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Abstract. Arithmetic automata recognize infinite words of digits de-
noting decompositions of real and integer vectors. These automata are
known expressive and efficient enough to represent the whole set of so-
lutions of complex linear constraints combining both integral and real
variables. In this paper, the closed convex hull of arithmetic automata is
proved rational polyhedral. Moreover an algorithm computing the linear
constraints defining these convex set is provided. Such an algorithm is
useful for effectively extracting geometrical properties of the whole set of
solutions of complex constraints symbolically represented by arithmetic
automata.

1 Introduction

The most significant digit first decomposition provides a natural way to associate
finite words of digits to any integer. Naturally, such a decomposition can be
extended to real values just by considering infinite words rather than finite
ones. Intuitively, an infinite word denotes the potentially infinite decimal part of
a real number. Last but not least, the most significant digit first decomposition
can be extended to real vectors just by interleaving the decomposition of each
component into a single infinite word.

Arithmetic automata are Muller automata that recognize infinite words of
most significant digit first decompositions of real vectors in a fixed basis of de-
composition r ≥ 2 (for instance r = 2 and r = 10 are two classical basis of
decomposition). Sets symbolically representable by arithmetic automata in ba-
sis r are logically characterized [BRW98] as the sets definable in the first order
theory FO (R, Z, +,≤, Xr) where Xr is an additional predicate depending on the
basis of decomposition r. In practice, arithmetic automata are usually used for
the first order additive theory FO (R, Z, +,≤) where Xr is discarded. In fact this
theory allows to express complex linear constraints combining both integral and
real variables that can be represented by particular Muller automata called de-
terministic weak Buchi automata [BJW05]. This subclass of Muller automata has
interesting algorithmic properties. In fact, compared to the general class, deter-
ministic weak Buchi automata can be minimized (for the number of states) into
a unique canonical form with roughly the same algorithm used for automata rec-
ognizing finite words. In particular, these arithmetic automata are well adapted



to symbolically represent sets definable in FO (R, Z, +,≤) obtained after many
operations (boolean combinations, quantifications). In fact, since the obtained
arithmetic automata only depends on the represented set and not on the po-
tentially long sequence of operations used to compute this set, we avoid unduly
complicated arithmetic automata. Intuitively, the automaton minimization algo-
rithm performs like a simplification procedure for FO (R, Z, +,≤). In particular
arithmetic automata are adapted to the symbolic model checking approach com-
puting inductively reachability sets of systems manipulating counters [BLP06]
and/or clocks [BH06]. In practice algorithms for effectively computing an arith-
metic automaton encoding the solutions of formulas in FO (R, Z, +,≤) have been
recently successfully implemented in tools Lash and Lira [BDEK07]. Unfortu-
nately, interesting qualitative properties are difficult to extract from arithmetic
automata. Actually, operations that can be performed on the arithmetic au-
tomata computed by tools Lash and Lira are limited to the universality and
the emptiness checking (when the set symbolically represented is not empty these
tools can also compute a real vector in this set).

Extracting geometrical properties from an arithmetic automaton represent-
ing a set X ⊆ Rm is a complex problem even if X is definable in FO (R, Z, +,≤).
Let us recall related works to this problem. Using a Karr based algorithm [Kar76],
the affine hull of X has been proved efficiently computable in polynomial time
[Ler04] (even if this result is limited to the special case X ⊆ Nm, it can be
easily extended to any arithmetic automata). When X = Zm ∩ C where C is
a rational polyhedral convex set (intuitively when X is equal to the integral
solutions of linear constraint systems), it has been proved in [Lat04] that we can
effectively compute in exponential time a rational polyhedral convex set C′ such
that X = Zm ∩ C′. Note that this worst case complexity in theory is not a real
problem in practice since the algorithm presented in [Lat04] performs well on
automata with more than 100 000 states. In [Lug04] this result was extended
to sets X = F + L where F is a finite set of integral vectors and L is a linear
set. In [FL05], closed convex hulls of sets X ⊆ Zm represented by arithmetic
automata are proved rational polyhedral and effectively computable in exponen-
tial time. Note that compared to [Lat04], it is not clear that this result can be
turn into an efficient algorithm. More recently [Ler05], we provided an algorithm
for effectively computing in polynomial time a formula in the Presburger the-
ory FO (Z, +,≤) when X ⊆ Zn is Presburger-definable. This algorithm has been
successfully implemented in TaPAS [LP08] (The Talence Presburger Arithmetic
Suite) and it can be applied on any arithmetic automata encoding a set X ⊆ Zm

with more than 100 000 states. Actually, the tool decides if an input arithmetic
automaton denotes a Presburger-definable set and in this case it returns a for-
mula denoting this set.

In this paper we prove that the closed convex hulls of sets symbolically rep-
resented by arithmetic automata are rational polyhedral and effectively com-
putable in exponential time in the worst case. Note that whereas the closed
convex hull of a set definable in FO (R, Z, +,≤) can be easily proved rational
polyhedral (thanks to quantification eliminations), it is difficult to prove that
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the closed convex hulls of arithmetic automata are rational polyhedral. We also
provide an algorithm for computing this set. Our algorithm is based on the re-
duction of the closed convex hull computation to data-flow analysis problems.
Note that widening operator is usually used in order to speed up the iterative
computation of solutions of such a problem. However, the use of widening op-
erators may lead to loss of precision in the analysis. Our algorithm is based on
acceleration in convex data-flow analysis [LS07b,LS07a]. Recall that acceleration
consists to compute the exact effect of some control-flow cycles in order to speed
up the Kleene fix-point iteration.

Outline of the paper : In section 2 the most significant digit first decomposi-
tion is extended to any real vector and we introduce the arithmetic automata.
In section 3 we provide the closed convex hull computation reduction to (1) a
data-flow analysis problem and (2) the computation of the closed convex hull of
arithmetic automata representing only decimal values and having a trivial ac-
cepting condition. In section 4 we provide an algorithm for computing the closed
convex hull of such an arithmetic automaton. Finally in section 5 we prove that
the data-flow analysis problem introduced by the reduction can be solved pre-
cisely with an accelerated Kleene fix-point iteration algorithm. Most proofs are
only sketched in the paper, but detailed proofs are given in appendix. This paper
is the long version of the SAS 2008 paper.

2 Arithmetic Automata

This section introduces arithmetic automata (see Fig. 1). These automata recog-
nize infinite words of digits denoting most significant digit first decompositions
of real and integer vectors.

As usual, we respectively denote by Z, Q and R the sets of integers, ratio-
nals and real numbers and we denote by N, Q+, R+ the restrictions of Z, Q, R

to the non-negatives. The components of an m-dim vector x are denoted by
x[1], . . . , x[m].

We first provide some definitions about regular sets of infinite words. We
denote by Σ a non-empty finite set called an alphabet. An infinite word w over
Σ is a function w ∈ N → Σ defined over N\{0} and a finite word σ over Σ is
a function σ ∈ N → Σ defined over a set {1, . . . , k} where k ∈ N is called the
length of σ and denoted by |σ|. In this paper, a finite word over Σ is denoted
by σ with some subscript indices and an infinite word over Σ is denoted by w.
As usual Σ∗ and Σω respectively denote the set of finite words and the set of
infinite words over Σ. The concatenation of two finite words σ1, σ2 ∈ Σ∗ and the
concatenation of a finite word σ ∈ Σ∗ with an infinite word w ∈ Σω are denoted
by σ1σ2 and σw. A graph labelled by Σ is a tuple G = (Q, Σ, T ) where Q is a
non empty finite set of states and T ⊆ Q×Σ×Q is a set of transitions. A finite
path π in a graph G is a finite word π = t1 . . . tk of k ≥ 0 transitions ti ∈ T such
that there exists a sequence q0, . . . , qk ∈ Q and a sequence a1, . . . , ak ∈ Σ such
that ti = (qi−1, ai, qi) for any 1 ≤ i ≤ k. The finite word σ = a1 . . . ak is called
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the label of π and such a path π is also denoted by q0
σ
−→ qk or just q0 → qk. We

also say that π is a path starting from q0 and terminating in qk. When q0 = qk

and k ≥ 1, the path π is called a cycle on q0. Such a cycle is said simple if the
states q0, . . . , qk−1 are distinct. Given an integer m ≥ 1, a graph G is called an
m-graph if m divides the length of any cycle in G. An infinite path θ is an infinite
word of transitions such that any prefixes πk = θ(1) . . . θ(k) is a finite path. The
unique infinite word w ∈ Σω such that σk = w(1) . . . w(k) is the label of the
finite path πk for any k ∈ N is called the label of θ. We say that θ is starting
from q0 if q0 is the unique state such that any prefix of θ is starting from q0. In
the sequel, a finite path is denoted by π and an infinite path is denoted by θ. The
set of infinite paths starting from q0 is naturally denoted with the capital letter
ΘG(q0). The set F of states q ∈ Q such that there exists an infinite number of
prefix of θ terminating in q is called the set of states visited infinitely often by
θ. Such a path is denoted by q0

w
−→ F or just q0 → F . A Muller automaton A

is a tuple A = (Q, Σ, T, Q0, F) where (Q, Σ, T ) is a graph, Q0 ⊆ Q is the initial
condition and F ⊆ P(Q) is the accepting condition. The language L(A) ⊆ Σω

recognized by a Muller automaton A is the set of infinite words w ∈ Σω such
that there exists an infinite path q0

w
−→ F with q0 ∈ Q0 and F ∈ F.
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Fig. 1. On the left, the rational polyhedral convex set C = {x ∈ R2 | 3x[1] >

x[2] ∧ x[2] ≥ 0} in gray and the set X = Z2 ∩ C of integers depicted by black
bullets. On the center, an arithmetic automaton symbolically representing X in
basis 2. On the right, the closed convex hull of X equals to cl ◦ conv(X) = {x ∈
R2 | 3x[1] ≥ x[2] + 1 ∧ x[2] ≥ 0 ∧ x[1] ≥ 1} represented in gray.

Now, we introduce the most significant digit first decomposition of real vec-
tors. In the sequel m ≥ 1 is an integer called the dimension, r ≥ 2 is an integer
called the basis of decomposition, Σr = {0, . . . , r − 1} is called the alphabet of
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r-digits, and Sr = {0, r − 1} is called the alphabet of sign r-digits. The most
significant r-digit first decomposition provides a natural way to associate to any
real vector x ∈ Rm a tuple (s, σ, w) ∈ Sm

r × (Σm
r )∗ ×Σω

r . Intuitively (s, σ) and
w are respectively associated to an integer vector z ∈ Zm and a decimal vector
d ∈ [0, 1]

m
satisfying x = z + d. Moreover, s[i] = 0 corresponds to z[i] ≥ 0 and

s[i] = r−1 corresponds to z[i] < 0. More formally, a most significant r-digit first
decomposition of a real vector x ∈ Rm is a tuple (s, σ, w) ∈ Sm

r × (Σm
r )∗ ×Σω

r

such that for any 1 ≤ i ≤ m, we have:

x[i] = r
|σ|
m

s(i)

1− r
+

|σ|
m

∑

j=1

r
|σ|
m

−jσ(m(j − 1) + i) +

+∞
∑

j=0

w(mj + i)

rj+1

The previous equality is divided in two parts by introducing the functions λr,m ∈
Σω

r → [−1, 0]
m

and γr,m ∈ Sm
r × (Σm

r )∗ → Zm defined for any 1 ≤ i ≤ m by the
following equalities. Note the sign in front of the definition of λr,m. This sign
simplifies the presentation of this paper and it is motivated in the sequel.

−λr,m(w)[i] =
+∞
∑

j=0

w(mj + i)

rj+1

γr,m(s, σ)[i] = r
|σ|
m

s(i)

1− r
+

|σ|
m

∑

j=1

r
|σ|
m

−jσ(m(j − 1) + i)

Definition 2.1 ([BRW98]). An arithmetic automaton A in basis r and in
dimension m is a Muller automaton over the alphabet Σr ∪ {⋆} that recognizes
a language L ⊆ Sm

r ⋆ (Σm
r )∗ ⋆ Σω

r . The following set X ⊆ Rm is called the set
symbolically represented by A:

X = {γr,m(s, σ)− λr,m(w) | s ⋆ σ ⋆ w ∈ L}

Example 2.2. The arithmetic automaton depicted in Fig. 1 symbolically repre-
sents X = {x ∈ N2 | 3x[1] > x[2]}. This automaton has been obtained automat-
ically from the tool Lash through the tool-suite TaPAS[LP08].

We observe that Real Vector Automata (RVA) and Number Decision Dia-
grams (NDD) [BRW98] are particular classes of arithmetic automata. In fact,
RVA and NDD are arithmetic automata A that symbolically represent sets X

included respectively in Rm and Zm and such that the accepted languages L(A)
satisfy:

L(A) ={s ⋆ σ ⋆ w | γr,m(s, σ)− λr,m(w) ∈ X} if A is a RVA

L(A) ={s ⋆ σ ⋆ 0ω | γr,m(s, σ) ∈ X} if A is a NDD

Since in general a NDD is not a RVA and conversely a RVA is not a NDD,
we consider arithmetic automata in order to solve the closed convex hull com-
putation uniformly for these two classes. Note that simple (even if computa-
tionally expensive) automata transformations show that sets symbolically rep-
resentable by arithmetic automata in basis r are exactly the sets symbolically
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representable by RVA in basis r. In particular [BRW98], sets symbolically rep-
resentable by arithmetic automata in basis r are exactly the sets definable in
FO (R, Z, +,≤, Xr) where Xr ⊆ R3 is a basis dependant predicate defined in
[BRW98]. This characterization shows that arithmetic automata can symboli-
cally represent sets of solutions of complex linear constraints combining both in-
tegral and real values. Recall that the construction of arithmetic automata from
formulae in FO (R, Z, +,≤, Xr) is effective and tools Lash and Lira [BDEK07]
implement efficient algorithms for the restricted logic FO (R, Z, +,≤). The pred-
icate Xr is discarded in these tools in order to obtain arithmetic automata that
are deterministic weak Buchi automata [BJW05]. In fact these automata have
interesting algorithmic properties (minimization and deterministic form).

3 Reduction to Data-Flow Analysis Problems

In this section we reduce the computation of the closed convex hull of sets
symbolically represented by arithmetic automata to data-flow analysis problems.

We first recall some general notions about complete lattices. Recall that a
complete lattice is any partially ordered set (A,⊑) such that every subset X ⊆ A

has a least upper bound
⊔

X and a greatest lower bound
d

X . The supremum
⊔

A and the infimum
d

A are respectively denoted by ⊤ and ⊥. A function
f ∈ A → A is monotonic if f(x) ⊑ f(y) for all x ⊑ y in A. For any complete
lattice (A,⊑) and any set Q, we also denote by ⊑ the partial order on Q → A

defined as the point-wise extension of ⊑, i.e. f ⊑ g iff f(q) ⊑ g(q) for all q ∈ Q.
The partially ordered set (Q→ A,⊑) is also a complete lattice, with lub

⊔

and
glb

d
satisfying (

⊔

F )(s) =
⊔

{f(s) | f ∈ F} and (
d

F )(s) =
d
{f(s) | f ∈ F}

for any subset F ⊆ Q→ A.

Now, we recall notions about the complete lattice of closed convex sets. A
function f ∈ Rn → Rm is said linear if there exists a sequence (Mi,j)i,j of
reals indexed by 1 ≤ i ≤ m and 1 ≤ j ≤ n and a sequence (vi)i of reals
indexed by 1 ≤ i ≤ m such that f(x)[i] =

∑n

j=1 Mi,jx[j] + vi for any x ∈ Rn

and for any 1 ≤ i ≤ m. When the coefficients (Mi,j)i,j and (vi)i are rational,
the linear function f is said rational. The function f ′ ∈ Rm → Rn defined by
f ′(x)[i] =

∑n

j=1 Mi,jx[j] for any x ∈ Rn and for any 1 ≤ i ≤ m is called the
uniform form of f . A set R ⊆ Rm is said closed if the limit of any convergent
sequence of vectors in R is in R. Recall that any set X ⊆ Rm is included in
a minimal for the inclusion closed set. This closed set is called the topological
closure of X and it is denoted by cl(X). Let us recall some notions about convex
sets (for more details, see [Sch87]). A convex combination of k ≥ 1 vectors
x1, . . . , xk ∈ Rm is a vector x such that there exists r1, . . . , rk ∈ R+ satisfying
r1 + · · · + rk = 1 and x = r1x1 + · · · + rkxk. A set C ⊆ Rm is said convex
if any convex combination of vectors in C is in C. Recall that any X ⊆ Rm

is included in a minimal for the inclusion convex set. This convex set is called
the convex hull of X and it is denoted by conv(X). A convex set C ⊆ Rm is
said rational polyhedral if there exists a rational linear function f ∈ Rm → Rn
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such that C is the set of vectors x ∈ Rm such that
∧n

i=1 f(x)[i] ≤ 0. Recall that
cl(conv(X)) = conv(cl(X)), cl(f(X)) = f(cl(X)) and conv(f(X)) = f(conv(X))
for any X ⊆ Rm and for any linear function f ∈ Rm → Rn. The class of
closed convex subsets of Rm is written Cm. We denote by ⊑ the inclusion partial
order on Cm. Observe that (Cm,⊑) is a complete lattice, with lub

⊔

and glb
d

satisfying
⊔

C = cl ◦ conv(
⋃

C) and
d

C =
⋂

C for any subset C ⊆ Cm.

Example 3.1. Let X = Z2 ∩C where C is the convex set C = {x ∈ R2 | 3x[1] >

x[2] ∧ x[2] ≥ 0} (see Fig. 1). Observe that cl ◦ conv(X) = {x ∈ R2 | 3x[1] ≥
x[2] + 1 ∧ x[2] ≥ 0 ∧ x[1] ≥ 1} is strictly included in C.

In the previous section, we introduced two functions λr,m and γr,m. Intu-
itively these functions “compute” respectively decimal vectors associated to infi-
nite words and integer vectors associated to finite words equipped with sign vec-
tors. We now introduce two functions Λr,m,σ and Γr,m,σ that “partially compute”
the same vectors than λr,m and γr,m. More formally, let us consider the unique
sequences (Λr,m,σ)σ∈Σ∗

r
and (Γr,m,σ)σ∈Σ∗

r
of linear functions Λr,m,σ, Γr,m,σ ∈

Rm → Rm inverse of each other and satisfying Λr,m,σ1σ2 = Λr,m,σ1 ◦ Λr,m,σ2 ,
Γr,m,σ1σ2 = Γr,m,σ2 ◦Γr,m,σ1 for any σ1, σ2 ∈ Σ∗

r , such that Λr,m,ǫ and Γr,m,ǫ are
the identity function and such that Λr,m,a and Γr,m,a with a ∈ Σr satisfy the
following equalities where x ∈ Rm:

Λr,m,a(x) = (
x[m]− a

r
, x[1], . . . , x[m− 1])

Γr,m,a(x) = (x[2], . . . , x[m], rx[1] + a)

We first prove the following two equalities (1) and (2) that explain the link
between the notations λr,m and γr,m and their capital forms Λr,m,σ and Γr,m,σ.
Observe that Λr,m,a(λr,m(w)) = λr,m(aw) for any a ∈ Σr and for any w ∈ Σω

r .
An immediate induction over the length of σ ∈ Σ∗

r provides equality (1). Note
also that Γr,m,a1...am

(x) = rx + (a1, . . . , am) for any a1, . . . , am ∈ Σr. Thus an
immediate induction provides equality (2).

λr,m(σw) = Λr,m,σ(λr,m(w)) ∀σ ∈ Σ∗
r ∀w ∈ Σω

r (1)

γr,m(s, σ) = Γr,m,σ(
s

1− r
) ∀σ ∈ (Σm

r )∗ ∀s ∈ Sm
r (2)

We now reduce the computation of the closed convex hull C of a set X ⊆ Rm

represented by an arithmetic automaton A = (Q, Σ, T, Q0, F) in basis r to data-
flow analysis problems. We can assume w.l.o.g that (Q, Σ, T ) is a m-graph. As
the language recognized by A is included in Sm

r ⋆ (Σm
r )∗ ⋆ Σω

r , the set of states
can be partitioned into sets depending intuitively on the number of occurrences
|σ|⋆ of the ⋆ symbol in a word σ ∈ Σ∗. More formally, we consider the set QS

of states reading signs, the set QI reading integers, and the set QD reading
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decimals defined by:

QS = {q ∈ Q | ∃(q0, σ, F ) ∈ Q0 ×Σ∗ × F |σ|⋆ = 0 ∧ q0
σ
−→ q → F}

QI = {q ∈ Q | ∃(q0, σ, F ) ∈ Q0 ×Σ∗ × F |σ|⋆ = 1 ∧ q0
σ
−→ q → F}

QD = {q ∈ Q | ∃(q0, σ, F ) ∈ Q0 ×Σ∗ × F |σ|⋆ = 2 ∧ q0
σ
−→ q → F}

We also consider the m-graphs GS , GI and GD obtained by restricting G re-
spectively to the states QS , QI and QD and formally defined by:

GS = (QS , Σr, TS) with TS = T ∩ (Qs ×Σr ×QS)

GI = (QI , Σr, TI) with TI = T ∩ (QI ×Σr ×QI)

GD = (QD, Σr, TD) with TD = T ∩ (QD ×Σr ×QD)

Example 3.2. QS = {−2,−1, 0}, QI = {1, . . . , 9} and QD = {a, b} in Fig. 1.

The closed convex hull C = cl ◦ conv(X) is obtained from the valuations
CI ∈ QI → Cm and CD ∈ QD → Cm defined by CI = cl ◦ conv(XI) and
CD = cl ◦ conv(XD) where XI and XD are given by:

XI(qI) = {Γr,m,σ(
s

1− r
) | s ∈ Sm

r σ ∈ Σ∗
r ∃q0 ∈ Q0 q0

s⋆σ
−−→ qI}

XD(qD) = {λr,m(w) | w ∈ Σω
r ∃F ∈ F qD

w
−→ F}

In fact from the definition of arithmetic automata we get:

C =
⊔

(qI ,qD)∈QI×QD

(qI ,⋆,qD)∈T

CI(qI)− CD(qD)

We now provide data-flow analysis problems whose CI and CD are solu-
tions. Observe that m-graphs naturally denote control-flow graphs. Before asso-
ciating semantics to m-graph transitions, we first show that CI and CD are
some fix-point solutions. As cl ◦ conv and Γr,m,a are commutative, from the
inclusion Γr,m,a(XI(q1)) ⊆ XI(q2) we deduce that CI satisfies the relation
Γr,m,a(CI(q1)) ⊑ CI(q2) for any transition (q2, a, q2) ∈ TI . Symmetrically, as
cl ◦ conv and Λr,m,a are commutative, from the inclusion Λr,m,a(XD(q2)) ⊆
XD(q1), we deduce that Λr,m,a(CD(q2)) ⊑ CD(q1) for any transition (q1, a, q2) ∈
TD. Intuitively CI and CD are two fix-point solutions of different systems. More
formally, we associate two distinct semantics to a transition t = (q1, a, q2) of
a m-graph G = (Q, Σr, T ) by considering the monotonic functions ΛG,m,t and
ΓG,m,t over the complete lattice (Q→ Cm,⊑) defined for any C ∈ Q→ Cm and
for any q ∈ Q by the following equalities:

ΛG,m,t(C)(q) =

{

Λr,m,a(C(q2)) if q = q1

C(q) if q 6= q1

ΓG,m,t(C)(q) =

{

Γr,m,a(C(q1)) if q = q2

C(q) if q 6= q2

8



Observe that CD is a fix-point solution of the data-flow problem ΛGD,m,t(CD) ⊑
CD for any transition t ∈ TD and CI is a fix-point solution of the data-flow
problem ΓGI ,m,t(CI) ⊑ CI for any transition t ∈ TI . In the next sections 3.1
and 3.2 we show that CD and CI can be characterized by these two data-flow
analysis problems.

3.1 Reduction for CD

The computation of CD is reduced to a data-flow analysis problem for the m-
graph GD equipped with the semantics (ΛGD,m,t)t∈TD

.

Given an infinite path θ labelled by w, we denote by λr,m(θ) the vector
λr,m(w). Given a m-graph G labelled by Σr, we denote by ΛG,m, the valuation
cl ◦ conv(λr,m(ΘG)) (recall that ΘG(q) denotes the set of infinite paths starting
from q). This notation is motivated by the following Proposition 3.3.

Proposition 3.3. The valuation ΛG,m is the unique minimal valuation C ∈
Q → Cm such that ΛG,m,t(C) ⊑ C for any transition t ∈ T and such that
C(q) 6= ∅ for any state q ∈ Q satisfying ΘG(q) 6= ∅.

The following Proposition 3.4 provides the reduction.

Proposition 3.4. CD = ΛGD,m

Proof. We have previously proved that ΛGD,m,t(CD) ⊑ CD for any transition
t ∈ TD. Moreover, as CD(qD) 6= ∅ for any qD ∈ QD, we deduce the relation
ΛGD,m ⊑ CD by minimality of ΛGD,m. For the other relation, just observe that
XD ⊆ λr,m(ΘGD

) and apply cl ◦ conv. ⊓⊔

3.2 Reduction for CI

The computation of CI is reduced to data-flow analysis problems for the m-
graphs GS and GI respectively equipped with the semantics (ΓGS ,m,t)t∈TS

and
(ΓGI ,m,t)t∈TI

.

Given a m-graph G = (Q, Σr, T ) and an initial valuation C0 ∈ Q → Cm, it
is well-known from Knaster-Tarski’s theorem that there exists a unique minimal
valuation C ∈ Q→ Cm such that C0 ⊑ C and ΓG,m,t(C) ⊑ C for any t ∈ T . We
denote by ΓG,m(C0) this unique valuation.

Symmetrically to the definitions of CI and CD we also consider the valuation
CS ∈ QS → Cm defined by CS = cl ◦ conv(XS) where XS is given by:

XS(qS) = {Γr,m,s(0, . . . , 0) | s ∈ S∗
r ∃q0 ∈ Q0 q0

s
−→ qS}

9



The reduction comes from the following Proposition 3.5 where CS,0 ∈ QS →
Cm and CI,0 ∈ QI → Cm are the following two initial valuations:

CS,0(qS) =

{

∅ if qS 6∈ Q0

{(0, . . . , 0)} if qS ∈ Q0

CI,0(qI) =
1

1− r

⊔

qS∈QS

(qS ,⋆,qI)∈T

CS(qS)

Proposition 3.5. CS = ΓGS ,m(CS,0) and CI = ΓGI ,m(CI,0).

Proof. First observe that XS ⊆ ΓGS ,m(CS,0) and XI ⊆ ΓGI ,m(CI,0). Thus CS ⊑
ΓGS ,m(CS,0) and CI ⊑ ΓGI ,m(CI,0) by applying cl ◦ conv. Finally, as Γr,m,a and
cl ◦ conv are commutative, we deduce that ΓGS ,m,t(CS) ⊑ CS for any t ∈ TS

and ΓGI ,m,t(CI) ⊑ CI for any t ∈ TI . The minimality of ΓGS ,m(CS,0) and
ΓGI ,m(CI,0) provide ΓGS,m(CS,0) ⊑ CS and ΓGI ,m(CI,0) ⊑ CI . ⊓⊔

4 Infinite Paths Convex Hulls

In this section G = (Q, Σr, T ) is a m-graph. We prove that ΛG,m(q) is equal
to the convex hull of a finite set of rational vectors. Moreover, we provide an
algorithm for computing the minimal sets Λ0

G,m(q) ⊆ Qm for every q ∈ Q such

that ΛG,m = conv(Λ0
G,m) in exponential time in the worst case.

A fry-pan θ in a graph G is an infinite path θ = t1 . . . ti(ti+1 . . . tk)ω where
0 ≤ i < k and where t1 = (q0 → q1), . . . tk = (qk−1 → qk) are transitions such
that qk = qi. A fry-pan is said simple if q0, . . . , qk−1 are distinct states. The
finite set of simple fry-pans starting from q is denoted by ΘS

G(q). As expected,
we are going to prove that ΛG,m = conv(λr,m(ΘS

G)) and λr,m(ΘS
G(q)) ⊆ Qm.

We first prove that λr,m(θ) is rational for any fry-pan θ. Given σ ∈ Σ+
r , the

following Lemma 4.1 shows that λr,m(σω) is the unique solution of the rational
linear system Λr,m,σ(x) = x. In particular λr,m(σω) is a rational vector. From
equality (1) given in page 7, we deduce that the vector λr,m(θ) is rational for
any fry-pan θ.

Lemma 4.1. λr,m(σω) is the unique fix-point of Λr,m,σ for any σ ∈ Σ+
r .

The following Proposition 4.2 (see the graphical support given in Fig. 2) is
used in the sequel for effectively computing ΛG,m thanks to a fix-point iteration
algorithm.

Proposition 4.2. Let t = (q, a, q′) be a transition and let θ′ be a simple fry-pan
starting from q′ such that the fry-pan tθ′ is not simple. In this case there exists a
minimal non-empty prefix π of tθ′ terminating in q. Moreover the fry-pan θ such
that tθ′ = πθ and the fry-pan πω are simple and such that Λr,m,a(λr,m(θ′)) ∈
conv({λr,m(θ), λr,m(πω)}).

10



q′ q q′ q q′ q q′ q

θ′ t π θ

q′ q q′ q q′ q q′ q

Fig. 2. A graphical support for Proposition 4.2 where θ′ denotes a simple fry-
pan starting from a state q′ and t = (q, a, q′) is a transition such that the fry-pan
tθ′ is not simple. That means the state q is visited by θ′. Note that q is visited
either once or infinitely often. These two situations are depicted respectively on
the top line and the bottom line of the tabular.

Proof. As tθ′ is not simple whereas θ′ is simple we deduce that there exists
a decomposition of tθ′ into πθ where π is the minimal non-empty prefix of tθ′

terminating in q. Let π be the non empty path with the minimal length. Observe
that π is a simple cycle and thus πω is a simple fry-pan. Moreover, as θ is a suffix
of the simple fry-pan θ′, we also deduce that θ is a simple fry-pan. Observe that
λr,m(tθ′) = λr,m(πθ). Moreover, as π is a cycle in a m-graph we deduce that m

divides its length. Denoting by σ the label of π, we deduce that σ ∈ (Σm
r )+.

Now, observe that Λr,m,σ(x) = (1 − r−
|σ|
m )λr,m(σω) + r−

|σ|
m x for any x ∈ Rm.

We deduce that Λr,m,a(λr,m(θ′)) = (1 − r−
|σ|
m )λr,m(πω) + r−

|σ|
m λr,m(θ). Thus

Λr,m,a(λr,m(θ′)) ∈ conv({λr,m(θ), λr,m(πω)}). ⊓⊔

From the previous Proposition 4.2 we deduce the following Proposition 4.3.

Proposition 4.3. We have ΛG,m = conv(λr,m(ΘS
G)).

We deduce that there exists a minimal finite set Λ0
G,m(q) ⊆ Qm such that

ΛG,m = conv(Λ0
G,m). Note that an exhaustive computation of the whole set

ΘS
G(q) provides the set Λ0

G,m(q) by removing vectors that are convex combina-
tion of others. The efficiency of such an algorithm can be greatly improved by
computing inductively subsets Θ(q) ⊆ ΘS

G(q) and get rid of any fry-pan θ ∈ Θ(q)
as soon as it becomes a convex combination of other fry-pans in Θ(q)\{θ}. The
algorithm Cycle is based on this idea.

Corollary 4.4. The algorithm Cycle(G,m) terminates by iterating the main
while loop at most |T ||Q| times and it returns Λ0

G,m.

1 Cycle(G = (Q, Σr, T ) be a m−graph, m ∈ N\{0})
2 for each state q ∈ Q

3 if ΘS
G(q) 6= ∅

4 let θ ∈ ΘS
G(q)

11



5 let Θ(q)← {θ}
6 else

7 let Θ(q)← ∅
8 while there exists t = (q, a, q′) ∈ T and θ′ ∈ Θ(q′)
9 such that Λr,m,a(λr,m(θ′)) 6∈ conv(λr,m(Θ(q)))

10 if tθ′ is simple
11 let Θ(q)← Θ(q) ∪ {tθ′}
12 else

13 let π be the minimal strict prefix of tθ′ terminating in q

14 let θ be such that tθ′ = πθ

15 let Θ(q)← Θ(q) ∪ {θ, πω}
16 while there exists θ0 ∈ Θ(q)
17 such that conv(λr,m(Θ(q))) = conv(λr,m(Θ(q)\{θ0}))
18 let Θ(q)← Θ(q)\{θ0}
19 return λr,m(Θ) //Λ0

G,m

5 Fix-point Computation

In this section we prove that the minimal post-fix-point ΓG,m(C0) is effectively
rational polyhedral for any m-graph G = (Q, Σr, T ) and for any rational poly-
hedral initial valuation C0 ∈ Q → Cm. We deduce that the closed convex hull
of sets symbolically represented by arithmetic automata are effectively rational
polyhedral.

Example 5.1. Let m = 1 and G = ({q}, Σr, {t}) where t = (q, r − 1, q) and
C0(q) = {0}. Observe that the sequence (Ci)i∈N where Ci+1 = Ci ⊔ ΓG,m,t(Ci)
satisfies Ci(q) = {x ∈ R | 0 ≤ x ≤ ri − 1}.

Recall that a Kleene iteration algorithm applied on the computation of
ΓG,m(C0) consists in computing the beginning of the sequence (Ci)i∈N defined by
the induction Ci+1 = Ci

⊔

t∈T ΓG,m,t(Ci) until an integer i such that Ci+1 = Ci

is discovered. Then the algorithm terminates and it returns Ci. In fact, in this
case we have Ci = ΓG,m(C0). However, as proved by the previous Example 5.1
the Kleene iteration does not terminate in general. Nevertheless we are going to
compute ΓG,m(C0) by a Kleene iteration such that each Ci is safely enlarged into
a C′

i satisfying Ci ⊑ C′
i ⊑ ΓG,m(C0). This enlargement follows the acceleration

framework introduced in [LS07b,LS07a] that roughly consists to compute the
precise effect of iterating some cycles. This framework motivate the introduction
of the monotonic function Γ W

G,m defined over the complete lattice (Q → Cm,⊑)
for any C ∈ Q→ Cm and for any q ∈ Q by the following equality:

Γ W
G,m(C)(q) =

⊔

q
σ−→q

Γr,m,σ(C(q))
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q CI,0(q) ΓGI ,2(CI,0)(q)

1 {(0, 0)} R+(1, 3)
2 ∅ (1, 1) + R+(3, 2)
3 ∅ R+(3, 2)
4 ∅ (1, 0) + R+(3, 2)
5 ∅ (0, 1) + R+(1, 3)
6 ∅ (2, 1) + R+(3, 2)
7 ∅ (0, 2) + R+(1, 3)
8 ∅ conv({(1, 0), (1, 2)}) + R+(1, 0) + R+(1, 3)
9 ∅ (0, 1) + R+(0, 1) + R+(3, 2)

Table 1. The values of CI,0 and CI = ΓGI ,2(CI,0).

The following Proposition 5.2 shows that Γ W
G,m(C) is effectively computable

from C and the function ΛG,m introduced in section 3. In this proposition, Gq

denotes the graph G reduced to the strongly connected components of q.

Proposition 5.2. For any C ∈ Q→ Cm, and for any q ∈ Q, we have:

Γ W
G,m(C)(q) = C(q) + R+(C(q)− ΛGq,m(q))

We now prove that the enlargement is sufficient to enforce the convergence
of a Kleene iteration.

Proposition 5.3. Let C0 ⊑ C′
0 ⊑ C1 ⊑ C′

1 ⊑ . . . be the sequence defined by the
induction Ci+1 = C′

i

⊔

t∈T ΓG,m,t(C
′
i) and C′

i = Γ W
G,m(Ci). There exists i < |Q|

satisfying Ci+1 = Ci. Moreover, for such an integer i we have Ci = ΓG,m(C0).

Proof. Observe that Ci ⊑ C′
i ⊑ ΓG,m(C0) for any i ∈ N. Thus, if there exists

i ∈ N such that Ci+1 = Ci we deduce that Ci = ΓG,m(C0). Finally, in order to
get the equality C|Q| = C|Q|−1, just observe by induction over i that we have
following equality for any q2 ∈ Q:

C′
i(q2) =

⊔

q0

σ1−→q1
σ−→q1

σ2−→q2
|σ1|+|σ2|≤i

ΓG,m,σ1σσ2 (C0(q1))

⊓⊔

Example 5.4. Let us consider the 2-graph GI obtained from the 2-graph depicted
in the center of Fig. 1 and restricted to the set of states QI = {1, . . . , 9}. Let
us also consider the function CI,0 ∈ QI → C2 defined by CI,0(1) = {(0, 0)} and
CI,0(q) = ∅ for q ∈ {2, . . . , 9}. Computing inductively the sequence C0 ⊑ C′

0 ⊑
C1 ⊑ C′

1 ⊑ . . . defined in Proposition 5.3 from C0 = CI,0 shows that C6 = C5

(see section G in appendix). Moreover, this computation provides the value of
CI = ΓGI ,2(CI,0) (see Table 1).
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1 FixPoint(G = (Q, Σr, T ) a m−graph, m ∈ N\{0}, C0 ∈ Q→ Cm)
2 let C ← C0

3 while there exists t ∈ T such that ΓG,m,t(C) 6⊑ C

4 C ← Γ W
G,m(C)

5 let C ← C ⊔
⊔

t∈T ΓG,m,t(C)
6 return C

Corollary 5.5. The algorithm FixPoint(G,m,C0) terminates by iterating the
main while loop at most |Q|−1 times. Moreover, the algorithm returns ΓG,m(C0).

From Propositions 3.4 and 3.5 and corollaries 4.4 and 5.5 we get:

Theorem 5.6. The closed convex hull of sets symbolically represented by arith-
metic automata are rational polyhedral and computable in exponential time.

Example 5.7. We follow notations introduced in Examples 3.1, 3.2 and 5.4. Ob-
serve that CI(8)−CD(a) = conv({(1, 0), (1, 2)})+ R+(1, 0)+ R+(1, 3) is exactly
the closed convex hull of X = {x ∈ N2 | 3x[1] > x[2]}.

6 Conclusion

We have proved that the closed convex hull of sets symbolically represented by
arithmetic automata are rational polyhedral. Our approach is based on acceler-
ation in convex data-flow analysis. It provides a simple algorithm for computing
this set. Compare to [Lat04] (1) our algorithm has the same worst case expo-
nential time complexity, (2) it is not limited to sets of the form Zm ∩ C where
C is a rational polyhedral convex set, (3) it can be applied to any set defin-
able in FO (R, Z, +,≤, Xr), (4) it can be easily implemented, and (5) it is not
restricted to the most significant digit first decomposition. This last advantage
directly comes from the class of arithmetic automata we consider. In fact, since
the arithmetic automata can be non deterministic, our algorithm can be applied
to least significant digit first arithmetic automata just by flipping the direc-
tion of the transitions. Finally, from a practical point of view, as the arithmetic
automata representing sets in the restricted logic FO (R, Z, +,≤) (where Xr is
discarded) have a very particular structure, we are confident that the exponen-
tial time complexity algorithm can be applied on automata with many states
like the one presented in [Lat04]. The algorithm will be implemented in TaPAS

[LP08] (The Talence Presburger Arithmetic Suite) as soon as possible.
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A Proof of Proposition 3.3

Proposition 3.3. The valuation ΛG,m is the unique minimal valuation C ∈
Q → Cm such that ΛG,m,t(C) ⊑ C for any transition t ∈ T and such that
C(q) 6= ∅ for any state q ∈ Q satisfying ΘG(q) 6= ∅.

Proof. Let us first prove that C = cl ◦ conv(λr,m(ΘG)) is a valuation in Q→ Cm

such that ΛG,m,t(C) ⊑ C for any transition t ∈ T . We have the inclusion
Λr,m,a(λr,m(ΘG(q2))) ⊆ λr,m(ΘG(q1)) for any transition (q1, a, q2) ∈ T . As
cl ◦ conv and Λr,m,a are commutative, the valuation C = cl ◦ conv(λr,m(ΘG))
satisfies ΛG,m,t(C) ⊑ C for any transition t ∈ T .

Now, let us consider a valuation C ∈ Q → Cm such that ΛG,m,t(C) ⊑ C

for any transition t ∈ T and such that C(q) 6= ∅ for any state q ∈ Q satisfying
ΘG(q) 6= ∅. Let us prove that cl ◦ conv(λr,m(ΘG)) ⊑ C. As ΛG,m,t(C) ⊑ C for
any transition t ∈ T an immediate induction shows that Λr,m,σ(C(q)) ⊑ C(q′)

for any finite path π = (q
σ
−→ q′). Let us consider an infinite path θ = (q

w
−→ F ).

As F is non empty, there exists a state q′ ∈ F . Recall that F is the set of states
visited infinitely often by the path θ. We deduce that there exists a cycle on q′

and in particular ΘG(q′) 6= ∅. This condition implies C(q′) 6= ∅. Thus there exists
x′ ∈ C(q′). Moreover, as q′ is visited infinitely often by θ, there exists a strictly

increasing sequence 0 ≤ i0 < i1 < · · · of integers such that q
w(1)...w(ij)
−−−−−−−→ q′. This

path shows that the vector xj = Λr,m,w(1)...w(ij)(x
′) is in C(q). As limj→+∞ xj =

λr,m(w) and C(q) is closed we deduce that λr,m(w) ∈ C(q). We have proved that
λr,m(ΘG) ⊆ C. Therefore cl ◦ conv(λr,m(ΘG)) ⊑ C. ⊓⊔
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B Proof of Lemma 4.1

Lemma 4.1. λr,m(σω) is the unique fix-point of Λr,m,σ for any σ ∈ Σ+
r .

Proof. As σσω and σω are equal, equality (1) page 7Reduction to Data-Flow
Analysis Problemsequation.1 shows that λr,m(σω) is a fix-point of Λr,m,σ. More-
over as the uniform form of the linear function Λr,m,a is equal to Λr,m,0 we deduce

that the uniform form of Λm
r,m,σ is equal to Λ

m|σ|
r,m,0. Since Λm

r,m,0(x) = r−1x we

have proved that the uniform form of Λm
r,m,σ is x → r−|σ|x for any x ∈ Rm.

Moreover, as λr,m(σω) is a fix-point of Λm
r,m,σ we deduce that Λm

r,m,σ(x) =

λr,m(σω) + r−|σ|(x − λr,m(σω)) for any x ∈ Rm. In particular, if x is a fix-
point of Λr,m,σ, we get x = λr,m(σω) + r−|σ|(x − λr,m(σω)). As r−|σ| 6= 1 we
obtain x = λr,m(σω). ⊓⊔
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C Proof of Proposition 4.3

Proposition 4.3. We have ΛG,m = conv(λr,m(ΘS
G)).

Proof. From ΘS
G(q) ⊆ ΘG(q) we deduce the inclusion conv(λr,m(ΘS

G)) ⊆ ΛG,m.
Let us prove the other inclusion. Observe that ΘS

G(q) is a finite set and in par-
ticular conv(ΘS

G(q)) is a closed convex set for any q ∈ Q. Let us consider the
function C ∈ Q → Cm defined by C = conv(λr,m(ΘS

G)). From Proposition 4.2,
we deduce that ΛG,m,t(C) ⊑ C for any transition t ∈ T . Note also that C(q) 6= ∅
for any state q ∈ Q such that ΘG(q) 6= ∅. By minimality of ΛG,m we get the
other inclusion ΛG,m ⊑ C. ⊓⊔
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D An Additional Example For Section 4

q ΘS
G1

(q) −Λ0
G1,2(q)

1 (00)ω , (0111)ω , 01(0010)ω , 0100(11)ω {(0, 0), ( 1

3
, 1))}

2 1(00)ω, (1011)ω , 101(0010)ω , 10100(11)ω {( 1

2
, 0), ( 7

8
, 1

4
))}

3 (1110)ω , 100(11)ω , 1(0010)ω {(1, 2

3
), ( 1

2
, 1

3
)}

4 0(11)ω, (0100)ω , 01011(00)ω , 010(1101)ω {( 1

2
, 1), {(0, 2

3
)}

5 11(00)ω , (1101)ω , (0010)ω , 00(11)ω {( 2

3
, 1), ( 1

3
, 0)}

6 (11)ω, (0001)ω , 0(1101)ω , 011(00)ω {(1, 1), (0, 1

3
)}

7 (11)ω , (1000)ω , 10(1101)ω , 1011(00)ω {( 2

3
, 0), (1, 1)}

Table 2. Some values computed
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*
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1

a

*

b

0

0

Fig. 3. An arithmetic automaton in basis 2 and in dimension 2.

Example D.1. Let us consider the 2-graph G labelled by Σ2 and depicted in
Fig. 3. We denote by G1 the graph G restricted to the strongly connected com-
ponent {1, . . . , 7}. By enumerating all the possible simple fry-pans ΘS

G1
(q) start-

ing from a state q, observe that we get the values given in the Table 2. This
table only provides the labels of the fry-pans in order to simplify the presenta-
tion. However, the fry-pans can be recovered from their labels since the graph is
deterministic.
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E Proof of Corollary 4.4

Corollary 4.4. The algorithm Cycle(G,m) terminates by iterating the main
while loop at most |T ||Q| times and it returns Λ0

G,m.

Proof. Observe that Θ(q) ⊆ ΘS
G(q) for any state q at any step of the algorithm.

Moreover, each time the while loop is executed, the set C(q) = conv(λr,m(Θ(q)))
strictly increases. Thus, the set {θ ∈ ΘS

G(q) | λr,m(θ) ∈ C(q)} strictly increase
each time the while loop is executed. Observe that a simple fry-pan θ is uniquelly
determined from its |Q| first transitions. Thus

∑

q∈Q |Θ
S
G(q)| ≤ |T ||Q|. We deduce

that the algorithm terminates after executing at most |T ||Q| times the while loop.
Finally, let us prove that when the algorithm terminates it returns Λ0

G,m. It is
sufficient to show that C = ΛG,m when it terminates. Note that the while loop
condition is no longer valid. Thus ΛG,m,t(C) ⊑ C for any transition t ∈ T . As
C(q) 6= ∅ for any state q ∈ Q such that ΘG(q) 6= ∅, by minimality of ΛG,m we
deduce that ΛG,m ⊑ C. Thus C = ΛG,m when the algorithm terminates. We
deduce that the algorithm returns Λ0

G,m. ⊓⊔

20



F Proof of Proposition 5.2

We first prove the following two technical lemmas.

Lemma F.1. For any σ ∈ (Σm
r )+ and for any x ∈ Rm we have:

cl ◦ conv({Γr,m,σi(x) | i ∈ N}) = x + R+(x− λr,m(σω))

Proof. As λr,m(σω) is a fix-point of the linear function Γr,m,σi and as the uniform

form of the linear function Γr,m,σi is Γ
i|σ|
r,m,0, we deduce that Γr,m,σi(x) = x +

(ri
|σ|
m − 1)(x − λr,m(σω)) for any i ∈ N. As cl ◦ conv({ri

|σ|
m − 1 | i ∈ N}) = R+

we deduce the lemma. ⊓⊔

Lemma F.2. For any strongly connected m-graph G = (Q, Σr, T ) and for any
state q ∈ Q, we have :

ΛG,m(q) = cl ◦ conv({λr,m(σω) | q
σ∈(Σm

r )+

−−−−−−→ q})

Proof. Let C(q) = cl ◦ conv({λr,m(σω) | q
σ∈(Σm

r )+

−−−−−−→ q}) be defined for any

q ∈ Q. Note that for any cycle π = (q
σ∈(Σm

r )+

−−−−−−→ q) we have πω ∈ ΘGq
(q). In

particular λr,m(σω) ∈ ΛG,m(q). We deduce the inclusion C(q) ⊑ ΛG,m(q). For

the other inclusion, let us consider an infinite path q
w
−→ F and let q′ ∈ F . Since

F is the set of states visited infinitely often, there exists a strictly increasing

sequence of integers 0 < i0 < i1 < · · · such that q
w(1)...w(ij)
−−−−−−−→ q′ for any

integer j ≥ 0. As G is strongly connected, there exists a path q′
σ
−→ q. The

cycle q
w(1)...w(ij)σ
−−−−−−−−→ q shows that the vector xj = λr,m((w(1) . . . w(ij)σ)ω) is

in C(q). As limj→+∞ xj = λr,m(w) and C(q) is closed we have proved that
λr,m(w) ∈ C(q). Thus ΛG,m(q) ⊑ C(q). ⊓⊔

Proposition 5.2. For any C ∈ Q→ Cm, and for any q ∈ Q, we have :

Γ W
G,m(C)(q) = C(q) + R+(C(q)− ΛGq,m(q))

Proof. Note that if there does not exist a q
σ
−→ q then ΛGq,m(q) = ∅ and the

previous equality is immediate. Otherwise, from Lemmas F.1 and F.2 we get the
following equalities:

Γ W
G,m(C)(q) =

⊔

q
σ−→q

Γr,m,σ(C(q))

=
⊔

x∈C(q)

⊔

q
σ∈(Σm

r )+

−−−−−−→q

cl ◦ conv({Γr,m,σi(x) | i ∈ N})

=
⊔

x∈C(q)

⊔

q
σ∈(Σm

r )+

−−−−−−→q

x + R+(x− λr,m(σω))

=
⊔

x∈C(q)

x + R+(x − ΛGq,m(q))
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In particular we deduce that Γ W
G,m(C)(q) ⊑ C(q) + R+(C(q) − ΛGq.m(q)). Con-

versely, let us consider x ∈ C(q) + R+(C(q) − ΛGq,m(q)). The vector x can be
decomposed into x = c1 + h(c2 − z) where c1, c2 ∈ C(q), z ∈ ΛGq,m(q) and
h ∈ R+. Let us denote by c = 1

1+h
(c1 + hc2). As C(q) is convex we deduce that

c ∈ C(q). From x = c + h(c− z) we deduce that x ∈ Γ W
G,m(C)(q). ⊓⊔
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F
ix

P
o
in
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1 2 3 4 5 6 7 8 9

C0 {(0, 0)} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
C′

0 L ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
C1 L ∅ L′ ∅ ∅ ∅ ∅ ∅ (0, 1) + R+(0, 1)
C′

1 L ∅ L′ ∅ ∅ ∅ ∅ ∅ (0, 1) + D′

C2 L ∅ L′ ∅ (0, 1) + L ∅ ∅ (1, 1) + D (0, 1) + D′

C′
2 L ∅ L′ ∅ (0, 1) + L ∅ ∅ (1, 1) + D (0, 1) + D′

C3 L (1, 1) + L′ L′ (1, 0) + L′ (0, 1) + L ∅ ∅ conv({(1, 0), (1, 1)}) + D (0, 1) + D′

C′
3 L (1, 1) + L′ L′ (1, 0) + L′ (0, 1) + L ∅ ∅ conv({(1, 0), (1, 1)}) + D (0, 1) + D′

C4 L (1, 1) + L′ L′ (1, 0) + L′ (0, 1) + L ∅ (0, 2) + L conv({(1, 0), (1, 2)}) + D (0, 1) + D′

C′
4 L (1, 1) + L′ L′ (1, 0) + L′ (0, 1) + L ∅ (0, 2) + L conv({(1, 0), (1, 2)}) + D (0, 1) + D′

C5 L (1, 1) + L′ L′ (1, 0) + L′ (0, 1) + L (2, 1) + L′ (0, 2) + L conv({(1, 0), (1, 2)}) + D (0, 1) + D′

W
h
ere

L
=

R
+
(1

,3
),

L
′
=

R
+
(3

,2
),

D
=

R
+
(1

,0
)
+

L
a
n
d

D
′
=

R
+

(0
,1

)
+

L
′.
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