N
N

N

HAL

open science

A Test Calculus Framework Applied to Network
Security Policies

Ylies Falcone, Jean-Claude Fernandez, Laurent Mounier, Jean-Luc Richier

» To cite this version:

Ylies Falcone, Jean-Claude Fernandez, Laurent Mounier, Jean-Luc Richier. A Test Calculus Frame-
work Applied to Network Security Policies. FATES/RV’06: Formal Approaches to TESting/Runtime

Verification, 2006, pp.55-69. hal-00346032

HAL Id: hal-00346032
https://hal.science/hal-00346032
Submitted on 11 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00346032
https://hal.archives-ouvertes.fr

A Test Calculus Framework applied to network
security policies

Ylies Falcone!, Jean-Claude Fernandez', Laurent Mounier!, and
Jean-Luc Richier?
Email: {Ylies .Falcone,Jean-Claude.Fernandez,Laurent.Mounier,
Jean-Luc.Richier}@imag.fr

! Vérimag Laboratory, Gieres, France
2 LSR-IMAG Laboratory, St Martin d’Heres, France

Abstract. We propose a syntax-driven test generation technique to au-
tomaticaly derive abstract test cases from a set of requirements expressed
in a linear temporal logic. Assuming that an elementary test case (called
a “tile”) is associated to each basic predicate of the formula, we show how
to generate a set of test controlers associated to each logical operator,
and able to coordinate the whole test execution. The test cases produced
are expressed in a process algebraic style, allowing to take into account
the test environment constraints. We illustrate this approach in the con-
text of network security testing, for which more classical model-based
techniques are not always suitable.

1 Introduction

Testing is a very popular validation technique, used in various application do-
mains, and for which several formalizations have been proposed. In particular, a
well-defined theory is the one commonly used in the telecommunication area for
conformance testing of communication protocols [1]. This approach, sometimes
called “model-based” approach, consists in defining a conformance relation [2,
3] between a specification of the system under test and a model of its actual
implementation. The purpose of the test is then to decide if this relation holds
or not. A practical interest is that test cases can be automatically produced from
this specification. Several tools implement this automatic generation technique,
e.g. [4-7].

However, this model-based approach requires a rather complete specification
of the system under test, defined on a precise interface level. If this requirement
can be fulfilled for specific pieces of software (e.g., a communication protocol), it
may be difficult to achieve for large systems, or when the system requirements
cannot be encoded as a conformance relation defined on a single interface level.
A typical example of such situation is testing a network security policy, where
expected properties may rely on the whole network behavior (not on a single
component or protocol), and can be tested only by accessing several interface
levels.

In a previous work [8], we have proposed an alternative approach when the
system requirements are expressed as a set of (temporal) logic formulae. For
each formula ¢, an abstract test case t4 is produced following a syntax-driven
technique: assuming that an elementary test case ¢; (called hereafter a “tile”)
has been associated to each literal p; of formula ¢, the whole test case t; is
obtained by combining the tiles using test operators corresponding to the logical
operators appearing in formula ¢. This provides a structural correspondence
between formulae and tests and it is easy to prove that the test obtained are
sound with respect to the semantics of the formulae (in other words we give a
“test based” semantics of the logic which is compatible with the initial one).
The originality of this approach is then that a part of the system specification
is encoded into the tiles, that can be provided by the system designer, or a by a
test expert, which is assumed to be easier to obtain that a global specification.
We illustrated this approach in the context of security testing.

This paper extends this previous work from the test execution point of view.
In [8], abstract test cases were directly expressed by labelled transition systems,
independently of the test architecture. We propose here to better take into ac-
count the test execution and to express the test cases in a higher level formalism.
In particular we show how to produce well structured test cases consisting of a
set of test drivers (one test driver for each elementary tile), coordinated by a
set of test controllers (corresponding to the logical operators appearing in the
formula). Thus, independent parts of the formula can be tested in parallel (ei-
ther to speed up the test execution, or due to test environment constraints),
each local verdicts being combined in a consistent way by the test controllers.
Formally, test cases are expressed in a classical process algebra (called a “test
calculus”), using basic control operators (parallel composition and interruption)
and data types to handle test parameters and verdicts.

This paper is organized as follows: section 2 introduces our “test calculus”
process algebra, and section 3 defines the notions of test execution and test
verdicts. We propose in section 4 a simple temporal logic allowing to express
network security requirements, and we show how to produce test cases from this
logic in section 5. Finally, section 6 provides some examples in the context of
network security policies.

2 Test process algebra

To model processes, we define a rather classic term algebra with typed variables,
inspired from CCS [9], CSP [10] and Lotos. We suppose a set of predefined actions
Act, a set of types 7, and a set of variables Var. Actions are either modifications
of variables or communications through channels which are also typed. In the
following, we do not address the problem of verifying that communications and
assignments are well-typed. We denote by expr, (resp. ;) any expression (resp.
variable) of type 7. Thus, when we write z, := expr,, we consider that this
assignment is well typed.

A test is described as a term of our process algebra. We distinguish between
elementary test cases, which are elements of a basic process algebra and com-
pound test cases. We give the syntax and an operational semantics of this test
process algebra.

2.1 Basic processes

Our basic process algebra allows to describe sequences of atomic actions, com-
munication and iteration. A term of this algebra is called a tile, which are the
elementary test components and we note TILE the set of all tiles.

The syntax of tiles and actions is given by the following grammar:

e i=aoe|ete|nil|reXe|X

a = [bly

v =z = expry | le(expry) | Te(x;)

b :=true | false | bV b | bAD | b | expr, = expr,

where e € TILF is a tile, b a boolean expression, ¢ a channel name, v an action, o
is the prefizing operator (o : Act x TILE — TILE), + the choice operator, and
recX : TILE — TILFE allows recursive tile definition with X a term variable.
When the condition b is true, we abbreviate [true]y by «. The special tile nil
does nothing.

There are two kinds of actions (y € Act). The first ones are the internal
actions (modification of variables). The second ones are the communication ac-
tions. Two kinds of communications exist: ?c(z,) denotes value reception on a
channel ¢ which is stored in variable a,; le(expr;) denotes the emission of a value
expr; on a channel c. Communication is done by “rendez-vous”.

2.2 Composing processes

Processes are compositions of tiles. Choices we made about composition oper-
ators came from needs appearing in our case studies in network security poli-
cies [8]. Composing tests in sequence is quite natural; however, for independent
actions, and in order to speed-up test executions, one might want to parallelize
some tests executions, for example, if one wants to scan several computers on a
network. The parallel composition is also used to model the execution and com-
munication between the test processes and the rest of the system. We assume a
set C of channels used by tiles to communicate. We distinguish internal channels
(set Cin) and external channels (set Coyut), and we have C = Ci, U Cout.

In case of several processes executing in parallel, one might want to interrupt
them. We choose to add an operator providing an exception mechanism: it per-
mits to replace a process by an other one on the reception of a communication
signal.

So, we define a set of operators, {||z, x%}, respectively the parallel (with
communication through a channel list £ C C), and exception (with an action
list 7) compositions.

The grammar for term processes (TERM) is:

tu=e|t]ct|txTt

The parallel operator ||z (so as the choice operator +) is associative and commu-
tative. It expresses either the interleaving of independant action or the emission
le(expr;) of the value of an expression expr,; on a channel ¢. When the value
is received by a process ?c¢(z,), the communication is denoted at the syntactic
level by c(expr:/x;). The independent and parallel execution ||y is noted ||.

The Join-Exception operator xT is used to interrupt a process and replace it
with an other when a synchronization/global/communication action belonging
to its synchronization list Z occurs. Intuitively, considering two processes ¢, t’
and a communication action a, ¢ x 1%} ¢/ means that if « is possible, ¢ is replaced
by t’, else ¢t continues normally.

2.3 Semantics

Lﬂct (0) tirecX ot/X] 2 ¢ o € Act (rec)
aot—1¢ reeX ot & ¢/
o € Act ts Xt
o (+)
t1 +1t2 — 1
a ¢ {[p)lc(exprs), [b]?c(zr)|c € L,b € Beyp} TR o)
-L
bllete =6 et
c€CinNceL th [bltc(egpr) th t [b]7c(@r)) o)
[blc(exprs /z7) , Cin
b HL t2 - 131 ||£ to
c€Cout NCEL t [b]te(eaprr) t '
[b]lc(exprs) ,, (||Cout,)
131 ||£ t2 — t1 HL to
Te(xr
cE€Cout NCEL tl[b]‘i)tll ,
[b]?c(exprs/zr) ,, (||cout)
t |z t2 - th ||z ta
a€T Gt adl i
T a (l><£) s TR (l><£a)
t1 X t24t2 t1 X t2_\t1[>< ts

Fig. 1. Rules for term rewriting

A runtime environment p maps the set of variables to the set of values. We

note & the set of all environments. Actions modify environments in a classical
way; we note p MR p’ the modification of environment p into p’ by action . For
Tri=expr . . .
example, p " —"" p[p(exp;)/x,], where p[p(exp,)/x,] is the environment p in
which variable z, is associated the value p(exp,). In the following, environments

are extended to any typed expression.

A labelled transition system (LTS, for short) is a quadruplet (Q, A, T,q°)
where Q) is a set of states, A a set of labels, T the transition relation (T C Q x A X Q)
and ¢° the initial state (¢° € Q). We will use the following definitions and nota-
tions: (p,a,q) € T is noted p —7 ¢ (or simply p —— ¢). An execution sequence
\ is a composition of transitions: ¢° 5 q1 —2 ¢o - -+ — ¢,. We denote by o
(resp. o) the sequence of states (resp. observable actions) associated with \.
The sequence of actions o is called a trace. We note by Yg, the set of finite
execution sequences starting from the initial state ¢° of S. For any sequence A
of length n, A; or A(i) denotes the i-th element and Ai-.n] denotes the suffix
A A

The semantics of a process is based on a LTS where states are “configura-
tions”, pairs (¢, p), t being a term of the process algebra, p an environment, and

transitions are given by definition 2. Configurations are used to represent process

evolutions. We note Cyerm def TERM x & the set of configurations.

Definition 1 (Term-transition). A term rewriting transition — is an element
of TERM x Act x TERM. We say that the term t is rewritten in t' by action a.
We note: t > t'. This semantics is similar with the CCS one [9].

Term-transitions are defined in Figure 1 (using the fact that || is commutative).

Definition 2 (Transitions). A transition is an element of Crerm X Act X Cierm.
We say that the term t in the environment p is rewritten in t' modifying the
environment p in p'.

We have four transition rules, one for an assignment, and three for commu-
nication exchange. They are defined in Figure 2.

[blz+ i=exprs &

p(b) = true plexpr:) =v t
(t,p) =" (', plv/a-])

: [b]te(ezprr) t'

p(expr:) = v p(b) = true

O]

(t.p) “2 (¥,)
v € Dom(1) ¢ ey p(b) = true

7e(v)

(t7p) I (t7p[’l)/$7-])
t [b]c(exﬂ”f/xﬂ') t/

()

plexpr:) =v p(b) = true

(c(expr-/x7))

c(v

(t,p) — (t,plv/z-])

Fig. 2. Rules for environment modification

3 Test execution and test verdicts

As seen in the previous section, the semantics of a test case represented by a
TERM process t is expressed by a LTS S; = (Q', A", T, ¢f). We assume here

that the behaviour of the System Under Test (SUT) is also modelled by a LTS
I=(Q" A, T ¢l). A test execution is then a sequence of interactions between
t and the SUT to deliver a verdict indicating whether the test succeeded or not.
We first explain how verdicts are computed in our context, and then we give a
formal definition of a test execution.

3.1 Tiles verdicts

We assume in the following that any elementary tile ¢; owns at least one variable
used to store its local verdict, namely a value of enumerated type Verdict =
{pass, fail,inc}. This variable is supposed to be set to one of these values when
tile execution terminates. The intuitive meaning we associate to each of these
values is similar to the one used in conformance testing:

e pass means that the test execution of ¢; did not reveal any violation of the
requirement expressed by t;;

e fail means that the test execution of #; did reveal a violation of the require-
ment expressed by t;;

e jnc means that the test execution of ¢; did not allow to conclude about the
validity of the requirement expressed by t;.

We now have to address the issue of combing the different verdicts obtained
by each tile execution of a whole test case.

3.2 Verdict management

The solution we adopt is to include in the test special processes (called test
controlers) for managing tile verdicts. When tiles end their execution, i.e. have
computed a verdict, they emit it toward a designated test controler which cap-
tures it. Depending on verdicts received, the controller emits a final verdict —
and may halt the executions of some tests if they are not needed anymore. The
“main” controler then owns a variable vy to store the final verdict.

Test controllers can easily be written in our process algebra with commu-
nication operations as shown on the following example. The whole test case is
then expressed as a term of our process algebra (with parallel composition and
interuptions between processes).

An example of test controller Let us consider a test controller waiting to receive
two pass verdicts in order to decide a global pass verdict (in other cases, it
emits the last verdict received). Let c_v, be the channel on which verdicts are
waited. The environment of this controller contains three variables, v for the
verdicts received, v, for the global verdict, and N to count numbers of verdicts
remaining. An LTS representation is shown in Figure 3 and a corresponding
algebraic expression is:

def
= recX

?cvi(vi) o ([v; = pass] N--o0 X + [v; € {inc, fail}] vy :== v; o lecvg(vg) o 1Stop() o nil
+
[N = 0] vg := pass o lc_vg(vg) o 1Stop() onil

?c_v(v)

Fig. 3. Verdict controller combining pass verdicts.

3.3 Test execution

An execution of a test ¢ (modelled by an LTS S;) on a SUT (modelled by a LTS
I), noted Exec(t, I), is simply expressed as a set of common execution sequences
of S; and I, defined by a composition operator ®.

Let \r =qf 25 qf 2 ¢ 25 gl € Xy and Ag, = ¢%F 25 ¢ 2
g5 =" gl € Bs,, then s, @ Ar = (¢',q5) = (af,qi) -+ > (ah) €
Exec(t, I).

Let X8 (resp. X, Xipconc) be the sets of states of S; where variable v, is
set to pass (resp. fail, inc):

2™ ={(r,p) | p(vg) = pass}
S ={(r,p) | plvg) = fail}
28 ={(r,p) | plvy) = inc}

For A\ € Exec(t,I), we define the verdict function: VExec(\) = pass (resp.
Jail, inconc) iff there is Ag, € g™ (resp. X&H, Sipcone) and A\; € L such that
As, @ Ar = A.

4 Security rules formalization

In a previous work, we carried out a case study to analyse the network security
policy in a university environment. This case study gave us a set of security
requirements that could be expressed using a simple temporal logic. We give
here the syntax and semantics of this logic.

4.1 Syntax

A security policy rule is expressed by a logical formula (), built upon literals.
Each literal can be either a condition literal (p. € P.), or an event literal (p. €
P.). A condition literal is a (static) predicate on the network configuration (e.g.,
extRelay(h) holds iff machine h is configured as an external relay), and an event
literal corresponds to the occurrence of a transition in the network behavior (e.g.,

enter Network(m) holds if message m is received by the network). A conjunction
of condition literals is simply called a condition (C), whereas a conjunction of a
single event literal and a condition is called a (guarded) event (E). The abstract
syntax of a formula is given in Table 1. The intuitive meaning of these formulae
is the following;:

— An O-Rule expresses a conditional obligation: when a particular condition
holds, then another condition should also hold (logical implication).

— An Op-Rule expresses a triggered obligation: when a given event happens,
then another condition should hold (or some event should occurs) before
expiration of a given amount of time.

— An F-Rule expresses an interdiction: when a given condition holds, or when
a given event happens, then a given event is always prohibited.

pu=C=0C (O-Rule)

| E=0rC | E=O0OrE (OT—Rule)

| C=FC|C=FE (F-Rule)
E == p.|C] | pe (Event)
C = A\l pe, (Condition)

Table 1. Syntax of logic formulae

4.2 Semantics

Formulas are interpreted over LTS. Intuitively, a LTS S satisfies a formula ¢ iff all
its execution sequences A do, where condition literals are interpreted over states,
event literals are interpreted over labels. We first introduce two interpretation
functions for condition and event literals:
fe: P, — 29, associates to p. the set of states on which p, holds;
fe: P, — 24, associates to p. the set of labels on which p, holds.

The satisfaction relation of a formula ¢ on an execution sequence A (A | ¢)
is then (inductively) defined as follows:

— A Cfor C=pLA---Aptiff Vi. o (1) € f(p)
A E pe iff o?(1) € g(pe)

A E pe[C]iff (a*(1) € g(pe) AN2) = C)
—AE 1= Opaiff (A1) = (A F 92))

— AE 1= Orp iff (A1) = (37 € [L|A] A(J) E @2))
— AE @1 = For iff (A w1) = (V5 € [1, Al A(J) = 92))

Finally, S = ¢ iff VA € Xg. A = .

5 Test generation

We define a structural generation function GenTest to convert a rule into the
desired combination of elementary tiles with controllers. It associates controllers

in such a way that the final verdict is pass iff the rule is satisfied by the SUT.
Each controller emits its verdict on a channel, and may uses variables. In the
following, new variables and channels will be silently created whenever necessary.

GenTest generates parallel and architecturally independent subtests. For-
mula semantics is ensured by the controller verdict combinations. Suitable schedul-
ing of subtests is supplied by the controllers through channels used to start and
stop subtests (given below by Test function).

5.1 Test generation function GenTest

Transformation of tiles Given a tile ¢, (computing its verdict in the variable
ver) associated to an elementary predicate p, the Test function transforms it.
Intuitively, Test(t,, L), where £ is a channel list, is ¢, modified in order to be
controlled through the channel list £. More formally:

Test(tp, {c_start, c_stop, c_loop, c_ver}) def

recX (?c_start() o t, o (?c_loop() o X+!c_ver(ver) o nil)) x 17=tP0}2¢_stop()o
nil

A representation on a LTS is shown in Figure 4.

Fig. 4. Extension of tile ¢, in a testing form

GenTest definition The rule general form is: P, = M P, where P, P. €
{E,C} are predicates and M € {O, Op, F} a modality.

The GenTest function is defined on the rule structure, giving an expression to
be instantiated according to the different modalities. We suppose that the final
verdict is emitted on the main channel, and t.,,%, are the tiles respectively
associated to elementary predicates c¢;, pe.

GenTest(P, = M P,) def (GenTestp(P;, L)) || GenTestp(Py, L)) |2 Caa(L1, Lr)
with £ =L, UL,
Ly = {c_start;, c_stopi, cloop, cver},
L, = {c_start,, c_stop,, c_loop,, c_ver, }

GenTestp(E,{c_start, c_stop, c_loop, c_ver}) def
if E=pc[C], (Test(tp,,Le) || GenTestc(C,Le))
llz Ce({c_start, c_stop, c-loop, c-ver}, Le, Le)
with £ < £, U L,
L = {c_starte, c_stope, c-loope, c_ver.},
L. = {c_startc, c_stope, c_loope, c_vere}
else /* E=pe */ Test(tp,,{c-start,c_stop, c_loop, c_ver})

GenTestp(C, L) &of GenTestc(C, L)

GenTestc (NI ¢;, {c_start, c_stop, c_loop, c_ver}) &

ifn=1, Test(te,{cstart,c_stop,c_loop, c_ver})
else /*n>1%*/

li=y Test(te;, Li) ||z CA({c_start, c_stop, c_loop, cver}, (Li)i=1...n,n)
with £ =Uj_,L:;Vi € {1...n}, L; = {cstart, c_stop, c_loop, c_ver;}

5.2 Verdict controllers

Several verdict controllers are used in the GenT'est definition. Controllers have
different purposes. They are first used to manage the execution of subtests corre-
sponding to the components of the rule. For example, for a Op formula, we have
to wait for the left-side subtest before starting the right-side subtest. Controllers
are also used to “implement” the formula semantics by combining verdicts from

subtests.

Controllers definitions are parameterized with channel parameters. We give
here an informal description of the controllers, with a graph definition for the
more important ones; other controllers are similar (definitions given in appendix).

Imain(vg)

Imain(vg)

Cel o

[v; = pass]?e_vp(vp)

!main(vg)

Imain(v vy € {inc, fail}]vg := inc
g l g

le_stopy() lestarty () [v; = passlvg := vp
[v; € {inc, fail}]vg := incm Ze-vy(vy) ?e-vp(vr) ~ [vr € {inc, fail}]?c-v;(vy) O
7 T\

[v; € {inc, fail}vg := inc

[vr = pass]?eov (v]) !mam(”gi

[v, = pass]vg := pass

b

Imain(vg)

)
A

Fig. 5. An instantiated LTS representation of the Co controller.

10

Formula level controllers They emit their verdict on the channel main.

1. Co(chcmnel_list, channel list). This controller is used to manage the execu-
tion of tiles corresponding to the left and right part of a static implication.
The controller starts the two tests corresponding to the two sides of the
implication. Then it waits for the reception of a verdict (verdicts can ar-
rive in any order). According to the semantics of implication and the first
verdict received, it decides either to wait for the second verdict or to emit
a verdict immediately. The controller takes two channel lists as parameters
for managing the execution and verdict of each side of the implication. The
associated environment contains three variables. A LTS representation of
Co({c_start;, c_stopy, c_vy, c_loop; }, {c_start,., c_stop,, c2v,, c_loop, }) is shown
in Figure 5.

. Lo, (channel_list,channel list). This controller is used to manage the ex-
ecution of tiles corresponding to the sides of an implication with a trig-
gered obligation. The controller starts the test corresponding to the left
side of the implication. If this test is inconclusive or fails, a inc verdict is
decided. Otherwise, the timer and the second test are started. If the test
emits pass, the final verdict is pass. As long as the timer is not expired,
(that is, the boolean variable t-out is false), if the second test ends with
fail or inc, the test is started again. When the the timer expires, a stop
signal (lc_stop,) is sent to the right side test. In that case, the final ver-
dict is inc if an inc verdict occured, fail otherwise. A LTS representation of
Co, ({c_start;, c_stopy, c_loopy, cver; }, {c_start,, c_stop,., c_loop,, cver,.}) is
shown in Figure 6.

le_start ~ loinc := false <)‘/
N

Pe_very(vy)

[vp = ine A —t-out]lc_loopy

pass]lc-starty ~ start_timer

vy = fail A =t-out]!c-loo
[v; € {fail, inc}ug i= inc for =1 ! Pr

vy = pass A ~t-out]vg := paps
g9

Imain(vg)

[~1-inclug := fail

R IWLain(U%

[linclug := inc

Fig. 6. An instantiated LTS representation of the Co,. controller

3. Cx(channel list,channel list). This controller is similar to the Co controller.
It waits for a fail verdict for the right-side subtest in order to conclude on a
pass verdict. A LTS definition of this controller is given in appendix A.2 in
Figure 7.

11

Predicate level controllers

1. Cg(channel list, channel list,channel list). This controller is used to man-
age executions and verdicts around an event. The controller starts the exe-
cution of the event, and then, depending on the verdict received, it starts the
subtests associated to the condition predicates in E. This conditions have
to be tested after the event. A LTS definition of this controller is given in
appendix A.3 in Figure 8.

2. Ca(channel lists,integer). Informally this controller starts different test and
waits for verdicts. Like the other controllers it controls subtests with a chan-
nel. If all tests succeed, the controller emits a pass verdict. If some tests
do not respond pass the controller emits the last verdict received and stops
the other potentially executing subtests. This controller is a generalization
of the one presented in 3.1. A LTS definition of this controller is given in
appendix A.4 in Figure 9.

5.3 Soundness proposition

We now express that an abstract test case produced by function GenTest is
always sound, i.e. it delivers a fail verdict when executed on a network behavior
I only if formula ¢ does not hold on I. To do this, we follow a very similar ap-
proach than in [8]. Two hypotheses are required in order to prove this soundness

property:

H1. First, for any formula ¢, we assume that each elementary test case t; pro-
vided for the (event or condition) literals p; appearing in ¢ is strongly sound
in the following sense:

Execution of ¢; on SUT [always terminate, and
VA € Exec(t;, I)-VExec(A) = Pass = A = p; A(VExec(\) = Fail = A = p;).

H2. Second, we assume that the whole execution of a (provided or generated)
test case t associated to a condition C' is stable with respect to condition
literals: the valuation of these literal does not change during the test ex-
ecution. This simply means that the network configuration is supposed to
remain stable when a condition is tested. Formally:

Vp; € P..VA € X1+ Ag, @ A € Exec(t, I) = (0> C fo(pi) Vo* N fe(pi) = 0)
where o* denotes here tacitly a set of states instead of a sequence.

We now formulate the soundness property:
Proposition: Let ¢ a formula, I an LTS and ¢ = GenTest(y). Then:
A € Exec(t, I) A VExec(A) = fail = I [~ .

6 Application

In this section we apply the GenTest function with two rule patterns taken from
the case study presented in [8].

12

6.1 O-Rule

Consider the requirement “External relays shall be in the DMZ”, this could be
reasonably understood as “If a host is an external relay, it has to be in the
DMZ”. A possible modelisation is:

extRelay(h) = O (inDM Z(h))

We suppose that somehow we have tiles models for extRelay(h) and inDM Z (h).
The GenTest function can be applied on the formula:

GenTest(extRelay(h) = O (inDM Z(h)))
= (GenTestp(extRelay(h),El) | GenTestp(mDMZ(h),Er)) llz Co(Li, L)

= (GenTestc(e:vtRelay(h),El) I GenTestc(inDMZ(h),Er)) llz Co(Li, £r)

= (Test(extRelay(hL[,l) | Test(inDMZ(hLL,n)) llz Co(Li, L)
where £ =L,UL,
Ly = {c_start;, c_stopi, c_vy, c_loop; }
L, = {c_start,, c_stop,, c_vr, cloop, }

The definitions of tey¢ gelay(n) and tinparz(n) (Writing their verdict in their verdict
variable (ver)) in our algebra are:

def
teztRelay(h) =

lconnect(he, h)o
((?0koltrans fer(he, h,m) o [2okoltran fer(h, hi,m) o ver := pass+?ko o ver := fail])
+ (?ko o ver := fail)
onil
tinDMZ(h) &
ltracert(hd, h)o
?end o ver := pass
+[?resp(hx) o ((?resp(ha’)o?end o ver := inc) + (?end o ver := fail))]
onil

So, GenTest(extRelay(h) = O inDMZ(h)) =
((?c_start;olconnect(he, h) o ...)x T 2c_stop; o nil)
| ((?c-start,oltracert(hd, h) o ...)x™r?c_stop, o nil)
Iz (!c_startlo!c_startr o (Tceui(vi)o...+2cwr(vr)o0..))
with Z; = {?stop}, Z,, = {7stop.}
The global test is associated a suitable environment by renaming the two ver-

dict variables of tcy¢getay(n) and tinparz(n)- The new environment contains the
following variables: very for te,ireiay(n), vers for ti,pyzeny, very, ver, for Co.

LextRelay(h)s a0d Ly parz(n) communicate with the controller through channels
in L.

13

6.2 Or-Rule

Security policies may also express availability requirements. Consider “When
there is a request to open an account, user privileges and resources must be
activated within one hour”. We formalize this requirement as:

request_open_account(c)[—ex_account(c)] = O1u(open_account(c)[allocate_disk(c)])

Supposing that there exists a tile for each predicate and that all tiles are
independent. One could generate a test from appropriate derivation:
GenTest(req_acc(c)[—ex_acc(c)] = O1u(op-ace(c)lalloc(c)]))

def (GenTestp(req_acc(c) [mex_acc(c)], L1) || GenTestp(op-acc(c)[alloc(c)], ET))
HC EOlH (‘Clv‘c)
((Test(req acc(c), Lie) || GenTestc(ex-acc(c), Lic)) |l ucy, UE([,l,Ele,Llc))

I ((Test op-acc(c), Lre) || GenTestc(alloc_disk(c),ETC)) |£reutre EE(ET,ETE,ETC))

| L BOIH (£l7 r)
((Test(req-acc(c), Lie) || Teste(ex-acc(c), Lic)) ||c,ouc,. CE(El,Ele,ElC))

| ((Test(op_acc(c),[me) I Testc(alloc_disk‘(cL[,Tc)) |2reUL e BE(LT7£7‘e7LrC))
e Coyy (L1, Lr)

with: £L=L,UL,,
Ls = {c_starts, c_stops, c_loops, cvers}ts,s € {l,r,le,lc,re,rc}

7 Conclusion

We have proposed a test generation technique for testing the validity of a tem-
poral logical formula on a system under test. The originality of this approach
is to produce the tests by combinations of elementary test cases (called tiles),
associated to each atomic predicates of the formula. These tiles are supposed to
be provided by the system designer or a test expert, and, assuming they are cor-
rect, it can be proved that the whole test case obtained is sound. The practical
interest of this approach is that it can be applied even if a formal specification
of the system under test is not available, or if the test execution needs to mix
several interface levels. A concrete example of such a situation is network se-
curity testing, where the security policy is usually expressed as a set of logical
requirements, encompassing many network elements (communication protocols,
firewalls, antivirus softwares, etc.) and those behavior would be hard to describe
on a single formal specification. The abstract test cases we obtain are expressed
in a process algebraic style, and they are structured into test drivers (the tiles),
and test controllers (encoding the logical operators). This approach makes them
close to executable test cases, and easy to map on a concrete (and distributed)
test architecture. Independent parts of the tests can then be executed concur-
rently.

This work could be continued in several directions. First, the logic we pro-
posed here could be extended. So far, the kind of formulae we considered was
guided by a concrete application, but, staying in the context of network security,

14

other deontic/temporal modalities could be foreseen, like“interdiction within a
delay”, or “permission”. We also believe that this approach would be flexible
enough to be used in other application domains, with other kinds of logical for-
mulae (for instance with nested temporal modalities, which were not considered
here). A second improvement would be to produce a clear diagnostic when a test
execution fails. So far, test controllers only propagate “fail” verdicts, but it could
be useful to better indicate to the user why a test execution failed (which sub-
formula was unsuccessfully tested, and what is the incorrect execution sequence
we obtained). Finally, we are currently implementing this test generation tech-
nique, and we expect that practical experimentations will help us to extend it
towards the generation of concrete test cases, that could be directly executable.

References

1. ISO/IEC 9946-1: OSI-Open Systems Interconnection, Information Technology -
Open Systems Interconnection Conformance Testing Methodology and Framework.
International Standard ISO/IEC 9646-1/2/3 (1992)

2. Brinksma, E., Alderden, R., Langerak, R. Van de Lagemaat, J., Tretmans, J.: A
Formal Approach to Conformance Testing. In De Meer, J., Mackert, L., Effelsberg,
W., eds.: Second International Workshop on Protocol Test Systems, North Holland
(1990) 349-363

3. Tretmans, J.: Test Generation with Inputs, Outputs, and Quiescence. In Mar-
garia, T., Steffen, B., eds.: Second Int. Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’96). Volume 1055 of Lecture Notes
in Computer Science., Springer-Verlag (1996) 127-146

4. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. In: The Sixth World
Conference on Integrated Design & Process Technology (IDPT’02), Pasadena, Cal-
ifornia, USA (2002)

5. Belinfante, A., Feenstra, J., de Vries, R., Tretmans, J., Goga, N., Feijs, L., Mauw,
S., Heerink, L.: Formal Test Automation : a Simple Experiment. In: 12th Interna-
tional Workshop on Testing of Communicating Systems, G. Csopaki et S. Dibuz
et K. Tarnay, Kluwer Academic Publishers (1999)

6. Schmitt, M., Koch, B., Grabowski, J., Hogrefe, D.: Autolink - A Tool for Automatic
and Semi-Automatic Test Generation from SDL Specifications. Technical Report
A-98-05, Medical University of Liibeck (1998)

7. Groz, R., Jéron, T., Kerbrat, A.: Automated test generation from SDL specifi-
cations. In Dssouli, R., von Bochmann, G., Lahav, Y., eds.: SDL’99 The Next
Millenium, 9th SDL Forum, Montreal, Quebec, Elsevier (1999) 135-152

8. Darmaillacq, V., Fernandez, J.C., Groz, R., Mounier, L., Richier, J.L.: Test Gener-
ation for Network Security Rules. In: 18th IFIP International Conference, TestCom
2006, New York, LNCS 3964, Springer (2006)

9. Milner, R.: A Calculus of Communicating Systems. Volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin (1980)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)

15

A Complete definitions of controllers

A.1 The Co controller

Co def le_start; o le_start, o ((Tcvery(v,) o t.)+ (Tcover;(v) o t;))

def ([vr € {inc, fail}]?c_ver;(vi) o tr1) + ([vr
d

g, def
t
tr1 def (
tra def (

end & Imain(vg)

A.2 The C£ controller

= pass|?cver;(v;))

[
(([v € {inc, fail}]vg :=inc) + ([vi = pass]?cvery(vr) ovg := v,)) 0 end
[v1 = pass|vg :== v, + [y € {inc, fail}]vy := inc) o end

[vi = pass|vg := pass + [v; € {inc, fail}]vg :=inc) o end

The automaton shown in Figure 7 presents the Cz(L;, £,.) controller,with:

L, = {c_start;, c_stopy, c_loopy, c_v; },
L, = {c.start,, c_stop,, c_loop,., c-v,})

le_start; ()

leostarts()

Imain(vg)

TeLvp(vr)

e vy (vr)

Imain(vg)

vy = inclvg 1= inc
ke g

[vr = faillvg := pass

[v; = pass]

[vr € {inc, fail}]?c_v;(v})

[v; € {inc, fail}]vg i= inc Tewy(vy)

[v; = pass]?cvp(vr)

vy = faillvg := pass Y [vr = passlvg := fail

Imain(vg) [vr = inclug i= vy

Imain(vg)

Imain(vg)

[v; € {inc, fail}]vg := inc

[vr = pass]?evy (v])

!main(vg)

§

[v, = passlvg := pass _

Imain(vg)

[v; € {inc, fail}]vg := inc

E Imain(vg)

Fig. 7. An instanciated automaton representation of the 0z controller.

16

A.3 The Cg controller
The automaton shown in Figure 8 presents the Cx (L, L, L.) controller, with:

L = {c_start, c_stop, c_loop, c_ver},
L. = {c_start,, c_stope, c_loope, cver.},
L. = {c_start., c_stop., c_loop., c_vere}.

lc_loope() ‘)\A lc_loope () ~ lc_loope ()
Q o
le_starte ()
?c_loop()
7c_vere (ve)
[ve = pass]lc_start,(?cvere(ve) lever(vg)
le_loope ()
[ve € {fail,inc}vg := ve
lecver(vg)
?c-loop()

Fig. 8. An instanciated automaton representation of the Gz controller.

A.4 The CA controller
The automaton shown in Figure 9 presents the CA (L, (£;)i=1...,) controller, with:

L = {c_start, c_stop, c_loop, c_ver},
L; = {cstart’, c_stop’, c_loop’, cver;},i=1...n.

B Execution trace of a O-rule generated test

We show a possible execution of this process, the choice considered make ext Relay
finishing first with fail. Then, the controller computes an inc verdict, and send
it to the user through the channel main. We list here only the term rewritings,
and show the evolution of the environment p only when it is modified.

We start from the test generated from GenTest(extRelay(h) = O inDM Z(h)).
In the following, Z; = {?c_stop; },Z, = {?c_stop,}.

((?c-startolconnect(he, h) o ...)x 1 2c_stop, o nil) ||
((?c-startroltracert(hd, h) o ...)x " ?c_stopr o nil)

Iz (!c_startlo!c_startr o(?ceuy(vi)o...+2cwr(vr)o0..))

17

Te-vi(vg)

?c-start() leestart’ ()

le_loop’ () [N =0] vg := pass

?c_loop() [v; = inc V fail] vg := v,

levg (vg)

le_stop()

Fig. 9. An instanciated automaton representation of the CA controller.

| c_start;
((connect(he, h) o ...)x" 1 2c_stop; o nil) ||
((?c_start,oltracert(hd, h) o ...) xIr2c_stop, o nil)

Iz (!c_startr o(?cai(v)o...+2cvr(vr)o0..))

| c_start,
((lconmect(he, h) o ...)x " 2c_stop, o mil) || ((Mtracert(hd, h) o ...)x*"?c_stop, o nil)
lz (Pccoi(vi) o...+2cvr(vr)0...)
|lconnect(he, h)
((?0ko...+%oo0...)x" 2stop; onil) || ((tracert(hd,h) o...)x" " 2c_stop, o nil)
lz (?ccvy(vi)o...+%cvr(vr)o...
tracert(hd, h)
((?70ko...+%koo...)x" ?stop; onil) || ((?endo...+?resp(hx)o...)x " ?stop o nil)
llz (Pccoi(vi) o...+2cvr(vr)0...)
17ko
((ver; := failolcv(ver;) o nil)x ™ ?stop; o nil) ||
(?endo ... +?resp(hz)o...)x " ?stop, o nil)
llz (Pccoi(vi) o...+2cvr(vr)0...)
1?resp(hx)
((ver, := failolc_v(ver;) o mil)x ™ ?stop; o nil) ||
((?resp(ha’) o...+%endo...)x " ?stop, o nil)
llz (Pccoi(vi) o...+2cvr(vr)0...)

| ver; := fail

(lecvi(very) o nilx ™ ?stop; o nil) || ((?resp(ha’) o...+?endo...)x* " ?stop, o nil)
llz (Pccoi(vi) o...+2cvr(vr)0...)
p = polfail/ver]

| coui(fail)

(nilx® ?stop; o nil) || ((?resp(ha’) o ...+%end o ...)x" ?stop, o nil)

18

Iz ([vi = fail V vg :=inc]/vg :=inco...+ [v1 = pass]/vg :=inco...)
| [= fail Vinc]/vg :=inc
(nilx 1 ?stop; o nil) || ((?resp(ha’) o ... +%endo ... x"" ?stop, onil))
Iz (Istopolmain(vg) o nil)
p = polfail/ver,,inc/vg]
| stop()
(nal || nil) ||z (Ymain(vg) o nil)
p = polfail/ver,,inc/vg]
| main(inc)

(nal || nil) ||z nil

19

