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Abstract

In this paper we study the relationship between the Euclidean and the discrete space.
We study discrete operations based on Euclidean functions: the discrete smooth
scaling and the discrete-continuous rotation. Conversely, we study Euclidean oper-
ations based on discrete functions: the discrete based simplification, the Euclidean-
discrete union and the Euclidean-discrete co-refinement. These operations operate
partly in the discrete and partly in the continuous space. Especially for the discrete
smooth scaling operation, we provide error bounds when different such operations
are chained.

Key words: discrete geometry, operations, multi-representation modeler.

1 Introduction

In computer imagery, the discrete and the Euclidean spaces are considered
apart. Both spaces have different properties which led to separate branches
in computer imagery: computer modeling and image synthesis on one side
and computer vision and image analysis on the other side. Operations are
primarily conducted in the Euclidean or the discrete space. Operations might
be trivial in one space and difficult to transpose in the other one. For instance,
there isn’t a satisfying discrete rotation that is at the same time one-to-one
and commutative, which are two fundamental properties of the continuous
rotation. Boolean operations (intersection, union, difference) that are trivial in
the discrete space become tedious to perform in the continuous space because
of numerical errors.

In this paper we explore new types of operations: discrete-Euclidean opera-
tions and Euclidean-discrete operations. The idea behind these operations is
to move to the best adapted space for any given operation. For instance, the
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discrete-Euclidean rotation is a discrete operation that moves to the Euclidean
space, performs the rotation there and then moves back to the discrete space.
The Euclidean-discrete co-refinement is a Euclidean operation that moves to
the discrete space, performs the boolean operations and moves back to the Eu-
clidean space. Discrete-Euclidean and Euclidean-discrete operations are per-
formed partly in the discrete and partly in the Euclidean space with help of
discretization and continuation transforms. A discretization allows us to move
from the continuous space to the discrete space. A continuation transform
allows us to move from the discrete space to the continuous space. We intro-
duce the term continuation to avoid the ambiguity of the term reconstruction
used in very different settings. Of course, this works if the discretization and
the continuation transforms are associated. We explain some of the properties
that have to be verified by both the discretization and the continuation.

Operations that operate partly in the discrete and in the continuous world
exist already. For instance, in image analysis, discrete space is often simply
embed in continuous space in order to use the tools of continuous geometry. In
the same way, discrete grids are often used as space subdivisions in computer
modelling. The novelty here, with our operations, is the explicit use of the
discretization and continuation steps. This allows us to propose new operations
that haven’t, to the authors bets knowledge, not been proposed before such
as, for instance, the discrete-continuous scaling operation. It allows us also to
control the error bounds when doing reverse operations.

The paper explores discrete-Euclidean and Euclidean-discrete transforms. In
[1] we have introduced an original discrete-Euclidean operation based on the
scaling transform in the discrete space: the discrete smooth scaling. The dis-
crete smooth scaling describes a discrete object in a smaller (finer) grid. We
want to perform this operation without filtering or smoothing. We want there-
fore to avoid interpolation or fuzzy operations. The discrete smooth scaling
operation possesses a remarkable property: the almost stability by inverse
scale. If we make a discrete smooth scale of factor α ≥ 1 followed by a discrete
smooth scale of factor 1

α
we obtain the original discrete object with an error

bounded by a factor proportional to 1
α
. In this paper, we propose new results

on the error bounds when several discrete smooth scales are chained. We show
that the order in which we chain the discrete smooth scaling transforms with
various scales has an influence on the error bounds. As a new result we also
show that these error bounds are optimal. We introduce and discuss the prop-
erties of a new discrete-Euclidean operation: the discrete-Euclidean rotation.
In a second part of the paper, we look into Euclidean-Discrete operations. We
go over the discrete based simplification introduced in [1]. The operation con-
sists, this time, starting with a continuous object, to discretize with a given
grid size and then to reconstruct it. When we reconstruct a discrete object, the
”shape complexity” (resulting vertex and edge number) depends on the size of
the object. The smaller the object, the less complex the reconstructed object.
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Very similarly to what happens for the discrete smooth scaling, the Hausdorff
distance between the original object and the simplified object is bounded by
a factor proportional to the grid size. We introduce the Euclidean-discrete
union and the Euclidean-discrete co-refinement as first attempts to explore
Euclidean-discrete boolean operations.

The interest of these operations is that they each make use of the properties of
the other space. The discrete operation uses the properties of the continuous
space and the continuous operation those of the discrete space. These opera-
tions show how the duality between the discrete and the continuous space can
be used at our advantage.
In section two, we introduce the basic notions used in this paper and discuss
the properties discretizations and continuations have to verify. In the third
section we look into discrete-Euclidean operations and the error bounds when
chaining the operations and there reverse. In section four we discuss in the
same way Euclidean-discrete operations. In section five we present the im-
plementation and illustrations of these operations. We conclude and present
perspectives in the last section of the paper.

2 Preliminaries

2.1 Basic notations in discrete geometry

The following notations correspond to those given by Cohen and Kaufman in
[2] and those given by Andres in [3]. We provide only a short recall of these
notions.

A discrete (resp. Euclidean) point is an element of Zn (resp. Rn ). A dis-

crete (resp. Euclidean) object is a set of discrete (resp. Euclidean) points.
We denote pi the ith coordinate of a point p of Z

n. The voxel V(p) ⊂ R
n of a

discrete nD point p is defined by V(p) = [p1 − 1
2
, p1 + 1

2
]× ...× [pn − 1

2
, pn + 1

2
].

For a discrete object D, V(D) =
⋃

p∈D V(p). The distances we use in this paper

are all designed by dk(a, b) = n
√

|ax − bx|n + |ay − by|n.

In this paper, we use the Hausdorff distance defined by:

Definition 1 Let h be the direct Hausdorff distance: A ⊂ Rn, B ⊂
Rn, h(A, B) = maxa∈A (minb∈B (d2(a, b))) , where d2 is the Euclidean
distance. The Hausdorff distance between A and B is H(A, B) =
max (h(A, B), h(B, A)) .

One of the major Euclidean operation we are going to use throughout the
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paper is the Euclidean scaling operation Scα by a scale α. We consider that
the center of the scaling operation is the center of the space. We have therefore
for x a Euclidean point, Scα(x) = α.x.

This paper is based on the relations between the continuous and the discrete
spaces and the way operations can benefit from this duality. For this we need
discretizations and continuations that operate together.

2.2 Digitization and Continuation

In this paper we are dealing with operations that operate partially in the dis-
crete space Zn and partially in the continuous space Rn. For this we need to
be able to travel between both spaces with appropriate transforms. A trans-
formation from the Euclidean to the discrete space is called a discretization.
This is sometimes also called digitization. We prefer however the term dis-
cretization because we don’t see the transform from the continuous space to
the discrete space as simply a sampling of the continuous space but rather
as a mathematical transform between two spaces. The transformation from
the discrete space to the Euclidean space is classically called a reconstruction.
The term reconstruction has however different meanings in the computer vi-
sion and computer graphics literature and that is why the authors prefer to
introduce the term continuation.
Simply defining a discretization (resp. continuation) as a transform that maps
Rn to Zn (resp. Zn to Rn) is in our case not enough. Discretization and contin-
uation in the case of discrete-continuous and continuous-discrete operations
have to be associated if we want meaningful operations. More precisely, a
continuation R that is associated to a discretization D has to verify several
properties. It is easy to see that we can define an equivalence relation ≈ be-
tween two Euclidean objects E and F by E ≈ F iff D (E) = D (F ). There is a
one-to-one mapping between the discrete objects and the equivalence classes
defined by ≈. The continuation has to stay in the equivalence class when we
discretize and then continuate (perform a continuation): R (D (E)) ≈ E. Of
course, in general, R (D (E)) 6= E.

In the framework of this paper, we consider discretizations that verify the
following property: D (R (A)) = A for a discrete object A. This property is
verified in many practical situations and by most discretization methods. This
property is indeed verified if there isn’t any missing information in A. The
property isn’t verified, for instance, when we reconstruct the border of a region
after an edge detection on a noisy image. We speak of partial continuation in
this case. Partial continuation doesn’t prevent from doing discrete-continuous
operations but in this case the discussion on the error bounds aren’t mean-
ingful. We will consider in this paper that we aren’t dealing with partial con-
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Fig. 1. Coherence between discrete and continuous spaces.

tinuations.

Let us recall [1] a class of discretization schemes that suit the purpose of
this paper: the narrow offset discretizations. This corresponds to most known
discretization transforms used in applications including Bresenham generation
algorithms [4], the supercover model [2,5–7], the näıve discretization [8], the
standard model [3], etc. In this paper we continue to consider mainly those
kind of discretizations. It allows us to present classical discretization methods
in a same framework. We needed also a geometric definition of a discretization
scheme in order to perform our discussions on error bounds. The experiments
presented in this paper have been conducted with the standard analytical
model [3] (see also Fig. 2). A narrow offset discretization transform is based on
a narrow offset area. A narrow offset area O is defined for classes of Euclidean
objects. It simply has to verify two fundamental conditions: A narrow offset
area O (E) ⊂ R

n of a Euclidean object E must be narrow meaning that
if x ∈ O (E) ∩ Zn ⇒ V (x) ∩ E 6= ∅. It requires the discretization of a
Euclidean object E to be composed of voxels that are intersected by E. The
second condition is a constructive condition. A narrow offset area must verify
a stability property for the union: O (E ∪ F ) = O (E) ∪ O (F ).

Definition 2 A narrow offset discretization based on a narrow offset area is
defined by:

D : R
n −→ Z

n

D (E) = {p ∈ Z
n |p ∈ O (E)} = O (E) ∩ Z

n.

A simple way to construct narrow offset discretizations is to define the offset
area with a structuring element S centered at the origin. This defines the offset
area by a simple Minkowski sum:

O (E) = E ⊗ S = {e + s |e ∈ E, s ∈ S } .

If we want the offset area to be narrow we have to verify S ⊆
[

−1
2
, 1

2

]

×
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Fig. 2. Supercover and standard model examples.

· · · ×
[

−1
2
, 1

2

]

. When S =
[

−1
2
, 1

2

]

× · · · ×
[

−1
2
, 1

2

]

we have the supercover

discretization [2,5–7].

An alternative way to construct narrow offset discretizations is to define the
offset area with a distance d.

O (E) =
{

x ∈ R
n

∣
∣
∣
∣d (x, E) ≤ 1

2

}

.

The construction with a distance is simply a particular case of the structuring
element construction. If we take the unit ball S =

{

x ∈ Rn
∣
∣
∣d (0, x) ≤ 1

2

}

of
the distance d as structuring element we obtain the same offset area.

The best known narrow offset discretization is called the supercover model
[2,5–7] with an offset defined by the Manhattan distance d∞. The distance
d1 defines the closed näıve model and the distance d2 defines the closed
Pythagorean model. All distances, of course, don’t verify the narrowness prop-
erty but many do. There exist also narrow offset areas that aren’t defined with
distances. This is the case for the Bresenham algorithms [4], the standard an-
alytical model [3], the näıve discretization [8], etc.

Discretization based on narrow offset areas verify, by construction, properties
such as D (E ∪ F ) = D (E) ∪ D (F ); D (E ∩ F ) ⊂ D (E) ∩ D (F ) and E ⊂
F =⇒ D (E) ⊂ D (F ). These properties ensure that we can build complex
discrete objects out of a set of basic elements. We can, for instance, build all
linear objects out of simplices.

The conditions we chose for our digitizations are a bit restrictive. The narrow-
ness condition on the offset can under certain conditions be lifted if at least
E ⊆ O (E). For instance, in the case of a discretization based on a distance, It

is possible to consider O (E) =
{

x ∈ Rn
∣
∣
∣d (x, E) ≤ α

2

}

where α is an arbitrary
strictly positive value.
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3 Discrete-Euclidean operations

In this section, we will study discrete operations from Zn to Zn that operate
partially in the continuous space. In [1], we have presented the discrete smooth
scaling, a discrete-Euclidean operation based on the scaling transform. In this
paper, we provide new results on the error bound when several discrete smooth
scalings and their reverse are chained. As a new result, we also show that the
bound is optimal. These new results provide a new insight on how continuation
and discretization error can be controlled. We introduce also a new discrete-
continuous operation: the discrete-continuous rotation.

3.1 The discrete smooth scaling operation

The first discrete-Euclidean operation that we have proposed in [1] is called
discrete smooth scaling. The idea behind this operation is to increase the size
of a discrete object, by a factor α ∈ Zn, while keeping a sharp border without
smoothing, interpolating nor filtering (see Fig. 3). The scaling part in the
transform is performed in the best adapted space: the Euclidean space.

Fig. 3. a) original discrete object. b)reduced grid size. c) classical smoothing. d)
discrete smooth scaling.

Definition 3 [1] We call discrete smooth scaling of a discrete object A of
Zn by a scale α (denoted Scα), α ∈ R+∗, the following operation denoted
DSSα (A):

DSSα (A) = D ◦ Scα ◦ R(A).

One of the question that naturally comes to mind is the question of the re-
versibility of this operation. We showed in [1] that DSS 1

α
◦ DSSα is not the

identity however the error when performing a smooth scaling followed by its
reverse smooth scaling is bounded and depends on both the dimension of the
space and the scaling factor.

For a discrete object A, we note Afirst = R(A) the continuation of the original
discrete object and we note Alast = Sc 1

α
(R (DSSα (A))) the Euclidean object

which discretization is DSS 1
α

(DSSα (A)). The error measure is a bound on
the Hausdorff distance between both objects. It is actually not the difference
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between the discrete object A and the discrete object DSS 1
α

(DSSα (A)) that
we characterize but the Hausdorff distance between the Euclidean objects
Afirst, just after the first continuation, and Alast, just before the last dis-
cretization. The difference between two discrete objects is indeed difficult to
characterize in a meaningfull way. For instance, let us consider four Euclidean
objects T, U, V and W . The fact that H (T, U) < H (V, W ) doesn’t change the
fact that we can have D(T ) ∩ D(U) = ∅ and D(V ) = D(W ). If we consider
that the grid is randomly positioned compared to the Euclidean object, for
α < β, there will be usually less difference between DSS 1

β
(DSSβ (A)) and A

than between DSS 1
α

(DSSα (A)) and A. That explains why we use this error
measure.

Theorem 4 [1] For a discrete object A, we note Afirst = R(A) and Alast the
Euclidean object which discretization is DSS 1

α
(DSSα (A)).

The Hausdorff distance between Afirst = R(A) and Alast is bounded by:

H (Afirst, Alast) = H
(

R (A) , Sc 1
α

(R (D (Scα (R(A)))))
)

≤ 1

α

√
n.

Corollary 5 [1] limα→∞ H (Afirst, Alast) = 0.

Theorem 4 shows that the error bound between the objects just after the dis-
cretization and just before the continuation are inversely proportional to the
scaling factor. The greater the scale factor, the ”better” the reversibility prop-
erties of the discrete smooth scaling transform become. This can be useful, as
we will see for the Euclidean-discrete co-refinement (see section 4.3). The proof
of theorem 4 and corollary 5 can be found in [1]. The error bounds presented
in [1] and in this paper are based on the supercover discretization [2,5–7]. The
standard discretization, in our implementation of the discrete-continuous and
continuous-discrete operations, has the same error bound as the supercover
because the narrow offset areas are almost identical. Indeed, the offset area of
the supercover discretization is a closed hypercube of size 1 (the unit ball for
the distance d∞). The offset area of the standard discretization is a hypercube
of size 1 open on some sides (to avoid bubbles in the discretizations. See [3] for
more details). That explains why there is a factor

√
n in all the bounds we pro-

pose in [1] and in this paper. The offset area of the supercover discretization is
the largest possible offset area of all narrow offset discretizations. The bounds
we propose are therefore the worst case that can be encountered within the
conditions we set for our discretizations.

Now, let us study more precisely the discrete smooth scaling properties when
it is combined with other DSS operations. We present a new result on the
error measure with the succession of discrete smooth scalings and the related
reverse smooth scalings: let (αi)i∈[1..k] (∀i ∈ [1, k], αi ∈ R) be a set of scaling
coefficient.
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Lemma 6 For a discrete object A, we note Afirst = R(A) and Alast the last
Euclidean object before the end result, which discretization is

O (Alast) ∩ Z
n = DSSαk

◦ ... ◦ DSSα1 (A) .

For an Euclidean point x in Afirst, the corresponding point in Alast is in the

worst case the Euclidean point
(

Πk
i=1αi

)

x +
(
∑k

i=2

(

Πk
j=iαj

)

+ 1
)√

n. (1)

Proof:

Let x be the starting Euclidean point (∈ R(A)). First we perform a scale
transform with coefficient α1. We therefore obtain α1x. Then we apply
a discretization followed by a continuation. In the worst case, we get
y = α1x +

√
n− ǫ, with ǫ arbitrarily small (for a supercover discretization we

can have ǫ = 0). Therefore the result of R ◦ D ◦ Scα1 is in the worst case the
Euclidean point: α1x +

√
n. Combining this result with R◦D ◦ Scα2 leads to:

α1α2x + α2

√
n +

√
n = α1α2x + (α2 + 1)

√
n. After all the DSS, we obtain

in the worst case the Euclidean point:
(

Πk
i=1αi

)

x+
(
∑k

i=2

(

Πk
j=iαj

)

+ 1
)√

n. 2

Theorem 7 For a discrete object A, we note Afirst = R(A) and Alast the last
Euclidean object before the end result, which discretization is

O (Alast) ∩ Z
n =

reverse discrete smooth scaling
︷ ︸︸ ︷

DSS 1
α1

◦ ... ◦ DSS 1
αk

◦
discrete smooth scaling
︷ ︸︸ ︷

DSSαk
◦ ... ◦ DSSα1 (A) .

The Hausdorff distance between Afirst and Alast is bounded by:

H (Afirst, Alast) ≤
(

1

Πk
i=1αi

+ 2
k−1∑

i=1

1

Πi
j=1αj

)√
n.

Moreover, this bound is optimal: it is the smallest upper bound.

A0
R D

A2 A3

Z

A5 A6
R D

A7 A8
R

Sc 1
α1

Sc 1
α2

Sc 1
α3

A15 A13 A12 A11 A10A18

Z

R
A9

Z

D

H(A14, A16) ≤
√

n

H(A2, A4) ≤
√

n

A
1

A
4

A
14

Scα1 Scα2

D
A16

R
A

17

D R

Z
Scα3

D

H(A1, A17) H(A4, A14)

Fig. 4. Example of theorem 7 for k = 3.

Proof:

Because of the constructive property of the narrow offset areas, it is
sufficient to prove the result for a point. Let x be the starting Eu-
clidean point (∈ R(A)). After all the DSS, we get the Euclidean
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point
(

Πk
i=1αi

)

x +
(
∑k

i=2

(

Πk
j=iαj

)

+ 1
)√

n (see Lemma 6). The

first reverse DSS leads to:
(

Πk−1
i=1 αi

)

x +
(∑k

i=2(Πk
j=i

αj)
αk

+ 1
αk

+ 1
)√

n

=
(

Πk−1
i=1 αi

)

x +
(
∑k−1

i=2

(

Πk−1
j=i αj

)

+ 1
αk

+ 2
)√

n. The next reverse DSS (with

αk−1) result is:
(

Πk−2
i=1 αi

)

x +
(
∑k−2

i=2

(

Πk−1
j=i αj

)

+ 1
αkαk−1

+ 2
αk−1

+ 2
)√

n. Once

all the reverse DSS are applied, we obtain: x +
(

1
Πk

i=1αi
+ 2

∑k−1
i=1

1
Πi

j=1αj

)√
n.

The difference between the starting point x and its transform is therefore in

the worst case:
(

1
Πk

i=1αi
+ 2

∑k−1
i=1

1
Πi

j=1αj

)√
n. 2

Remark: On figure 4 we can see that H(A1, A17) = 1
α1

(2
√

n + H(A4, A14)).
We therefore have a recursive definition of the error bound.

If we compare the error bound provided by theorem 7 to the error that
occurs by the direct DSSα with α = Πk

i=1αi, we can see that the direct oper-
ation is much more efficient since it is bounded by 1

Πk
i=l−1

αi

√
n (see theorem 4).

A very important remark on this error measure is that it depends on the
(αi)i∈[1,k] order: the error bound with α1 = 2 and α2 = 5 (≈ 1.55) is not the
same as the error bound with α1 = 5 and α2 = 2 (≈ 0.70) (see illustrations
section 5.2 fig. 12). The best order to perform this operation (i.e. the one
that minimizes the bound measure) is ∀i ∈ [1, k[, αi ≥ αi+1.

The error bound in the general case (the reverse DSS are not necessarily
processed in the same order as the DSS) is given by the following theorem:

Theorem 8 Let (αi)i∈[1,k] be the ordered list of DSS coefficients and let
(α′

i)i∈[1,k], ∀i ∈ [1, k] ∃j ∈ [1, k] such that α′
i = αj, be the ordered list of reverse

DSS coefficients. For a discrete object A, we note Afirst = R(A) and Alast

the Euclidean object which discretization is

O (Alast) ∩ Z
n =

reverse discrete smooth scaling
︷ ︸︸ ︷

DSS 1
α′
1

◦ ... ◦ DSS 1
α′

k

◦
discrete smooth scaling
︷ ︸︸ ︷

DSSαk
◦ ... ◦ DSSα1 (A) .

The Hausdorff distance between Afirst and Alast is bounded by:

H (Afirst, Alast) ≤
(

k∑

i=1

1

Πi
j=1α

′
j

+

∑k
i=2 Πk

j=iαj

Πk
i=1α

′
i

)√
n.

Proof:

Let x be the starting Euclidean point (∈ R(A)). Again, because of the
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constructive property of the narrow offset areas, it is sufficient to prove
the result for a point. The result of all the DSS is given by Lemma 6:(

Πk
i=1αi

)

x +
(
∑k

i=2

(

Πk
j=iαj

)

+ 1
)√

n. The first reverse DSS with coefficient

1
α′

k

leads to:
(Πk

i=1αi)
α′

k

x+
(∑k

i=2(Πk
j=i

αj)
α′

k

+ 1
α′

k

+ 1
)√

n. Once all the reverse DSS

are applied, the result is:
(

Πk
i=1αi

Πk
i=1α′

i

)

x +
(∑k

i=2
Πk

j=i
αj

Πk
i=1α′

i

+
∑k

i=1
1

Πi
j=1α′

j

)√
n. Since

∀i ∈ [1, k] ∃j ∈ [1, k] such that α′
i = αj ,

Πk
i=1αi

Πk
i=1α′

i

= 1. We obtain the Euclidean

point: x+
(∑k

i=2
Πk

j=i
αj

Πk
i=1α′

i

+
∑k

i=1
1

Πi
j=1α′

j

)√
n. The difference between the starting

point x and its transform is therefore:
(∑k

i=2
Πk

j=i
αj

Πk
i=1α′

i

+
∑k

i=1
1

Πi
j=1α′

j

)√
n. 2

Let us complete this study about the error bounds by determining the error
bound if we combine DSS operations and then use the direct reverse DSS 1

α

operation with α = Πk
i=1αi (see figure 5).

Theorem 9 For a discrete object A, we note Afirst = R(A) and Alast the
Euclidean object which discretization is

O (Alast)∩Z
n =

reverse discrete smooth scaling
︷ ︸︸ ︷

DSS 1

Πk
i=1

αi

◦
discrete smooth scaling

︷ ︸︸ ︷

DSSαk
◦ ... ◦ DSSα2 ◦ DSSα1 (A) .

The Hausdorff distance between Afirst and Alast is bounded by:

H (Afirst, Alast) ≤
(

k∑

i=1

1

Πi
j=1αj

)√
n.

H(A2, A4) ≤
√

n

A0
R D

A2 A3

Z

A5 A6
R D

A7 A8
R

A10

Z

R
A9

Z

D
A

1
A

4
Scα1 Scα2

Z
Scα3

D
A14

A
13

Sc 1
α1α2α3

A12
A11Sc 1

α1

Sc 1
α3

Sc 1
α2

H(A5, A7) ≤
√

n

H(A8, A10) ≤
√

n

Fig. 5. Example of direct inversion of DSS combination with k = 3.

Proof:

Figure 5 shows the intuitive proof of the theorem with k = 3. Let x be
the starting Euclidean point (∈ R(A)). The result of all the DSS is given

by Lemma 6:
(

Πk
i=1αi

)

x +
(
∑k

i=2

(

Πk
j=iαj

)

+ 1
)√

n. The reverse DSS with

coefficient 1
Πk

i=1αi
leads to: x +

(∑k

i=2(Πk
j=iαj)+1

Πk
i=1αi

)√
n = x +

(
∑k

i=1
1

Πi
j=1αj

)√
n.

The difference between the starting point x and its transform is therefore:

11



(
∑k

i=1
1

Πi
j=1αj

)√
n. 2

We can define a similar result for the operation consisting of a direct discrete
smooth scaling (with α = Πk

i=1αi) and the combination of the reverse discrete

smooth scaling
(

DSS 1
αi

)

i∈[1,k]
.

Theorem 10 For a discrete object A, we note Afirst = R(A) and Alast the
Euclidean object which discretization is

O (Alast) ∩ Z
n =

reverse discrete smooth scaling
︷ ︸︸ ︷

DSS 1
α1

◦ ... ◦ DSS 1
αk

◦
discrete smooth scaling

︷ ︸︸ ︷

DSSΠk
i=1αi

(A) .

The Hausdorff distance between Afirst and Alast is bounded by:

H (Afirst, Alast) ≤
(

k∑

i=1

1

Πi
j=1αj

)√
n.

Proof:

Let x be the starting Euclidean point (∈ R(A)). The result of the DSS

with coefficient Πk
i=1αi is:

(

Πk
i=1αi

)

x +
√

n. The first reverse DSS leads

to:
(

Πk−1
i=1 αi

)

x +
(

1
αk

+ 1
)√

n. After all the reverse DSS we obtain:

x +
(
∑k

i=1
1

Πi
j=1αj

)√
n. The difference between the starting point x and its

transform is therefore:
(
∑k

i=1
1

Πi
j=1αj

)√
n. 2

3.2 Discrete-Euclidean Rotation

After the study of the scale operation, we have decided to study another clas-
sical Euclidean operation: the rotation. We want to define a discrete rotation
that takes advantage of the properties of the Euclidean rotation. This discrete
rotation consists in a continuation to get an Euclidean object, than the ro-
tation itself in the Euclidean space (the best one to perform a rotation) and
finally, a discretization to obtain a discrete result. More formally:

Definition 11 We call discrete-Euclidean rotation of a discrete object A of
Z

n with an angle α and a center C, α ∈ R
+∗, C ∈ R

n the following operation
denoted dRα,C (A):

dRα,C (A) = D ◦ rotα,C ◦ R(A).

Where rotα,C is the classical Euclidean rotation operation of angle α and center
C.

12



The intuitive dR−α,C is actually not an exact inverse operation but we can
estimate the error that occurs by combining dR−α,C with dRα,C. This error
directly comes from the continuation part of the operation (see fig.7 and proof
of theorem 4 in [1]).

Theorem 12 For a discrete object A, we note Afirst = R(A) and Alast the
Euclidean object which discretization is O (Alast) ∩ Zn = dR−α,C ◦ dRα,C (A) .

The Hausdorff distance between Afirst and Alast is bounded by:

H (Afirst, Alast) ≤
√

n.

Proof:(see figure 6)
Let x be the starting Euclidean point (∈ R(A)). Applying R◦D◦ rotα,C leads
in the worst case to: rotα,C(x) +

√
n. Then the result of the reverse rotation

is rot−α,C(rotα,C(x) +
√

n). Since rotation doesn’t affect distances we obtain:
rot−α,C(rotα,C(x)) +

√
n = x +

√
n. The difference between the starting point

x and its transform is therefore
√

n. 2

C

rotα,C(x)

x

√
n

Fig. 6. Rotation reversibility.

The error measure with a succession of discrete-continuous rotations and their
related reverse rotations is bounded by:

Theorem 13 For a discrete object A, we note Afirst = R(A) and Alast the
Euclidean object which discretization is

O (Alast) ∩ Z
n = dR−α1,C ◦ ... ◦ dR−αk,C ◦ dRαk ,C ◦ ... ◦ dRα1,C (A) .

The Hausdorff distance between Afirst and Alast is bounded by:

H (Afirst, Alast) ≤ (2k − 1)
√

n.

Proof :
Let x be the starting Euclidean point (∈ R(A)). The first rotation
leads, in the worst case, to rotα1,C(x) +

√
n. Next rotation leads to

rotα1+α2,C(x) + 2
√

n. Whatever the order we use to perform the rotations, we
obtain rot∑k

i=1
αi,C

(x) + k
√

n (see A7 on figure 7). The first reverse rotation

leads to rot∑k−1

i=1
αi,C

(x) + (k + 1)
√

n. Finally, when all the reverse rotations

13



A
R

A1 A2
D

A3

A6

A4 A5 A6

A7

DR

A8

D
A9A10A11

√
n

√
n R

√
n

Rotα1,C Rotα2,C

Rot−α2,C

H(A1, A11) H(A4, A8)

RD Rot−α1,C

Fig. 7. Example of rotation reversibility with k = 2.

are performed, we have: x + (k + (k − 1))
√

n. The difference between the
starting point x and its transform is therefore (2k − 1)

√
n. 2

Remark: we also have a recursive definition of H(Afirst, Alast), on figure 7 we
can see that H(Afirst, Alast) = H(A1, A11) = H(A4, A8) + 2

√
n.

4 Euclidean-discrete operations

In this section, we study several operations linking the Euclidean and the
discrete spaces. These are operations from Rn to Rn that use the discrete op-
erations properties. In [1], we presented a Euclidean-discrete operation based
on the scaling transform (the discrete based simplification). Here, we present
some additional results and we study two other operations : union and co-
refinement.

4.1 Discrete based simplification

This operation acts on a Euclidean object that is first discretized on a given
grid size and then continuated. According to the grid size, details are gathered
in the same voxel and thus do not appear in the continuated object [1]. The
bigger the voxel, the lesser details from the Euclidean object will remain after
the continuation. The object is simplified and can be represented at different
levels of details (see Fig. 8). In fact, it is not the voxel size that changes but
the object size. The object is scaled with the Euclidean scaling function to fit
the grid size. For a scaling factor α the voxel size is 1

α
.

Definition 14 [1] We call discrete based geometrical simplification of a Eu-
clidean object E of Rn by a factor α, α ∈ R+∗, the following operation denoted
Spα(E):

Spα(E) = Sc 1
α
◦ R ◦ D ◦ Scα (E) .

14



Digitizations

Associated reconstructions

Fig. 8. Discrete based geometrical simplification principle : α = 1, 1
2 and 1

4 corre-
sponding to voxel sizes 1, 2 and 4.

For the discrete smooth scaling we gave a bound on the error that occurs when
doing a smooth scaling and then its reverse. The discrete based simplification is
actually very similar to the discrete smooth scaling and its reverse. We perform
indeed a scaling of factor α, a discretization, continuation and a scaling of
factor 1

α
. It is therefore not very surprising that, as we proved in [1], the

Hausdorff distance between an object E and its discrete based simplification
Spα is bounded by a similar value than the one we obtained for the discrete
smooth scaling.

Theorem 15 [1] The Hausdorff distance between a Euclidean object E and
its discrete based simplification Spα(E) is bounded by:

∀E ⊂ R
n, H(E, Spα(E)) ≤ 1

α

√
n.

The reader can find the proof of this theorem in [1]. An interesting property of
the discrete based simplification is that a combination of two simplifications
of same coefficients is stable.

property: ∀α ∈ R, Spα ◦ Spα = Spα.
Proof:

Spα ◦ Spα =
[

Sc 1
α
◦ R ◦ D ◦ Scα

]

◦
[

Sc 1
α
◦ R ◦ D ◦ Scα

]

= Sc 1
α
◦ R ◦ D ◦

[

Scα ◦ Sc 1
α

]

◦ R ◦ D ◦ Scα

= Sc 1
α
◦ R ◦ D ◦ Id ◦ R ◦ D ◦ Scα

= Sc 1
α
◦ R ◦ [D ◦ R] ◦ D ◦ Scα

= Sc 1
α
◦ R ◦ Id ◦ D ◦ Scα

15



= Sc 1
α
◦ R ◦ D ◦ Scα (D ◦ R = Id but R ◦D 6= Id)

= Spα. 2

In applications, object simplification is rather seen as a progressive operation
that starts out with a complex Euclidean object and then simplifies it more
and more. There are two ways of doing this. The first method consists in ap-
plying decreasing scaling coefficients α1 > α2 > . . . > αk to the same starting
object E. We obtain a sequence of simplified objects Spα1(E), Spα2(E), · · · ,
Spαk

(E). The difficulty, with this approach, is that it is difficult to compare
the topology of Spαi

(E) and Spαj
(E) for any i, j. The topology isn’t sim-

plified progressively as we would expect it. It can actually be rather erratic.
Controlling the topology of the simplified objects to obtain a progressively
simplified topology that goes with a progressive simplified geometry is diffi-
cult to achieve with this method. A second approach consists in simplifying the
object by chaining discrete based geometrical simplifications. This way we are
sure that a topological feature that disappears at one level of the simplification
won’t reappear later on. The topological simplification is more progressive this
way. However the following result shows there are also some problems with
this approach.

Theorem 16 The Hausdorff distance between a Euclidean object E and its
multiple discrete based simplification is bounded by:

∀(αi)i∈[1,k], H(E, Spαk
◦ ... ◦ Spα2 ◦ Spα1 (E)) ≤

(
k∑

i=1

1

αi

)√
n.

Proof :
We know from theorem 15 that H(E, Spα1(E)) ≤ 1

α1

√
n and that

H(Spαk−1
◦ ... ◦ Spα1 (E) , Spαk

◦ ... ◦ Spα1 (E)) ≤ 1
αk

√
n. By induction

we obtain immediately the expected result. 2

In the worst case, the error bound can diverge when we chain discrete sim-
plifications. This reflects the fact that we can have geometrical deformations.
Globally we can control the size of the simplified object by, for instance, bound-
ing it by the bounding box size of the original object. This avoids global di-
vergences but not local deformations that aren’t progressive and that don’t
correspond to what you would expect from a progressive geometrical simpli-
fication. As we see, we have topological problems with the first approach and
geometrical problems with the second approach. How we could define a dis-
crete based geometrical simplification method that controls the topology and
the geometry during the simplification remains unclear. There is an extensive
literature related to mesh simplification that use discrete grids as space sub-
division [9]. We need now to look into these methods in order to relate them
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to our proposed Euclidean-discrete simplification operation.

4.2 Euclidean-discrete Union

Boolean operations are tedious to perform in the Euclidean space because
of numerical problems while they are natural in the discrete one. With the
following example of Euclidean-discrete operation, we explore a first boolean
operation with our approach : the Euclidean-discrete union (see figure 9).

Digitization Union Reconstruction

Fig. 9. Discrete based Euclidean union.

Definition 17 We call Euclidean-discrete union of two Euclidean objects E

and E ′ of Rn the following operation denoted EDu (E, E ′):

EDu (E, E ′) = R (D(E) ∪ D(E ′)) .

Where ∪ is the classical discrete union operation.

This operation has a very basic definition as we can see. It is not very useful in
applications as such. It is interesting in a more global setting when performing
Euclidean boolean operations that are sensitive to numerical problems. Dis-
crete space allows a local control of the error (errors remain localized to a grid
cell) and avoids these errors to propagate through a mesh as it can happen in
several methods of co-refinement for instance [10–13].

4.3 Euclidean-discrete co-refinement

A very important operation in computer modelling in Euclidean space is the
co-refinement operation. Co-refinement algorithms permit to build the space
subdivision corresponding to the composition of several subdivisions (see fig-
ure 10). Several co-refinement algorithms used in modern Computer-Aided
Design are presented in [10–13]. Most of these algorithms are based on basic
boolean operations. For the same reason as for the Euclidean-discrete union,
we perform the co-refinement in the best adapted space: the discrete space.

Definition 18 We call Euclidean-discrete co-refinement of two Euclidean ob-
jects E and E ′ of Rn the following operation denoted EDco (E, E ′) (see figure
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Digitization Intersection Reconstruction

Fig. 10. Discrete based Euclidean co-refinement.

10): we note D(E) the complementary of D(E).

EDco (E, E ′) =
{

R
(

D(E) ∩ D(E ′)
)

,R (D(E) ∩ D(E ′)) ,R
(

D(E ′) ∩ D(E)
)}

.

Where ∩ is the classical discrete intersection operation.

On figure 10 we can see the subdivision resulting of the co-refinement operation
on two object E and E ′. The result is in three part: R

(

D(E) ∩ D(E ′)
)

(in

light grey), R (D(E) ∩ D(E ′)) in dark grey and R
(

D(E ′) ∩ D(E)
)

in regular
grey.

The precision of this operation depends (like all the operations we have already
presented) on the grid size and is bounded by

√
n. One way of increasing the

precision of the operation is to use the Euclidean scale operation. Using a scale
operation is like decreasing the voxel size (see section 3.1. discrete smooth
scaling) and thus improving the precision of the discrete operation. We define
the precise co-refinement operation in the following way :

Definition 19 We call Precise Euclidean-discrete co-refinement of parameter
α of two Euclidean objects E and E ′ of Rn the following operation denoted

EDcoα (E, E ′): EDco (E, E ′) =
{

Sc 1
α

(

R
(

D(Scα(E)) ∩ D(Scα(E ′))
) )

,

Sc 1
α

(

R (D(Scα(E)) ∩ D(Scα(E ′)))
)

, Sc 1
α

(

R
(

D(Scα(E ′)) ∩ D(Scα(E))
) )}

.

This operation is an adaptation of the discrete smooth scaling operation (com-
bined with its reverse) on a set of discrete objects. The error bound of this
operation is therefore 1

α

√
n (see theorem 4, page 8). The greater α, the better

the precision of the operation. Of course, a bigger α value means also big-
ger Euclidean Scα(E) to discretize and bigger discrete objects D(Scα(E ′)) to
continuate. The increase in precision comes at cost in computation time.
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5 Results: Implementation and Illustrations

Let us comment our implementation choices and present some images to il-
lustrate the operations. The theoretical results we presented in this paper are
valid in dimension n for a large class of discretizations and related continuation
transforms. We implemented the operations in 2D.

5.1 Implementation

For several years our discrete geometry team develops a multi-representation
modelling software intending to represent objects under four different embed-
dings (see Fig. 11): a discrete 2D pixel or 3D voxel representation, the region
representation, its analytical equivalent and finally a a Euclidean represen-
tation [14]. This allows us to choose the best adapted representation form
depending on the kind of operations we want to achieve.

Fig. 11. Multi-representation modeler.

In this modeler discrete object are defined using the standard analytical model
[3]. The continuation implemented in the modeler was defined in [15,16] and
is based on the preimage notion [17]. This algorithm computes the set of Eu-
clidean hyperplane segments which discretization contains the original discrete
object: R (A) ⊂ V (A) (the standard model is a cover). This approach is based
on discrete analytical geometry and is composed of two steps: the recognition
of discrete analytical hyperplane segments (see [18] for an overview on recog-
nition algorithms) and the analytical polygonalization of the curve [19,16].

5.2 Illustrations

Here we present illustrations of the discrete smooth scaling transform com-
bination. The first images concern the result of the DSS transform on the
discretization of an octahedra with scaling factors α1 = 1.25 and α2 = 5. We
remark that there is no error generation during the DSS 1

5
◦ DSS5 operation.

This is of course particular to this object and these scales. The error bound
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in this case is less than or equal to 1
5

√
2 ≈ 0.28 (theorem 4). Combining this

operation with another DSS transform leads to some errors this time. The
error bound for the global transform DSS0.8 ◦ DSS0.2 ◦ DSS5 ◦ DSS1.25 is:(

1
1.25∗5 + 2 1

1.25

)√
2 ≈ 1.35 (theorem 7). Errors are presented on figure 12 in

light grey (not in the original object) and dark grey (in the original object but
not in the result).

0riginal object A

A1 A2

DSS0.8(A2)

A3

DSS1.25(A) DSS0.2 ◦ DSS5(A1)

DSS0.5 ◦ DSS0.2 ◦ DSS10

Original object DSS0.1 ◦ DSS10

DSS0.2 ◦ DSS0.5 ◦ DSS2 ◦ DSS5

DSS0.2 ◦ DSS0.5 ◦ DSS10

Fig. 12. Discrete smooth scaling combination examples.

The second example of Discrete Smooth Scaling operation result concerns a
more detailled object. The figure presents the difference between the DSS10

and the combination of DSS2 and DSS5. The first result is exactly the same
as the original object. The error bound is nonetheless not equal to zero since
it is

√
2

10
≈ 0.14 (theorem 4). The second result is obtained by the operation

DSS0.2◦DSS0.5◦DSS2◦DSS5 (α1 = 5 and α2 = 2), we can see errors in light

and dark grey. The error in this case is bounded by
(

1
2∗5 + 21

5

)√
2 ≈ 0.70

(theorem 7). If we exchange the values and consider α1 = 2 and α2 = 5, we
get an error close to 1.55. The next example is a combination of a direct
DSS with α = 10 and two reverse DSS (α1 = 1

5
and α2 = 1

2
). No error

appears on the discrete resulting object. The error in this case is bounded by:(
1

2∗5 + 1
5

)√
2 ≈ 0.42 (theorem 10). The last case is obtained by the inversion

of the two reverse DSS and leads to an error of
(

1
2∗5 + 1

2

)√
2 ≈ 0.84. As we

can see, the number of wrong discrete points tends to increase when the error
bound gets bigger which is to be expected.

The second discrete-Euclidean operation presented is the discrete-Euclidean
rotation. The figure 13 presents some results on a simple square face and on
a more detailed discrete object.
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Original object A A1 = dR45,C (A)dR90,C (A)

C = (−2.5, 3.2)

C = (0, 0)

dR−45,C

(
A1
)

C = (0, 0)

Fig. 13. Discrete-Euclidean rotation examples.

We can see that the rotation with α = 90 is exact (that is what we expect) but
this rotation is not reversible for all angle values. The rotation with α = −45
is not the exact inverse of the rotation with angle α = 45.

Illustrations for the discrete based simplification are available in [1].

6 Conclusion

In this paper, we have presented operations that use Euclidean and discrete
space properties. They operate partly in the Euclidean and partly in the dis-
crete space. In order to work, we need discretization and continuation trans-
forms that are associated and that have properties that we tried to explore.
This work is not complete and needs further investigations. We gave some
classes of discretizations and continuations that allow the design of discrete-
Euclidean and Euclidean-discrete operations. The criteria we gave cover the
classical discretizations schemes such as Bresenham, Supercover, standard,
naive models. What other classes of discretizations and continuations might
also allow such operations needs to be looked at.

We did an extensive study on the error bounds when discrete smooth scalings
and their reverse are combined. This is important because in all discrete-
Euclidean and Euclidean-discrete operations, a scaling operation can be added
so as to change the error bounds of the operation as we saw for the precise
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Euclidean-discrete co-refinement.

We also studied the discrete-Euclidean rotation and proposed an optimal er-
ror bound for this operation when it is combined to its reverse and when it is
chained to other discrete-Euclidean rotations. We think both operations (dis-
crete smooth scaling and discrete-Euclidean rotation) could be very useful in
pattern recognition: two images may represent the same object with different
sizes and/or orientations. Using our operations, we can re-orient and re-scale
images so that a comparison can be made easier.

The second part of our study is about Euclidean-discrete operations, mainly
on boolean operations that are trivial in the discrete space and very useful in
Euclidean CAD but difficult to perform because of numerous numerical errors.

The fundamental question is the question of the relations between the discrete
and Euclidean space. In applications, we hope to apply this new insight in
multi-level topological structure operations or on multi-scale described objects.
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