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Effective properties of linear random materials: application to Al/SiC
and resin/glass composites

Serge Dumont · Frédéric Lebon

Abstract Here we present a statistical study on the effective
linear properties of random materials, i.e., microstructures
which are random lattices described by a stochastic process.
The local numerical procedure associated with the homoge-
nization methods used here was based on a wavelet-element
method. The resulting numerical results are compared with
those obtained using classical theories. A new approach was
developed in order to determine the effective properties in
cases where the characteristics of the microstructure are not
known.

Keywords Random materials · Wavelet-element method ·
Homogenization · Elasticity

1 Introduction

The aim of this study was to determine and compute the
effective properties of linear random heterogeneous media.
Although natural geomaterials are heterogeneous, they are
generally regarded as homogeneous materials with effective
properties which determine the overall behavior. Grounds,
for example, are usually modeled as a body consisting of
homogeneous materials with these effective properties.
The behavior of these grounds cannot be predicted if the
effective properties are not exactly determined. The need to
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incorporate more detailed information about the microstruc-
ture is now widely recognized. During the last few years,
many studies have been published presenting measurements
and describing empirical and theoretical techniques for deter-
mining these effective properties. The numerical cost of solv-
ing this problem directly for each material sample would
obviously be prohibitive. We previously presented a method
involving a numerical scheme combined with homogeniza-
tion techniques which can be used to account for the details
of microstructures [9–12,24]. These algorithms based on
wavelet analysis make it possible to predict the effective
properties from microstructural data and thus to optimally
design linear composite materials from real images of the
sample.

Unfortunately, in most cases, the microstructural details
are not exactly known, and the effective properties are there-
fore assessed from statistical studies. In a well-known paper
[34], Torquato (see also [35]) presented results obtained on
a case where some statistical informations, such as the cor-
relation functions, was available. This improves the bounds
of the effective properties of two-phase random heteroge-
neous media. Results of other kinds have been published in
[23,30]. Here it is assumed that only the volume fraction
of each phase is known, and it is proposed to find the aver-
age effective properties of the composite. In addition, the
microstructure is assumed to be given pixel by pixel, i.e.,
the characteristic shape of the microstructural components is
taken to be a small square and its characteristic length to be
the length of the pixel.

We will not discuss here the size of the representative
volume, which is often a real problem with materials of this
kind. We will assume the Hill’s condition to be valid (see
[18,37,38]) and that exists a representative volume on which
we will work. For further details on the problem of choosing a
sample when there exists no representative volume, we refer
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Fig. 1 The homogenization
process

to [17,20–22]. In addition, the method proposed in previous
papers is improved here. In [9] only Daubechies wavelets are
used. In this paper B-spline wavelets are introduced. It will
be shown below how these functions improve the numerical
procedure.

In Sect. 2, the notations used are presented and the mechan-
ical problem is defined. Section 3 is devoted to the numer-
ical algorithm. In Sect. 4, a statistical study on AlSiC and
resin–glass composites is presented. The results obtained are
compared with the Hashin and Shtrikman bounds [16] and
with the self-consistent schema [19,28]. At the end of the
paper, the future perspectives of this approach are discussed.

2 The mechanical problem

Here it is proposed to study the behavior of a heterogeneous
medium consisting of a two-phase isotropic elastic compos-
ite. A homogenization step is first performed, consisting in
determining the effective properties of the equivalent homo-
geneous medium. Let us take a plane periodic composite Ω
(macro-scale, variable x) and a rectangular periodicity cell
Y (micro-scale, variable y). The bonds at all the interfaces
of the composite are assumed to be perfect.

The elasticity coefficients Cε
i jkl are assumed to be peri-

odic, with period Y . We take the boundary ∂Ω of Ω to be
split into two parts: ∂Ω = ∂1Ω ∪∂2Ω with ∂1Ω ∩∂2Ω = ∅.
A traction force equal to F is imposed on ∂1Ω , and the dis-
placement vanishes at ∂2Ω (see Fig. 1).

In the elastostatic framework, the problem (Pε) can be
written

Problem(Pε)
Find uε ∈ V such that aε(uε, v) = L(v),
∀ v ∈ V ,

where aε(u, v) =
∫

Ω

Cε
i jkl ekl(u)ei j (v)dx ,

ekl(u) = 1
2 (uk,l + ul,k),

L(v) =
∫

Ω

f vdx +
∫

∂1Ω

Fvdl,

and V = {v ∈ (H1(Ω))2, v = 0 on ∂2Ω}.

When ε → 0, it has been established (see for example
[3,31]) that the solution of the previous problem uε tends
to u in V , the space of the admissible global displacements,
where u is the solution of problem P

Problem(P)
Find u ∈ V such that a(u, v) = L(v), ∀ v ∈ V ,

where a(u, v) =
∫

Ω

Ai jklekl(u)ei j (v)dx

and Ai jkl = 1

meas(Y )

∫

Y

(Ci jkl + Ci jpqepq(u
kl))dy.

To determine the displacements ukl , it is necessary to solve
three local problems on Y (Problem PY ) in the space H =
(H1

per(Y ))
2, the set of admissible local displacements:

Problem(PY )

Ekl being given, find ukl ∈ H such that

aY (u
kl , v) = l(v), ∀v ∈ H, (1)

where aY (u, v) =
∫

Y
Cklst (y)ekl(u)est (v)dy and l(v) =

−
∫

Y
Cklst (y)E

klest (v)dy.

Comment 1 Even if each component of the composite is
isotropic so that the elasticity coefficients can be written
using only the bulk and shear moduli K and µ, the homo-
geneous equivalent material is not necessarily isotropic and
the elasticity tensor cannot be written using bulk and shear
moduli.

3 Numerical procedure

In order to avoid having to remesh the cell Y after each
draw, we decided to discretize problem PY with a meshless
method, the wavelet element method [7,9]. Moreover, as we
will see below, the elements of the stiffness matrix can be
computed with this method once and for all, without hav-
ing to use quadrature formulae. Thanks to the localization
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of the wavelets in both the physical and spectral spaces, the
stiffness matrix is not ill conditioned. This gives a good rate
of convergence for solving the linear systems [10].

This method can also be said to be a compromise between
finite elements [15] and Fourier analysis [27] methods.

Periodic conditions were applied here to the boundary of
the cell Y , but boundary conditions of other kinds can be used
with wavelet transforms, such as vanishing displacements
[14].

3.1 Daubechies wavelets

In this section, we will briefly describe Daubechies wavelets
[7].

Let M be a positive integer. There exist a sequence of real
numbers (hn)n for n = 0, . . . , 2M − 1, a function ϕ called
the scaled function and a function ψ called the associated
wavelet, such that

ϕ(x) = √
2

2M−1∑
n=0

hnϕ(2x − n), ∀x ∈ R,

ψ(x) = √
2

2M−1∑
n=0

gnϕ(2x − n), ∀x ∈ R,

(2)

where gn = (−1)nh2M−1−n , n = 0, . . . , 2M − 1.
The functions ϕ and ψ have the following properties:

− ϕ and ψ are orthogonal, since

(ϕ, ψ) =
∫

R

ϕ(x)ψ(x)dx = 0.

− The supports of ϕ and ψ lie in the closed interval
[0, 2M − 1].

Let

ϕ jk(x) = 2 j/2ϕ(2 j x − k); Vj = span{ϕ jk, k ∈ Z};
ψ jk(x) = 2 j/2ψ(2 j x − k); W j = span{ψ jk, k ∈ Z}, (3)

the functions ϕ jk and ψ jk fulfill:
∫

R

ϕ jk(x)ϕ j�(x)dx = δk�, (4)

∫

R

ψ jk(x)ψi�(x)dx = δk�δi j . (5)

Relations (4) mean that (ϕ jk)k is an orthonormal basis of Vj

for each j . Relations (5) mean that (ψ jk)k is an orthonormal
basis of W j for each j , and spaces W j and Wi are orthonormal
if j �= i .

We therefore have

Vj ⊂ Vj+1, Vj+1 = Vj
⊕

W j ,⋂
j∈Z

= {0}, L2(R) = ⋃
j∈Z

Vj .
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Fig. 2 The scale function and the associated Daubechies wavelet of
order M = 3

The set of spaces {Vj , j ∈ Z} is called a multiresolution
analysis of L2(R).

Figure 2 gives plots of the scale function and the associated
Daubechies wavelet of order M = 3.

We can then obtain a multiresolution of L2
per(0, 1), the

space of the periodic functions with a period equal to one, by
periodizing the scaled function and the associated wavelet:

φ jk(x) = 2 j/2
∑
n∈Z

ϕ(2 j (x + n)− k),

j ≥ 0, k = 0, . . . , 2 j − 1; (6)

and likewise for the periodic associated wavelet.
We then perform a multiresolution of L2

per(Ω), where
Ω = (0, 1) × (0, 1) with a tensor product. The periodic
two-dimensional scale function becomes

Φ jk(x)=φ jk1(x1)φ jk2(x2), ∀k = (k1, k2) ∈ Z
2, x ∈ Ω,

(7)

3



and the three associated two-dimensional wavelets are:

Ψ 1
jk(x) = φ jk1(x1)ψ jk2(x2), ∀k = (k1, k2) ∈ Z

2, x ∈ Ω,
Ψ 2

jk(x) = ψ jk1(x1)φ jk2(x2), ∀k = (k1, k2) ∈ Z
2, x ∈ Ω,

Ψ 3
jk(x) = ψ jk1(x1)ψ jk2(x2), ∀k = (k1, k2) ∈ Z

2, x ∈ Ω.
(8)

If we take Λ j to denote the subset of Z
2

Λ j =
{

k ∈ Z
2, 0 ≤ k1 ≤ 2 j − 1, 0 ≤ k2 ≤ 2 j − 1

}
, (9)

and {V j , j ≥ 0} the multiresolution of (L2
per(Ω))

2, an ele-
ment u in V j can be written

u(x) =
(

u1(x)
u2(x)

)
with ud(x) =

∑
k∈Λ j

uk
dΦ jk(x) ∀x ∈ Ω.

Comment 2

− The Daubechies wavelets are orthogonal for the scalar
product of (L2

per(Ω))
2, and they are only implicitly given

by the sequence {hn}n=0,...,2M−1 (see 2).
− Unfortunately, the length of the support is very large.

For example, if M = 3, the size of the support is in the
[0, 5] range. These values can be compared with those
obtained using P2 finite elements, where the support is in
the [0, 2] interval. The number of non vanishing elements
in the rigidity matrix will therefore be larger with the
Daubechies wavelet method.

− These functions are not very regular and they are not
symmetric (see Fig. 2). The consequences of these prop-
erties will be seen in Sect. 4.

3.2 B-spline wavelets

In order to avoid the problems due to the orthogonality of
wavelets, bi-orthogonal wavelets have been introduced [6].
This procedure was based on a multiresolution analysis. It
can be explained as follows:

− Define two sequences of embedded subspaces:

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

. . . ⊂ Ṽ−2 ⊂ Ṽ−1 ⊂ Ṽ0 ⊂ Ṽ1 ⊂ Ṽ2 ⊂ . . .

− Define W j (W̃ j resp.) the complementary space of Vj

into Vj+1 (Ṽ j into Ṽ j+1 resp.), such that

Vj ⊥ W̃ j , Ṽ j ⊥ W j .

− We therefore have two scale functions (ϕ and ϕ̃) and two
wavelets (ψ and ψ̃) such that

∫

R

ϕ(x)ϕ̃(x − k)dx = δ0k, ∀k ∈ Z,

∫

R

ψ(x)ψ̃(x − k)dx = δ0k, ∀k ∈ Z,

∫

R

ϕ(x)ψ̃(x − k)dx = 0, ∀k ∈ Z,

∫

R

ϕ̃(x)ψ(x − k)dx = 0, ∀k ∈ Z,

(10)

− A function f is decomposed into

s j0k =
∫

R

f (x)ϕ j0k(x)dx, ∀k ∈ Z,

d jk =
∫

R

f (x)ψ̃ jk(x)dx, ∀ j ≥ j0, k ∈ Z

and

f (x) =
∑
k∈Z

s j0k ϕ̃ j0k(x)+
∑
j≥ j0

∑
k∈Z

d jkψ jk(x).

− Therefore, four filters are necessary:

ϕ(x) = √
2

N∑
n=0

hnϕ(2x − n);

ϕ̃(x) = √
2

Ñ∑
n=0

h̃nϕ̃(2x − n);

ψ(x) = √
2

N∑
n=0

gnϕ(2x − n);

ψ̃(x) = √
2

Ñ∑
n=0

g̃nϕ̃(2x − n).

(11)

Comment 3

− The scale function ϕ is often a B-Spline [6,8]. In this
case, we define the B-spline scale function of order N as
N convolutions of the characteristic function on [0, 1].
The B-spline of order 2 is the P1 finite element on R, and
the B-spline of order 3 is plotted in Fig. 3. This function
is differentiable, piecewise polynomial and of order two.
The support of this function lies in the [0, 3] range, and
this function is symmetric.

− The choice of Ñ , the size of the filter h̃, is much more
difficult. The larger Ñ is, the more regular ϕ̃ and ψ̃ will
be. But the support of these functions will also increase.
In order to give all four functions ϕ, ϕ̃, ψ and ψ̃ the
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Fig. 3 The B-Spline wavelet of order M = 3

same regularity, one can take Ñ > 1.5N. Examples of
functions ϕ, ϕ̃, ψ and ψ̃ are given in [6].

3.3 Operator discretization

In this section, we will focus on solving problem PY . This
problem is solved here using a wavelet-element method [36]
with Daubechies wavelets [7] or B-Spline wavelets [6,8].
This method is based on the standard form of the discretized
elastostatics operator [4]. Details of this method can be found
in our previous papers [10,12,13].

In what follows, without any loss of generality, we will
consider a two dimensional problem using the plane defor-
mations hypothesis. The stress and the deformation tensors
will therefore be taken to be vectors of R

3:

σ =
⎛
⎝σ11

σ22

σ12

⎞
⎠

and so on for the deformation tensor ε. We will also identify
the elasticity operator with a 3 × 3 matrix denoted C on the
representative volume and A on the homogeneous equivalent
material, such that

σ = Cε.

More specifically, the solution u of PY is approximated
by

u(y) =
∑
k∈Z2

u jkΨ jk(y) y ∈ Y, (12)

whereΨ jk(y) = 2 jΨ (2 j y−k) is a localized function around
the point y = 2− j k. Since the function Ψ is compactly sup-
ported, the sum can be written in a finite dimensional sub-
space of Z

2, denoted Λ j . Using test functions of this kind,

the projection of the linear elasticity tensor

a(u, v) =
∫

Y

Ce(u) : e(v)dy

is a matrix K defined by

[K] = [Ki�]i�∈Λ j ,

where Ki� is a 2 × 2 elementary matrix

Ki� =
[

F11
11 + F33

22 F12
12 + F33

21

F12
21 + F33

12 F22
22 + F33

11

]
,

with Fαβηξ =
∫

Y

Cαβ(x)Ψ j i,η(y)Ψ j�,ξ (y) dy.

Since the coefficients Cαβ are piecewise constant, using
the Haar wavelet

θ(y) =
{

1 if y ∈ [0, 1],
0 if not

one can then write Cαβ (we will omit α and β from now on):

C(y) =
∑

n∈Z2

CnΘ jn(y),

where Θ jn(y) = 2 jθ(2 j y1 − n1)θ(2 j y2 − n2). Elements of
the stiffness matrix are coefficients such as∫

Y

Θ jn(y)Ψ jk,ηΨ j�,ξ (y).

||          | |
−

−

−

−

level j level j+1

le
ve

l j
 

le
ve

l j
+

1
le

ve
l j

+
2

level j+2

Fig. 4 Particular form of the stiffness matrix discretized with a wavelet
method
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Using the scale relation (2), these coefficients are computed
once and for all without any approximation, after diagonal-
izing a small dimensional matrix [4,9,10].

Due to the particular type of wavelet basis involved (see
formula 5), the discrete stiffness matrix takes the form plotted
in Fig. 4. When it is necessary to solve a linear system with a
matrix of this kind, a multigrid method gives excellent results.

Comment 4 In what follows, the image of the microstructure
will be composed of square pixels (as in Fig. 1), and this
explains the use of Haar wavelets for the discretization of
the elasticity coefficients Cαβ . One can also imagine that
these coefficients could be given after performing digiti-
zation and filtering, using other types of wavelet based on
a camera image. Note that the Jpeg2000 norm is based on
the use of Daubechies wavelets [5,33].

In this case, the approach developed here can be extended
only by replacing the Haar basis by the wavelet used in the
filtering step.

4 Numerical results

In this part of the paper, numerical tests on Al/SiC and resin/
glass composites are presented. The effects of two para-
meters are studied: the volume fraction of each component
(Aluminum and Silicium or Resin and Glass) and the dis-
tribution of each material in the microstructure. With each
volume fraction, approximately 5000 draws are performed
and results are studied statistically.

The elementary representative volume will be represented
by an image with 32 × 32 pixels as proposed by Wriggers
et al. [37]. The discretization of this domain will be carried
out with 256 × 256 wavelet elements. The numerical results
obtained in this study were not significantly different from
those obtained using finer discretizations with 512 × 512 or
1024 × 1024 wavelet elements, for example.

The pixels corresponding to the second material are cho-
sen randomly, using a uniform law.

The aim of this paragraph is to show that, even if after each
draw s the homogeneous equivalent material with elasticity
tensor equal to As is not isotropic, the mean elasticity tensor
on the draws Ã = 〈As〉s becomes isotropic and one can
define “mean” bulk and shear moduli K̃ and µ̃ from Ã.

In [37], a different approach was used. For each sample s,
the authors computed the effective bulk and shear moduli:

3K ∗
s = 〈trσs/3〉Ω

〈trεs/3〉Ω and 2µ∗
s =

√
〈σ ′

s〉Ω : 〈σ ′
s〉Ω

〈ε′s〉Ω : 〈ε′s〉Ω
,

where σ ′ = σ − (trσ/3)I d and ε′ = ε − (trε/3)I d. They
then studied the properties of the mean values of these quan-
tities in the samples: K̄ ∗ = 〈K ∗

s 〉s and µ̄∗ = 〈µ∗
s 〉s .

4.1 AlSiC composite

First we focus on AlSiC composites having the following
properties: the Young’s modulus is equal to E = 0.41 ·
10+6 MPa and the Poisson’s ratio is equal to ν = 0.19 in
the case of silicium, and the Young’s modulus is equal to
E = 0.72 · 10+5 MPa and the Poisson’s ratio is equal to ν =
0.32 in that of aluminum. We consider a two-dimensional
material, and we assume the plane stress hypothesis to be
valid.

The changes in each elasticity coefficient are presented in
Fig. 5 in the case of about 5000 microstructures at a volume
fraction of 70%. The fluctuations can be seen to be very large.

On the other hand, if we look at the histogram of each
component of the elasticity tensor, we can see that the values
show a Gaussian distribution (Fig. 6).

The mean values on the nth first draws :

Ai j (n) = 1

n

n∑
s=1

As
i j

versus the number of draws are given in Fig. 7, for each
coefficient i j of the elasticity tensor. Coefficients Ai j (n) in
the case of all i, j = 1, 2, 3 can be seen here to converge on
a mean value when the number n of draws increases.

If we study in detail the changes in the mean coefficients,
we can see that the mean is obtained in quite a small number
of draws (Fig. 8) and that the standard deviation is small
in comparison with the coefficients. In the case presented
in Fig. 8, i.e., at a volume fraction equal to 70%, the mean
is equal to 12358 MPa and the standard deviation is equal
to 768 MPa. The values are in the [12083,12682] range. In
addition, after 2000 draws, the maximum standard deviation
amounted to less than 0.01% of the coefficient. Therefore,
5000 draws suffice to obtain an accurate mean coefficient.
The histogram in terms of polar coordinates (Fig. 9) shows the
good distribution of the results in terms of the mean values.
The values given in Fig. 7 show that the numerical limit is
that of an isotropic material. In particular, we have A13 =
A23 = 0 and A11 = A22. It is therefore possible to compute
the bulk and shear moduli of the limit material (Mean bulk
and shear moduli).

In what follows, we take L-HS and U-HS to denote the
Lower and Upper Hashin and Shtrikman bounds [16]. We
take WAV to denote the Mean Value obtained using the
Wavelet-element method. Figure 10 shows three phases: in
the first phase, at volume fractions lower than 0.25, the L-HS
and WAV values are very similar. The second phase corre-
sponds to volume fractions of 0.25 to 0.95. In this phase, the
WAV value is mid-way between the two HS bounds. In the
third phase, at volume fractions above 0.95, the WAV values
are similar to the values of U-HS bounds.

6



Fig. 5 Homogenized plane
elasticity tensor versus draws
(volume fraction 70%). Each
peak gives the result of one test
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Fig. 7 Mean value based on the
nth first draws of the
homogenized elasticity tensor
versus the number n of draws
(volume fraction 70%)
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Fig. 8 Mean value based on the nth first draws of the homogenized
elasticity coefficients A11 and A22 versus the number of draws (volume
fraction 70%), compared with the mean value based on 7000 draws

If we compare the results obtained with the self-consistent
schema on the shear modulus and at volume fractions lower
than 0.5, we can see from Fig. 11 that at the lower volume
fraction values (lower than 0.1), the L-HS value, the results
based on the self-consistant schema (denoted SCS) and the
WAV value are fairly similar. At higher volume fraction val-
ues ranging from 0.1 to 0.25, the L-HS and WAV values are
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Fig. 9 Histogram in polar coordinates (volume fraction 70%, AlSiC)

practically identical and the SCS value is lower than the other
two. At volume fractions above 0.25 and below 0.4, the L-HS
and SCS values are similar, and lower than the WAV value.
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Fig. 10 Bulk and shear moduli and Hashin–Shtrikman bounds (AlSiC)
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Fig. 11 Shear modulus, Hashin–Shtrikman bounds and self-consistent
schema (AlSiC)

4.2 Resin–glass composite

In the resin–glass composites studied here, the Young’s mod-
ulus is equal to E = 0.73 · 10+5 MPa and the Poisson’s ratio
is equal to ν = 0.25 in the case of the glass, and the Young’s
modulus is equal to E = 0.30 · 10+4 MPa and the Poisson’s
ratio is equal to ν = 0.40 in that of the resin. We assume the
existence of a two-dimensional material, and the plane stress
hypothesis is assumed to be valid.

In this case, the difference between the properties of the
two composites is greater than previously. The histograms
plotted in polar coordinates in Figs. 11 and 12 show the good
distribution of the mean results obtained at various glass and
resin volume fractions (20% in Fig. 12 and 80% in Fig. 13).

Figure 14 shows that the behavior of this composite was
similar to that observed in the case of the AlSiC composite:
the relative behavior can again be split into three phases. In
the first part, at a volumic fraction below 0.35, the L-HS and
WAV values were similar.
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Fig. 12 Histogram in polar coordinate system (volume fraction 20%,
resin/glass composite)
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Fig. 13 Histogram in polar coordinate system (volume fraction 80%,
resin/glass composite)

The second phase corresponds to volume fractions ranging
between 0.35 and 0.99. In this phase, the WAV value is mid-
way between the two HS bounds. In the third phase, the WAV
value tangents the U-HS bounds.

4.3 Comparison between Daubechies wavelets
and B-Spline wavelets

We end this section with a discussion about the wavelets.
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Fig. 14 Bulk and shear moduli and Hashin–Shtrikman bounds
(resin/glass composite)

Table 1 Comparison between the bulk and shear moduli (×103 Pa)
obtained using Daubechies and B-Splines wavelets, in Al/SiC (low con-
trast) and B-Splines (large contrast), with a volume fraction of the first
component equal to 20%

Bulk mod. Shear mod.

Al/Sic Daubechies 80.6 36.7

B-Splines 83.0 36.9

Resin/glass Daubechies 5.83 1.74

B-Splines 6.25 1.70

Differences Al/SiC 3% 0.5%

Resin/glass 7% 2%

Results are averages based on 100 draws

Table 1 gives the bulk and shear moduli obtained with
Al/SiC and resin/glass composites, using Daubechies and
B-Splines wavelets. The volume fraction of the first compo-
nent of the composite was equal to 20%, and the moduli were
obtained by averaging on 100 draws.

In the case of the AlSiC composite (low contrast), the
results given by the two discretization procedures (Daube-
chies and B-spline wavelets) were very similar (difference
amounted to less than 3%); whereas with the resin/glass
composite (large contrast), since the differences between
the properties of the two materials were larger, the two dis-
cretization procedures did not give similar results. The dif-
ferences increased by 7% in the bulk modulus and by 2%
in the shear modulus. Moreover, the bulk modulus given
by the Daubechies wavelets was outside the bounds, due to
the lack of symmetry and regularity of Daubechies wavelets.
Using the symmetric and C1 B-spline wavelets, better results
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Fig. 15 Bulk moduli and Hashin–Shtrikman bounds obtained with
Daubechies and B-spline wavelets (resin/glass composite)

were obtained and the average bulk modulus computed was
very near the lowest Hashin and Shtrikman bound (see
Figs. 14, 15).

We recall that the moduli have to be within the Hashin and
Shtrikman bounds only in the asymptotic case of an infinite
(sample length)/(particle length) ratio and purely isotropic
macroscopic responses [16]. This was not the case here where
the ratio was equal to 32.

In addition, the results obtained with the B-spline wavelets
were always within the Voigt and Reuss bounds, contrary
to the results obtained with the Daubechies wavelets. This
shows that the use of B-spline wavelets improves the numer-
ical procedure.

Comment 5 Unlike the finite element method, the wavelet
element method can be used with a single tool for the image
processing, the image compression and the determination of
the effective properties. In particular, this method does not
require the use of Voronoi techniques. However, the solution
of the linear systems can be compute less expensively using
the finite element method [10].

5 Concluding comments and perspectives

It is generally impossible to exactly determine the effective
properties of random heterogeneous media. The most rigor-
ous statements in the literature about these effective proper-
ties focus on the bounds. In this study, bounds of another kind
were obtained in the form of an average and a standard devi-
ation. One of the main results obtained here is the numerical
convergence between the stochastic homogenization process
with a mean solution, i.e., when the number of draws tends to
infinity, the limit of the potential energy corresponding to a
’random lattice’ is the potential energy of an isotropic mate-
rial. The effective properties of this material depend on the
volume fraction of each component. At lower volume frac-
tions, the material has similar properties to those given by the

10



lower Hashin and Shtrickman bounds and the self-consistent
schema. A numerical theorem is obtained. This result is con-
sistent with those obtained in [22] using the finite element
method and with an initial result obtained at low contrast in
[25]. Note that this theorem is a generalization of rigorous
mathematical stochastic homogenization results obtained in
another context (scalar problems) [1,2].

The method developed here, based on a wavelet trans-
form procedure is highly efficient and makes it possible to
avoid meshing the microstructure after each draw. In addi-
tion, since the wavelet transform method was developed for
image processing purposes, it can be used to determine the
microstructure with a good resolution and a reasonable num-
ber of degrees of freedom.

This study could be extended in two ways: first, by deter-
mining the effects of the shape of the lattices. We propose
to study the same problem investigated here with different
morphologies: n-pixels in one direction, sets of n-pixels in
the neighborhood of a point, etc. Another possible approach
would consist in studying the effective properties in the case
of more complex behavior such that involved in piezoelectric
coupling, thermomechanical coupling and non linear behav-
ior [26,29,32]. This method lends itself to dealing with prob-
lems of this kind because it has proved to be a particularly
efficient tool.

Acknowledgments The authors gratefully acknowledge R. Peyroux
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