 Coverage obtained with the 99 potential BTSs. Pink
|ocations are covered 4 or more times.

Figure 13 shows a solution returned by Paragene after
320 cenerations of a 160 individual population. The
algorithm meds our demand by returning solutions with
large @mverage and few BTSs. It has however two major
shortcomings. Firgt, it istoo sow (3mn31sfor this lution)
to be used interactively, as required by telecommunication
operators. Sewond, the solutions dill contain quite too many
BTSsin the operators opinion.

Fig. 13 A solution obtained, with a 160individual population,
after 320 generations. The 36 selected BTSs cover 94.09% of the
initially covered surface.
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Island concept and parallelism

In order to improve the quality of the results obtained
with the genetic algorithms, the population can be
distributed in subpopulations that evolve independently.
These subpopulations, called idands, increase the chances
for the algorithm to find good solutions by having many
genetic algorithms competing, each of them operating on
small populations. In order to let some idands benefit from
the information found by others, some individuals are
adlowed to move from an idand to another. This
mechanism is called migration.

In order to speedup the execution, the parallelisation of
the idand-based algorithm was investigated. The fact that
the idands evolve almost independently suggests that the
algorithm is parallel in essence. The computation time can
thus be decreased by distributing the idlands on several
processors. This MIMD-DM? approach enables to run the
program on clusters of workstations, which are more
commonly available and cheaper than paralléd
supercomputers. The idands are virtually positioned on an
oriented ring, and migrations are only allowed along that
ring (see Figure 14).

Fig. 14 Distribution of islands on an oriented ring. Migrations are
only allowed along the oriented ring.

This topology was chosen so as to minimize the amount
of migrations, and thus to minimize the communication
overhead due to migrations between remote idands. Every
time a new generation is computed, a copy of the best
individual (that with the best fitness value) ever met by
each idand is sent to the next idand on the ring. Each
isand thus receives a new individual that replaces one of its
individual selected randomly. The only requirement is that
the number of idands be greater or equal to the number of
available processors because each processor must be in
charge of at least one idand (see Figure 15). Our parallée
implementation of Paragene [8] was designed using object-
oriented techniques, and it was written in C++. It uses the
PVM library [3] for inter-processor communications.

8 MIMD: Multiple Instruction stream Multiple Data stream - Distributed
Memory

Communication

SO | = (&5
@ ProcoO Procl @
*Communication Communication*
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A »
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Fig. 15 Parallel version of our island-based genetic algorithm.
Quality of the results and speedup

Figure 16 shows a solution returned by our island-based
genetic algorithm after 320 generations when running on
40 workstations that were in charge of one isand each. The
total population size (40 * 4 = 160 individuals) was the
same as that used for computing the result shown in
Figure 13. This new result is of better quality: its associated
fitness value is 0.03051, whereas that of the previous
solution was only 0.02177, and it was found in 10 seconds
(against 3mn31s. for the previous solution).

Fig. 16: A solution obtained with 40 islands of 4 individuals, after
320 generations. The 19 selected BTSs cover 87.26% of the initial
covered surface.

Figure 17 shows the speedup observed on a network of
40 workstations, when running 320 generations over 40
idands of 4 individuals each. It can be noticed that the
speedup is almost linear for less than 10 workstations, and
that the efficiency on 40 workstations amounts to 52.75%,
which is satisfying.
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Fig. 17 Speedup of the parallel algarithm observed when runring
320 generations over 40 islands of 4 individuals each.

CONCLUSION

In this article we have presented a cdlular automaton
approach to simulate radio wave propagation in urban
environment on a MIMD-DM computer. A very good
speadup was achieved by using an origina static load
balancing technique. The development was realized using
ohjed-oriented techniques, leading to a strict distinction
between what belongs to the physical problem (radio wave
propagation) and what belongs to the mmputing model
(cdlular automaton). In the future we intend to reuse this
computing model to simulate other physical phenomena
such as flowing fluids.

Using radio wave propagation predictions computed by
the former algorithm, we tackled the problem of sdeding
optimal BTS sites for urban mobile phone networks. A
parallel genetic algorithm was implemented on a network
of up to 40 workstations. Taking into account that fact the
links between the workstations are rather dow the
efficiency of the paralled exeattion measured on 40
workstations (52.75%) is good. It was olbtained with an
isand-based genetic algorithm which tries to minimize the
communication between the workstations.

Again, the development was redlized using ohed-
oriented techniques, because we intend to reuse this island-
based peralld genetic algorithm to solve other difficult
combinatorial optimization problems.
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