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Abstract. Arithmetic automata recognize infinite words of digits de-
noting decompositions of real and integer vectors. These automata are
known expressive and efficient enough to represent the whole set of so-
lutions of complex linear constraints combining both integral and real
variables. In this paper, the closed convex hull of arithmetic automata is
proved rational polyhedral. Moreover an algorithm computing the linear
constraints defining these convex set is provided. Such an algorithm is
useful for effectively extracting geometrical properties of the whole set of
solutions of complex constraints symbolically represented by arithmetic
automata.

1 Introduction

The most significant digit first decomposition provides a natural way to associate
finite words of digits to any integer. Naturally, such a decomposition can be
extended to real values just by considering infinite words rather than finite
ones. Intuitively, an infinite word denotes the potentially infinite decimal part of
a real number. Last but not least, the most significant digit first decomposition
can be extended to real vectors just by interleaving the decomposition of each
component into a single infinite word.

Arithmetic automata are Muller automata that recognize infinite words of
most significant digit first decompositions of real vectors in a fixed basis of de-
composition r > 2 (for instance r = 2 and r = 10 are two classical basis of
decomposition). Sets symbolically representable by arithmetic automata in ba-
sis r are logically characterized [B g] as the sets definable in the first order
theory FO (R, Z, +, <, X,.) where X, is an additional predicate depending on the
basis of decomposition r. In practice, arithmetic automata are usually used for
the first order additive theory FO (R, Z, 4+, <) where X,. is discarded. In fact this
theory allows to express complex linear constraints combining both integral and
real variables that can be represented by particular Muller automata called de-
terministic weak Buchi automata [BIJWO03]. This subclass of Muller automata has
interesting algorithmic properties. In fact, compared to the general class, deter-
ministic weak Buchi automata can be minimized (for the number of states) into
a unique canonical form with roughly the same algorithm used for automata rec-
ognizing finite words. In particular, these arithmetic automata are well adapted



to symbolically represent sets definable in FO (R, Z, +, <) obtained after many
operations (boolean combinations, quantifications). In fact, since the obtained
arithmetic automata only depends on the represented set and not on the po-
tentially long sequence of operations used to compute this set, we avoid unduly
complicated arithmetic automata. Intuitively, the automaton minimization algo-
rithm performs like a simplification procedure for FO (R, Z, +, <). In particular
arithmetic automata are adapted to the symbolic model checking approach com-
puting inductively reachability sets of systems manipulating counters [B dl
and /or clocks [BHOM]. In practice algorithms for effectively computing an arith-
metic automaton encoding the solutions of formulas in FO (R, Z, +, <) have been
recently successfully implemented in tools LASH and LIRA [ Unfortu-
nately, interesting qualitative properties are difficult to extract from arithmetic
automata. Actually, operations that can be performed on the arithmetic au-
tomata computed by tools LASH and LIRA are limited to the universality and
the emptiness checking (when the set symbolically represented is not empty these
tools can also compute a real vector in this set).

Extracting geometrical properties from an arithmetic automaton represent-
ing a set X C R™ is a complex problem even if X is definable in FO (R, Z, +, <).
Let us recall related works to this problem. Using a Karr based algorithm || d,
the affine hull of X has been proved efficiently computable in polynomial time
[Ler04] (even if this result is limited to the special case X C N™, it can be
easily extended to any arithmetic automata). When X = Z™ N C where C' is
a rational polyhedral convex set (intuitively when X is equal to the integral
solutions of linear constraint systems), it has been proved in [Lat04] that we can
effectively compute in exponential time a rational polyhedral convex set C such
that X = Z™ N C’. Note that this worst case complexity in theory is not a real
problem in practice since the algorithm presented in [] performs well on
automata with more than 100 000 states. In [Lug04] this result was extended
to sets X = F' 4+ L where F is a finite set of integral vectors and L is a linear
set. In [FLOF, closed convex hulls of sets X C Z™ represented by arithmetic
automata are proved rational polyhedral and effectively computable in exponen-
tial time. Note that compared to , it is not clear that this result can be
turn into an efficient algorithm. More recently , we provided an algorithm
for effectively computing in polynomial time a formula in the Presburger the-
ory FO (Z,+, <) when X C Z" is Presburger-definable. This algorithm has been
successfully implemented in TAPAS [LP0§ (The Talence Presburger Arithmetic
Suite) and it can be applied on any arithmetic automata encoding a set X C Z™
with more than 100 000 states. Actually, the tool decides if an input arithmetic
automaton denotes a Presburger-definable set and in this case it returns a for-
mula denoting this set.

In this paper we prove that the closed convex hulls of sets symbolically rep-
resented by arithmetic automata are rational polyhedral and effectively com-
putable in exponential time in the worst case. Note that whereas the closed
convex hull of a set definable in FO (R, Z, +, <) can be easily proved rational
polyhedral (thanks to quantification eliminations), it is difficult to prove that



the closed convex hulls of arithmetic automata are rational polyhedral. We also
provide an algorithm for computing this set. Our algorithm is based on the re-
duction of the closed convex hull computation to data-flow analysis problems.
Note that widening operator is usually used in order to speed up the iterative
computation of solutions of such a problem. However, the use of widening op-
erators may lead to loss of precision in the analysis. Our algorithm is based on
acceleration in convex data-flow analysis ,. Recall that acceleration
consists to compute the exact effect of some control-flow cycles in order to speed
up the Kleene fix-point iteration.

Outline of the paper : In section E the most significant digit first decomposi-
tion is extended to any real vector and we introduce the arithmetic automata.
In section Pl we provide the closed convex hull computation reduction to (1) a
data-flow analysis problem and (2) the computation of the closed convex hull of
arithmetic automata representing only decimal values and having a trivial ac-
cepting condition. In section Wl we provide an algorithm for computing the closed
convex hull of such an arithmetic automaton. Finally in section E we prove that
the data-flow analysis problem introduced by the reduction can be solved pre-
cisely with an accelerated Kleene fix-point iteration algorithm. Most proofs are
only sketched in the paper, but detailed proofs are given in appendix. This paper
is the long version of the SAS 2008 paper.

2 Arithmetic Automata

This section introduces arithmetic automata (see Fig. m) These automata recog-
nize infinite words of digits denoting most significant digit first decompositions
of real and integer vectors.

As usual, we respectively denote by Z, Q and R the sets of integers, ratio-
nals and real numbers and we denote by N, Q4, R, the restrictions of Z,Q,R
to the non-negatives. The components of an m-dim vector x are denoted by
z[1],...,z[m].

We first provide some definitions about regular sets of infinite words. We
denote by X' a non-empty finite set called an alphabet. An infinite word w over
XY is a function w € N — X defined over N\{0} and a finite word o over X is
a function 0 € N — X defined over a set {1,...,k} where k € N is called the
length of o and denoted by |o|. In this paper, a finite word over X is denoted
by o with some subscript indices and an infinite word over X is denoted by w.
As usual X* and X respectively denote the set of finite words and the set of
infinite words over Y. The concatenation of two finite words o1, 02 € X* and the
concatenation of a finite word o € X* with an infinite word w € X“ are denoted
by o102 and ow. A graph labelled by X is a tuple G = (Q, X, T) where Q is a
non empty finite set of states and T' C @ x X' x Q) is a set of transitions. A finite
path w in a graph G is a finite word m = t; ...t of k > 0 transitions ¢; € T such
that there exists a sequence qo,...,qr € @ and a sequence aq,...,ar € X such
that ¢; = (gi—1, a;,¢;) for any 1 < i < k. The finite word o = a; ...ay is called



the label of m and such a path 7 is also denoted by qo = gi or just go — qi. We
also say that 7 is a path starting from qo and terminating in qx. When qg = g,
and k > 1, the path 7 is called a cycle on ¢g. Such a cycle is said simple if the
states qo, - .., qr—1 are distinct. Given an integer m > 1, a graph G is called an
m-graph if m divides the length of any cycle in G. An infinite path 0 is an infinite
word of transitions such that any prefixes m = 6(1)...0(k) is a finite path. The
unique infinite word w € X“ such that o = w(l)...w(k) is the label of the
finite path m; for any k& € N is called the label of 8. We say that 0 is starting
from qq if qo is the unique state such that any prefix of 8 is starting from qg. In
the sequel, a finite path is denoted by ™ and an infinite path is denoted by 6. The
set of infinite paths starting from qo is naturally denoted with the capital letter
Oc(qo). The set F of states ¢ € @ such that there exists an infinite number of
prefix of 6 terminating in ¢ is called the set of states wisited infinitely often by
6. Such a path is denoted by qo — F or just gqg — F. A Muller automaton A
is a tuple A = (Q, X, T,Qo,F) where (Q, X, T) is a graph, Qo C @ is the initial
condition and F C P(Q) is the accepting condition. The language L(A) C X¢
recognized by a Muller automaton A is the set of infinite words w € X% such
that there exists an infinite path gy — F with gy € Qo and F € 7.
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Fig. 1. On the left, the rational polyhedral convex set C' = {z € R? | 3z[1] >
z[2] A 2[2] > 0} in gray and the set X = Z2 N C of integers depicted by black
bullets. On the center, an arithmetic automaton symbolically representing X in
basis 2. On the right, the closed convex hull of X equals to cloconv(X) = {z €
R? | 3z[1] > z[2] + 1 A 2[2] > 0 A 2[1] > 1} represented in gray.

Now, we introduce the most significant digit first decomposition of real vec-
tors. In the sequel m > 1 is an integer called the dimension, r > 2 is an integer
called the basis of decomposition, X, = {0,...,r — 1} is called the alphabet of



r-digits, and S, = {0,r — 1} is called the alphabet of sign r-digits. The most
significant r-digit first decomposition provides a natural way to associate to any
real vector € R™ a tuple (s,0,w) € S x (X™)* x X¥. Intuitively (s,o) and
w are respectively associated to an integer vector z € Z™ and a decimal vector
d € [0,1]™ satisfying z = 2 + d. Moreover, s[i] = 0 corresponds to z[i] > 0 and
s[i] = r—1 corresponds to z[i] < 0. More formally, a most significant r-digit first
decomposition of a real vector x € R™ is a tuple (s,0,w) € S x (ZM)* x X¥
such that for any 1 <14 < m, we have:
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The previous equality is divided in two parts by introducing the functions A, ,,, €
Y9 — [=1,0]" and vy € ST x (X2M)* — Z™ defined for any 1 < i < m by the
following equalities. Note the sign in front of the definition of A, ,,. This sign
simplifies the presentation of this paper and it is motivated in the sequel.
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Definition 2.1 ([BRW9S]). An arithmetic automaton A in basis r and in
dimension m is a Muller automaton over the alphabet X, U {x} that recognizes
a language L C SM % (X™)* % X¥. The following set X C R™ is called the set
symbolically represented by A:

X = {’YT,m(Svo—) - )\T,m(w) | SkOoxW € L}

Ezample 2.2. The arithmetic automaton depicted in Fig. [| symbolically repre-
sents X = {x € N? | 3z[1] > x[2]}. This automaton has been obtained automat-
ically from the tool LASH through the tool-suite TAPAS.

We observe that Real Vector Automata (RVA) and Number Decision Dia-
grams (NDD) [BRW9§ are particular classes of arithmetic automata. In fact,
RVA and NDD are arithmetic automata A that symbolically represent sets X
included respectively in R™ and Z™ and such that the accepted languages L(A)
satisfy:

L(A) ={s*o*w | Yrm(s,0) — Arm(w) € X} if Ais a RVA

L(A) ={s*ox0% | v m(s,0) € X} if A is a NDD
Since in general a NDD is not a RVA and conversely a RVA is not a NDD,
we consider arithmetic automata in order to solve the closed convex hull com-
putation uniformly for these two classes. Note that simple (even if computa-

tionally expensive) automata transformations show that sets symbolically rep-
resentable by arithmetic automata in basis r are exactly the sets symbolically



representable by RVA in basis 7. In particular [[B g, sets symbolically rep-
resentable by arithmetic automata in basis r are exactly the sets definable in
FO (R,Z,+,<,X,) where X, C R3 is a basis dependant predicate defined in
[BRW9Y]. This characterization shows that arithmetic automata can symboli-
cally represent sets of solutions of complex linear constraints combining both in-
tegral and real values. Recall that the construction of arithmetic automata from
formulae in FO (R, Z, +, <, X,) is effective and tools LasH and Lira [BDEKO07|
implement efficient algorithms for the restricted logic FO (R, Z, +, <). The pred-
icate X, is discarded in these tools in order to obtain arithmetic automata that
are deterministic weak Buchi automata [BJWO0J]. In fact these automata have
interesting algorithmic properties (minimization and deterministic form).

3 Reduction to Data-Flow Analysis Problems

In this section we reduce the computation of the closed convex hull of sets
symbolically represented by arithmetic automata to data-flow analysis problems.

We first recall some general notions about complete lattices. Recall that a
complete lattice is any partially ordered set (A4, C) such that every subset X C A
has a least upper bound | | X and a greatest lower bound [|X. The supremum
| | A and the infimum []A are respectively denoted by T and L. A function
f € A— Ais monotonic if f(x) C f(y) for all x C y in A. For any complete
lattice (A4,C) and any set @, we also denote by C the partial order on Q — A
defined as the point-wise extension of C, i.e. f C g iff f(q) C g(q) for all g € Q.
The partially ordered set (Q — A, C) is also a complete lattice, with lub | | and
glb [ satisfying (L] F)(s) = LI{f(s) | f € F} and (T1F)(s) = [1{f(s) | f € F}
for any subset F' C @@ — A.

Now, we recall notions about the complete lattice of closed convex sets. A
function f € R™ — R™ is said linear if there exists a sequence (M; ;)i ; of
reals indexed by 1 < ¢ < m and 1 < j < n and a sequence (v;); of reals
indexed by 1 <4 < m such that f(z)[i] = >°7_, M, jz[j] + v; for any = € R”
and for any 1 < ¢ < m. When the coefficients (M; ;);; and (v;); are rational,
the linear function f is said rational. The function f’ € R™ — R"™ defined by
f(@)[i] = 375, M; jx[j] for any 2 € R™ and for any 1 <4 < m is called the
uniform form of f. A set R C R™ is said closed if the limit of any convergent
sequence of vectors in R is in R. Recall that any set X C R™ is included in
a minimal for the inclusion closed set. This closed set is called the topological
closure of X and it is denoted by cl(X). Let us recall some notions about convex
sets (for more details, see [Sch87). A convex combination of k > 1 vectors
Z1,...,Tr € R™ is a vector x such that there exists r1,...,7r; € Ry satisfying
rm+---+r,=1and z = rqz1 + -+ rpxr. A set C C R™ is said convex
if any convex combination of vectors in C' is in C. Recall that any X C R™
is included in a minimal for the inclusion convex set. This convex set is called
the convexr hull of X and it is denoted by conv(X). A convex set C' C R™ is
said rational polyhedral if there exists a rational linear function f € R™ — R"



such that C' is the set of vectors x € R™ such that A", f(z)[i] < 0. Recall that
cl(conv(X)) = conv(cl(X)), cl(f(X)) = f(cl(X)) and conv(f (X)) = f(conv(X))
for any X C R™ and for any linear function f € R™ — R”™. The class of
closed convex subsets of R™ is written C,,. We denote by C the inclusion partial
order on C,,. Observe that (C,,,C) is a complete lattice, with lub | | and glb []
satisfying | |€ = cloconv(|J€) and [ 1€ = () € for any subset € C C,,.

Example 3.1. Let X = 72> N C where C is the convex set C = {z € R? | 3z[1] >
z[2] A z[2] > 0} (see Fig. []). Observe that cloconv(X) = {z € R? | 3z[1] >
x[2] + 1 A z[2] > 0 A x[1] > 1} is strictly included in C.

In the previous section, we introduced two functions A, ,, and v, . Intu-
itively these functions “compute” respectively decimal vectors associated to infi-
nite words and integer vectors associated to finite words equipped with sign vec-
tors. We now introduce two functions Ay ., » and Iy, » that “partially compute”
the same vectors than A, and 7, . More formally, let us consider the unique
sequences (Aymo)oex and (I m,0)oex: of linear functions Ay, o, Irm,e €
R™ — R™ inverse of each other and satisfying A, m o100 = Arm,oq © Arim,ons
Imo100 = Lrmooy © Irm,oy fOr any oy, 02 € X%, such that A, ,,  and I}, . are
the identity function and such that A, ., , and I, with a € X, satisfy the
following equalities where x € R™:

Ar,m,a('r) = (7
Lyomo(z) = (2[2],. .., 2[m], rz[l] + a)

,x[1], ..., x[m —1])

We first prove the following two equalities (f]) and () that explain the link
between the notations A, ,, and 7, ,, and their capital forms A, ,,, » and I}, .
Observe that A, . q(Arm (W) = Ay (aw) for any a € X, and for any w € X¥.
An immediate induction over the length of o € X* provides equality ) Note
also that Iy ay...am () = 2 + (a1,...,ay) for any a1,...,an € X,. Thus an
immediate induction provides equality (B).

Ar.m (ow) romao (Arm (W) VYo e X¥ Ywe XY (1)

—) Vo e (EM) VsesSt  (2)
- T

A
’W‘,m(sa 0) = Fr,m,a(

We now reduce the computation of the closed convex hull C of a set X C R™
represented by an arithmetic automaton A = (Q, X, T, Qo, F) in basis r to data-
flow analysis problems. We can assume w.l.o.g that (Q, X, T) is a m-graph. As
the language recognized by A is included in S % (X7)* x X¢, the set of states
can be partitioned into sets depending intuitively on the number of occurrences
|o|« of the * symbol in a word o € X*. More formally, we consider the set Qg
of states reading signs, the set QJ; reading integers, and the set Qp reading



decimals defined by:
Qs={q€Q| 3,0, F)EQuxX*xF |ol,=0 A qo>q— F}
Qr={q€Q|3(q,0,F) €Qux X" xF |ol,=1 A q>q—F}
Qp={1€Q|3(q,0,F) €QuxX*xF |ol,=2 A q>q—F}

We also consider the m-graphs Gg, G; and Gp obtained by restricting G re-
spectively to the states Qg, @ and QQp and formally defined by:

Gs = (Qs, 2, Ts) with Ts = TN (Qs x X X Qs)
G]:(Q[,ET,T[) Wlth T]:TQ(Q]XETXQI)
GD:(QD,ET,TD) with TD:TQ(QDXETXQD)

Ezample 3.2. Qs ={—2,-1,0}, Qr = {1,...,9} and Qp = {a,b} in Fig. .

The closed convex hull C' = cloconv(X) is obtained from the valuations
Cr € Qr — €, and Cp € Qp — €, defined by C; = cloconv(X;) and
Cp = cloconv(Xp) where X; and X are given by:

S * Skxo
Xi(qr) = {Fr,m,a(l—_r) |s€S" o€Xi JpeQo g —a}

Xp(gp) = {Mm(w) |lweX¥ 3IFe€TF gp > F}

In fact from the definition of arithmetic automata we get:

C= | ] Ci(qr) — Cp(ap)

(a7,ap)EQXQp
(q1,%,9p)€ET

We now provide data-flow analysis problems whose C; and Cp are solu-
tions. Observe that m-graphs naturally denote control-flow graphs. Before asso-
ciating semantics to m-graph transitions, we first show that C; and Cp are
some fix-point solutions. As cloconv and I7.,,, are commutative, from the
inclusion I} m.q(X1(q1)) € Xi(g2) we deduce that C; satisfies the relation
I o(Cr(q1)) E Cr(ge) for any transition (go,a,q2) € T7. Symmetrically, as
cloconv and A, are commutative, from the inclusion A, (Xp(g2)) C
Xp(q1), we deduce that A, ., o(Cp(g2)) C Cp(qy) for any transition (q1,a, ¢z2) €
Tp. Intuitively C; and Cp are two fix-point solutions of different systems. More
formally, we associate two distinct semantics to a transition t = (¢1,a,q2) of
a m-graph G = (Q, X,,T) by considering the monotonic functions Ag ¢ and
I'm,¢ over the complete lattice (Q — C,,, C) defined for any C € @ — C,, and
for any ¢ € @ by the following equalities:

Ar,m,a(c(%)) ifg=q
C(q) if ¢ # @
an,a(c(ql)) if g =qo
C(q) if ¢ # qo

Acm,i(C)(q) = {

Tami(C)(q) = {



Observe that Cp is a fix-point solution of the data-flow problem Ag, m,(Cp) C
Cp for any transition ¢ € Tp and C7 is a fix-point solution of the data-flow
problem I'G, m(Cr) C Cr for any transition ¢t € 7. In the next sections
and E we show that Cp and C; can be characterized by these two data-flow
analysis problems.

3.1 Reduction for Cp

The computation of Cp is reduced to a data-flow analysis problem for the m-
graph Gp equipped with the semantics (Agp m,¢)tets -

Given an infinite path 6 labelled by w, we denote by A, (6) the vector
Arm (w). Given a m-graph G labelled by X, we denote by Ag m, the valuation
cloconv(A, ;m(Og)) (recall that ©¢(q) denotes the set of infinite paths starting
from ¢). This notation is motivated by the following Proposition @

Proposition 3.3. The valuation Ag . is the unique minimal valuation C €
Q — G, such that Ag.mi(C) T C for any transition t € T and such that

Cla) # D for any state q € Q satisfying Oc(a) 0.

The following Proposition @ provides the reduction.

Proposition 3.4. Cp = Ag,.m

Proof. We have previously proved that Ag, m,+(Cp) C Cp for any transition
t € Tp. Moreover, as Cp(qp) # 0 for any qp € Qp, we deduce the relation
Acp m C Cp by minimality of Ag, . For the other relation, just observe that
Xp C Ao (Ocy) and apply clo conv. O

3.2 Reduction for Cy

The computation of C7 is reduced to data-flow analysis problems for the m-
graphs Gg and Gy respectively equipped with the semantics (I'Gg m,i)iers and
(Fqumyt)teTI :

Given a m-graph G = (Q, X,,T) and an initial valuation Cy € Q — C,p, it
is well-known from Knaster-Tarski’s theorem that there exists a unique minimal
valuation C' € Q — C,, such that Cp C C and I'gm+(C) C C for any t € T. We
denote by I'c,m(Co) this unique valuation.

Symmetrically to the definitions of C; and Cp we also consider the valuation
Cs € Qs — G, defined by Cs = cloconv(Xg) where Xg is given by:

Xs(qs) = {Irm,s(0,...,0) | s €S Jg € Qo qo > qs}



The reduction comes from the following Proposition @ where Cgg € Qs —
Cm and Cro € Qf — €y, are the following two initial valuations:

0 if gs ¢ Qo
{(0,...,0)} if gs € Qo

Crolqr) = 1 ir |_| Cs(gs)

Csolgs) = {

IS €EQg
(gs,%,q1)€T

Proposition 3.5. Cs = I'gy m(Cso) and Cr = I, .m(Crpo).

Proof. First observe that Xg C I'cgm(Cso) and X; C I'g, m(Cr,0). Thus Cs C
I'cg.m(Csyo) and Cr C I'g,.m(Cr,0) by applying clo conv. Finally, as I, o and
cloconv are commutative, we deduce that I'gg m (Cs) C Cg for any t € Tg
and I'g,;.m,(Cr) T Cy for any t € T7. The minimality of I'g, m(Cso) and
I'c; m(Cr,0) provide I'gg,m(Cs,0) C Cs and I'g; m(Cr0) C Ci. a

4 Infinite Paths Convex Hulls

In this section G = (Q, X, T) is a m-graph. We prove that Ag ., (q) is equal
to the convex hull of a finite set of rational vectors. Moreover, we provide an
algorithm for computing the minimal sets A%ym(q) C Q™ for every q € @ such
that Ag m = conv(Ag ,,) in exponential time in the worst case.

A fry-pan 6 in a graph G is an infinite path 8 = t1...¢;(tj41 ... tx)* where
0 < i < k and where t; = (g0 — @1), ...tk = (gr—1 — qx) are transitions such
that ¢ = ¢;. A fry-pan is said simple if qq,...,qx_1 are distinct states. The
finite set of simple fry-pans starting from g is denoted by ©2(q). As expected,
we are going to prove that Ag ., = conv(\.,(02)) and A, (02(q)) C Q™.

We first prove that A, ,,(6) is rational for any fry-pan 6. Given o € XF, the
following Lemma @ shows that A, ,,(0“) is the unique solution of the rational
linear system A, ,, ,(z) = z. In particular A, ,,(c*) is a rational vector. From
equality () given in page f], we deduce that the vector A,.,,(0) is rational for
any fry-pan 6.

Lemma 4.1. A\, ,,(6%) is the unique fiz-point of Ay o for any o € XF.

The following Proposition Q (see the graphical support given in Fig. E) is
used in the sequel for effectively computing Ag,,, thanks to a fix-point iteration
algorithm.

Proposition 4.2. Lett = (q,a,q’) be a transition and let 0’ be a simple fry-pan
starting from q' such that the fry-pan t0’ is not simple. In this case there exists a
minimal non-empty prefix ™ of t0' terminating in q. Moreover the fry-pan 6 such
that t0' = 70 and the fry-pan © are simple and such that Ay m o(Arm(0')) €
conv ({ Ay (0), Arn (1) }).
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Fig. 2. A graphical support for Proposition @ where ¢’ denotes a simple fry-
pan starting from a state ¢’ and t = (g, a, ¢') is a transition such that the fry-pan
t6’ is not simple. That means the state g is visited by #’. Note that ¢ is visited
either once or infinitely often. These two situations are depicted respectively on
the top line and the bottom line of the tabular.

Proof. As t@’ is not simple whereas ¢’ is simple we deduce that there exists
a decomposition of t§’ into w6 where 7 is the minimal non-empty prefix of ¢§’
terminating in q. Let 7 be the non empty path with the minimal length. Observe
that 7 is a simple cycle and thus 7 is a simple fry-pan. Moreover, as 6 is a suffix
of the simple fry-pan €', we also deduce that 6 is a simple fry-pan. Observe that
Arm (80") = A (m0). Moreover, as 7 is a cycle in a m-graph we deduce that m

divides its length. Denoting by o the label of 7, we deduce that o € (X™)*.
Now, observe that A, (z) = (1 — r_%))\r,m(ow) + r—g for any r € R™.
We deduce that A, q0(Arm(60)) = (1 — T_%))\T,m(ﬂ'w) + T_‘%)\r,m(@)- Thus

Nrm,a(Arm (07)) € conv({ 1 (0), Ap o (T9) }). O
From the previous Proposition @ we deduce the following Proposition @
Proposition 4.3. We have Ag,m = conv(A,,,,(02)).

We deduce that there exists a minimal finite set A2 ,,(¢) € Q™ such that
Ag.m = conv(AY,,). Note that an exhaustive computation of the whole set
©2,(q) provides the set A2 ,,(q) by removing vectors that are convex combina-
tion of others. The efficiency of such an algorithm can be greatly improved by
computing inductively subsets ©(q) C O (q) and get rid of any fry-pan 6 € O(q)
as soon as it becomes a convex combination of other fry-pans in ©(q)\{6}. The
algorithm Cycle is based on this idea.

Corollary 4.4. The algorithm Cycle(G,m) terminates by iterating the main
while loop at most |T|I%! times and it returns AY

1 Cycle(G = (Q, X,,T) be a m—graph, m € N\{0})
2 for each state g € Q

3 if O2(q) #0
4 let 0 ¢ @g (q)

11



let O(q) — {6}
else
let O(q) « 0
while there exists t = (¢,a,¢') € T and §' € O(q¢')
such that Ay o(Arm(0)) & conv(A. 1 (©(q)))
if t0’ is simple
let O(q) «— O(q) U {t0'}
else
let 7 be the minimal strict prefix of ¢6’ terminating in ¢
let 6 be such that t6’ = 76
let ©(q) — O(q) U {0, 7}
while there exists 6y € O(q)
such that conv(A,.,(0(q))) = conv(Arm (O(q)\{6o}))
let. ©(q) — O()\ o}
return A, ,,(O) /1A m

5 Fix-point Computation

In this section we prove that the minimal post-fix-point I'g ,,(Cy) is effectively
rational polyhedral for any m-graph G = (Q, X,,T) and for any rational poly-
hedral initial valuation Cy € @ — C,,. We deduce that the closed convex hull
of sets symbolically represented by arithmetic automata are effectively rational
polyhedral.

Ezample 5.1. Let m = 1 and G = ({q}, X, {t}) where t = (¢,7 — 1,q) and
Co(gq) = {0}. Observe that the sequence (C;);en where Cip1 = C; U I'g m+(Ch)
satisfies Ci(q) = {r e R|0 <z < 7P —1}.

Recall that a Kleene iteration algorithm applied on the computation of
I'c,m/(Ch) consists in computing the beginning of the sequence (C;);en defined by
the induction Cj11 = Ci| |,cp I'Gm,:(C;) until an integer 7 such that Ci 1 = C;
is discovered. Then the algorithm terminates and it returns Cj. In fact, in this
case we have C; = I'g m(Cp). However, as proved by the previous Example @
the Kleene iteration does not terminate in general. Nevertheless we are going to
compute ' m(Co) by a Kleene iteration such that each C; is safely enlarged into
a Cf satisfying C; C C] C I'g,,(Cp). This enlargement follows the acceleration
framework introduced in [, that roughly consists to compute the
precise effect of iterating some cycles. This framework motivate the introduction
of the monotonic function I CV;V . defined over the complete lattice (Q — €, C)
for any C' € @ — €, and for any q € @ by the following equality:

Y. (C)g) = | | Trme(Ca)

q q
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14][Cr.0(q)] I'c,2(Cr0)(q)
{(070)} R+(173)

[

0~ OOk W N

S e S

9 (07 1) + R+ (07 1) + R-F (37 2)
Table 1. The values of Cr o and Cr = I'g, 2(Cr,0)-

The following Proposition .4 shows that T, & (C) is effectively computable
from C and the function Ag ,, introduced in section E In this proposition, G4
denotes the graph G reduced to the strongly connected components of ¢.

Proposition 5.2. For any C' € @ — C,,, and for any q € @), we have:

I n(C)(a) = Cla) + Ry (Cla) — Ag,m(a))

We now prove that the enlargement is sufficient to enforce the convergence
of a Kleene iteration.

Proposition 5.3. Let Co C Cy C C; T Cf C ... be the sequence defined by the
induction Ciy1 = Cf | yer Tam(C)) and C] = T'Y, (C;). There exists i < |Q|

satisfying Ciy1 = C;. Moreover, for such an integer i we have C; = I'm(Co).

Proof. Observe that C; C C} C I'g.,(Co) for any ¢ € N. Thus, if there exists
i € N such that C;11 = C; we deduce that C; = I'g ,»(Co). Finally, in order to
get the equality Cg| = C|g|—1, just observe by induction over ¢ that we have
following equality for any ¢ € Q:

Ci(g2) = |_| I'cm 00, (Colqr))

o1 o a2
a0 a1 a1 742
lo1|+lo2[<i

O

Ezxample 5.4. Let us consider the 2-graph G obtained from the 2-graph depicted
in the center of Fig. EI and restricted to the set of states Q; = {1,...,9}. Let
us also consider the function Cr g € Qr — Cz defined by Cr (1) = {(0,0)} and
Cro(q) =0 for g € {2,...,9}. Computing inductively the sequence Cy C Cjj C
Cy; C Cf C ... defined in Proposition @ from Cy = Cf shows that Cs = Cs
(see section [G in appendix). Moreover, this computation provides the value of
Cr =Tg,2(Cro) (see Table[l).
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1 FixPoint(G = (Q, X\, T) a m—graph, m € N\{0}, Cp € Q — C,)
2 let C « CO
3 while there exists ¢t € T such that I'g ., (C) Z C

4 C — Fg;’/m(C’)
5 let C« CU|ler I'amt(C)
6 return C

Corollary 5.5. The algorithm FixPoint(G,m,Cy) terminates by iterating the
main while loop at most |Q|—1 times. Moreover, the algorithm returns I'c m(Cp).

From Propositions @ and @ and corollaries @ and @ we get:

Theorem 5.6. The closed convex hull of sets symbolically represented by arith-
metic automata are rational polyhedral and computable in exponential time.

Ezample 5.7. We follow notations introduced in Examples , @ and @ Ob-
serve that Cy(8) — Cp(a) = conv({(1,0),(1,2)}) + R4+ (1,0) + R4 (1, 3) is exactly
the closed convex hull of X = {z € N? | 3z[1] > z[2]}.

6 Conclusion

We have proved that the closed convex hull of sets symbolically represented by
arithmetic automata are rational polyhedral. Our approach is based on acceler-
ation in convex data-flow analysis. It provides a simple algorithm for computing
this set. Compare to [Lat04] (1) our algorithm has the same worst case expo-
nential time complexity, (2) it is not limited to sets of the form Z™ N C where
C' is a rational polyhedral convex set, (3) it can be applied to any set defin-
able in FO (R,Z,+, <, X,.), (4) it can be easily implemented, and (5) it is not
restricted to the most significant digit first decomposition. This last advantage
directly comes from the class of arithmetic automata we consider. In fact, since
the arithmetic automata can be non deterministic, our algorithm can be applied
to least significant digit first arithmetic automata just by flipping the direc-
tion of the transitions. Finally, from a practical point of view, as the arithmetic
automata representing sets in the restricted logic FO (R, Z, +, <) (where X, is
discarded) have a very particular structure, we are confident that the exponen-
tial time complexity algorithm can be applied on automata with many states
like the one presented in [Lat04]. The algorithm will be implemented in TAPAS
[LP0 (The Talence Presburger Arithmetic Suite) as soon as possible.
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A Proof of Proposition

Proposition . The valuation Ag . is the unique minimal valuation C €
Q — Cpn such that Agm(C) T C for any transition t € T and such that

Cla) # D for any state q € Q satisfying Oc(a) 0.

Proof. Let us first prove that C' = cloconv(A, ., (Og)) is a valuation in @ — C,,
such that Ag.,(C) C C for any transition ¢ € T. We have the inclusion
NrmaArm(Oc(q2))) € Arm(@c(qr)) for any transition (¢1,a,q2) € T. As
cloconv and Ay, are commutative, the valuation C = cloconv(A, ., (Og))
satisfies Ag m +(C) C C for any transition ¢t € T'.

Now, let us consider a valuation C' € Q — C,, such that Ag ,+(C) C C
for any transition ¢ € T' and such that C(q) # 0 for any state ¢ € Q satisfying
Oc(q) # 0. Let us prove that cloconv(A,,(Og)) C C. As Ag,m(C) C C for
any transition ¢ € T an immediate induction shows that A, ., +(C(q)) C C(¢')
for any finite path m = (¢ % ¢’). Let us consider an infinite path 6 = (¢ = F).
As F is non empty, there exists a state ¢’ € F. Recall that F' is the set of states
visited infinitely often by the path 6. We deduce that there exists a cycle on ¢’
and in particular O (q’) # 0. This condition implies C(q’) # 0. Thus there exists
x’ € C(q'). Moreover, as ¢’ is visited infinitely often by 6, there exists a strictly

increasing sequence 0 < ig < i1 < --- of integers such that ¢ M q'. This
path shows that the vector x; = A, 1 w(1)..0(;) (2') 8 in C(q). Aslim; 4o z; =
Arm (w) and C(q) is closed we deduce that A\, (w) € C(g). We have proved that
Ar.m(©a) C C. Therefore clo conv(A,,,(Og)) C C. a
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B Proof of Lemma [.1]

Lemma |.1. ), ,,(0%) is the unique fiz-point of Ay » for any o € St

Proof. As oo“ and o% are equal, equality ([l) page fReduction to Data-Flow|
Analysis Problemsequation.]] shows that A, ., (0*) is a fix-point of A, ,,, ». More-
over as the uniform form of the linear function A, ,, , is equal to A, ,,, o we deduce

that the uniform form of A}, is equal to A;"J:‘O Since A7, o(x) = 7'z we

have proved that the uniform form of A7, , is z — r=lolg for any z € R™.
Moreover, as A, (0*) is a fix-point of A", = we deduce that A", () =
Ao (09) + 771l (@ — N\, (09)) for any 2 € R™. In particular, if z is a fix-
point of Ay .m0, We get & = Ay (0¥) + rlol(z — Arm(0%)). As rlol £ 1 we

obtain z = A, (0%). O
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C Proof of Proposition .3

Proposition f.3. We have Ag ,, = conv(\,., (02)).

Proof. From 62(q) C O¢(q) we deduce the inclusion conv(\, ., (02)) C Ag,m.
Let us prove the other inclusion. Observe that ©2(q) is a finite set and in par-
ticular conv(©Z(g)) is a closed convex set for any ¢ € Q. Let us consider the
function C € Q — €, defined by C = conv(A,.,,(62)). From Proposition g,
we deduce that Ag m,,(C) C C for any transition t € T'. Note also that C(g) # 0
for any state ¢ € @ such that Og(q) # 0. By minimality of Ag,, we get the
other inclusion Ag ,,, C C. O
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D An Additional Example For Section {

q 0¢, () — A2, 2(q)

1] (00), (0111)*,01(0010)*,0100(11)* [{(0,0), (,1))}
2/1(00)*, (1011)“,101(0010)*,10100(11)“ |{(%,0), (£, 1))}
3 (1110)*,100(11)“, 1(0010)* {1,2),(3,5)}
4(0(11), (0100)“,01011(00)“,010(1101)“ |{(3,1),{(0, 2)}
5/ 11(00)“, (1101)“,(0010)~,00(11)* | {(%,1),(3,0)}
6/ (11)“,(0001)*,0(1101)*,011(00)* {(1,1),(0,3)}
7| (11)¥,(1000)*,10(1101)*,1011(00)* | {(%,0),(1,1)}

Fig. 3. An arithmetic automaton in basis 2 and in dimension 2.

Ezxample D.1. Let us consider the 2-graph G labelled by X5 and depicted in
Fig. E We denote by G the graph G restricted to the strongly connected com-
ponent {1,...,7}. By enumerating all the possible simple fry-pans @gl (q) start-
ing from a state ¢, observe that we get the values given in the Table
table only provides the labels of the fry-pans in order to simplify the presenta-
tion. However, the fry-pans can be recovered from their labels since the graph is

deterministic.
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E Proof of Corollary g.4

Corollary Q The algorithm Cycle(G,m) terminates by iterating the main
while loop at most |T|I9! times and it returns AY -

Proof. Observe that O(q) C ©2(q) for any state ¢ at any step of the algorithm.
Moreover, each time the while loop is executed, the set C(g) = conv(A, m (©(q)))
strictly increases. Thus, the set {# € ©2(q) | \r.m(0) € C(q)} strictly increase
each time the while loop is executed. Observe that a simple fry-pan 6 is uniquelly
determined from its |Q| first transitions. Thus > o |92.(g)| < |T|I9l. We deduce
that the algorithm terminates after executing at most |T'|/9! times the while loop.
Finally, let us prove that when the algorithm terminates it returns A%,m- It is
sufficient to show that C = Ag ,,, when it terminates. Note that the while loop
condition is no longer valid. Thus Ag m, (C) C C for any transition t € T. As
C(q) # 0 for any state ¢ € @ such that ©g(q) # (), by minimality of Ag. ., we
deduce that Ag,, & C. Thus C = Ag,, when the algorithm terminates. We
deduce that the algorithm returns A%,m- a
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F Proof of Proposition (.3

We first prove the following two technical lemmas.

Lemma F.1. For any o € (¥™)" and for any x € R™ we have:
cloconv({I} ,, »i(x) | i € N}) =2+ Ry(x — A m(0¥))

Proof. As A\y,;m(0*) is a fix-point of the linear function I, ,+ and as the uniform
form of the linear function I, ,i is F:JZL',O, we deduce that I ,, ,i(z) = z +
( L. )@ — Arm (o)) for any ¢ € N. As cloconv({ri‘im‘ —1]ieN}) =Ry
we deduce the lemma. O
Lemma F.2. For any strongly connected m-graph G = (Q, X, T) and for any
state ¢ € Q, we have :

oy oE(Em*
AG,m(Q) = CIOCOHV({/\T,m(J ) | g ——— Q})
o my+
Proof. Let C(q) = cloconv({A.m(c¥) | ¢ 2T, q}) be defined for any

o my+
q € Q. Note that for any cycle 7 = (g LCADMN q) we have 1 € O¢,(q). In

particular A, (0%) € Ag.m(q). We deduce the inclusion C(q) C Ag,m(q). For
the other inclusion, let us consider an infinite path ¢ — F and let ¢’ € F. Since

F' is the set of states visited infinitely often, there exists a strictly increasing

1 . 7 .
sequence of integers 0 < igp < 41 < --- such that ¢ 2wl q' for any

integer j > 0. As G is strongly connected, there exists a path ¢ % ¢. The
1)..w(i
cycle ¢ ). wlis)o g shows that the vector z; = A ((w(1)...w(i;)0)¥) is

in C(q). As limj_ 4o z; = A m(w) and C(q) is closed we have proved that
Arm(w) € C(g). Thus Ag,m(q) E C(q)- 0

Proposition @ For any C € Q — C,,, and for any q € Q, we have :
IEm(0) @) = Cla) + Ry (Cla) — A,m(a))

Proof. Note that if there does not exist a ¢ — ¢ then Ac, m(q) = 0 and the
previous equality is immediate. Otherwise, from Lemmas and [F.g we get the
following equalities:

IEa )@ = | | Trmo(Cla)

- |_| |_| cloconv({I} , ,i(x) | i € N})

2€C(q) oe(zm)t
q— ¢

|_| |_| T+ Ri(z — Aym(0¥))

z€C(q) oe(zm)t
[/ ——]

|_| x+ R+(l‘ - AGq,m(q))
z€C(q)
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In particular we deduce that I'Y, (C)(¢) E C(q) + R4 (C(q) — Ac,.m(q)). Con-
versely, let us consider x € C(q) + R4 (C(q) — Ag,.m(q)). The vector x can be
decomposed into & = c¢; + h(cz — 2z) where c1,c2 € C(q), 2 € Ag,m(q) and
h € Ry. Let us denote by ¢ = H%h(cl + heg). As C(q) is convex we deduce that

c € C(q). From x = ¢ + h(c — z) we deduce that z € Fg‘fm(C)(q). O
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G An Execution of Algorithm FixPoint
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Where L = R4(1,3)
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