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Abstract

We tackle the issue of representing infinite sets of real-
valued vectors. This paper introduces an operator for com-
bining integer and real sets. Using this operator, we decom-
pose three well-known logics extending Presburger with re-
als. Our decomposition splits a logic into two parts : one
integer, and one decimal (i.e. on the interval[0, 1[). We also
give a basis for an implementation of our representation.

1 Introduction

Verification (and model-checking in particular) of
infinite systems like timed automata [1] (and hybrid
systems) and counter systems [5] need good symbolic
representation classes ; bygood, we mean having closure
properties (by first-order logic operators) and decidability
results (for testing inclusion and emptiness). Presburger
arithmetic [27, 23] enjoys such good properties, and some
efficient implementations (using finite automata) have
been intensively used for the analysis of counter systems
[6, 20, 14, 15].

Despite the fact that the complete arithmetic on reals
is decidable [28], only some restricted classes of the first-
order additive logic of reals (DBM, CPDBM, finite unions
of convex polyhedra) have been used for the analysis of
timed automata. This is mainly due to the fact that the
algorithmic complexity of DBM is polynomial, which
is the basis of efficient verification algorithms for timed
automata in UPPAAL [11, 25].

However, we would like to be able to use both integers
and reals, for at least two reasons. First, we want to analyse
timed counter systems [2, 3, 13] in which the reachability
sets contain vectors with both integers and reals. Second,
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ANR-06-SETIN-001.

we want to be able to use integers as parameters for a
concise representation of pure reals : for instance, reals are
used for the values of clocks and integers for expressing the
parameters in CPDBM.

Fortunately, the first-order additive logic over integers
and reals is decidable. Nevertheless, the algorithmic of
sets combining integers and reals does not seem simple,
even when it is based on finite automata like Real Vector
Automata [13, 16] or weak RVA [8], or based on quantifier
elimination [29].

For that matter, the algorithmic of Presburger (using
finite automata) and variations of DBM are quite efficient.
Hence, our idea is to reduce the algorithmic difficulty of the
first-order additive logic of integers and reals (and of some
subclasses and decidable extensions) by decomposing a
complex set of integers and reals into a finite union of
sums of integer sets and decimal sets. By decimal, we
mean numbers in the dense inteval[0, 1[ ; then, we define
a new class of sets as follows. Givenn sets of integers
(Zi)0≤i≤n andn sets of decimals(Di)0≤i≤n, we introduce
the operator finite union of sums, which builds the finite
unions of the sumsZi + Di. This class is shown stable
under boolean operations, cartesian product, quantification
and reordering if both of the two initial classes are also
stable.

One of our aims is then to re-use, in combining the
best representations of these two initial sets(Zi)0≤i≤n
and (Di)0≤i≤n, the best libraries dealing with them to
efficiently handle finite unions of(Zi + Di)0≤i≤n (for
instance : PRESTAF [7] for the integers and PPL [4] for
the reals).

We show that three of the main classes of mixed integer
and real sets are in fact finite unions of sums of well-known
classes. We prove that finite unions of sums of Presburger
set of integers, and sets definable in the first-order additive
logic of decimals are exactly the sets definable in the
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first-order logic of integers and reals. The finite unions
of CPDBM are expressible as the finite unions of sums of
Presburger-definable sets and DBM-definable decimal sets.
Moreover, when we go beyond Presburger by considering
RVA, we show that the class of sets representable by
RVA in basisb is the finite unions of sums of Presburger
extended with a predicateVb (which gives integer powers
in baseb) and the additive logic of decimals extended with
a predicateWb (which, similarily to Vb, gives negative
powers in baseb).

2 Representations mixing integers and reals

In this section, we motivate our work with a small
example of timed automaton. We show that extracting
integers from reals can yield more concise formula than
pure reals. Then we introduce an operator combining
integer and real sets of vectors.

2.1 Timed Automata and DBM

In order to study real-life systems involving behaviours
that depend on time elapsing, timed automata are probably
the most used and well-known model for such systems.
As described in [1], the basic idea of timed automata is to
add real-valued variables (called clocks) to finite automata.
These clocks model temporal behaviours of the system,
flowing at a universal constant rate ; each clock can be com-
pared to an integer constant, and possibly reset to0. The
only other guard allowed is called a diagonal constraint,
consisting in comparing the difference of two clocks to
an integer constant. As the clocks’ values are unbounded,
the state-space generated by a timed automaton is infinite ;
therefore, regions are used to model a finite abstraction
of the system’s behaviour. Practically intractable because
of its size, the region graph is then implemented as zones
in most verification tools [11, 25, 18, 24] modelling such
real-time systems.

Technically, zones are represented by Difference Bound
Matrices (DBM) [12, 21] in these tools. A DBM is a square
matrix representing the constraints betweenn clocks defin-
ing a zone. Here, we see a DBM as a tuple(c,≺), where
c = (ci,j)0≤i,j≤n, ≺ = (≺i,j)0≤i,j≤n, ci,j ∈ Z ∪ {+∞},
and≺i,j∈ {≤, <}. Each element of this tuple is an element
of the square matrix, defining a DBM set as follows :

Rc,≺ = {r ∈ Rn |
∧

0≤i,j≤n

ri − rj ≺i,j ci,j}

In order to deal with constraints involving only one clock,
the fictive clockr0 is always set to the value0. An element

(ci,j ,≺i,j) means thatri − rj ≺i,j ci,j , whereri, rj are
clocks. Thus, each element of a DBM represents a diagonal
constraint (i.e. a bounded difference). Finally, terms that
do not represent any actual constraint are symbolized by
ci,j = +∞.

2.2 About extensions of DBM

On the following example taken from [9], the timed au-
tomaton features 2 clocksx andy, and a unique location.
The automaton’s behaviour is very simple :y is reset to0 as
soon as it reaches1, whilex flows continually. In the initial
state, the clocks are both set to0. Moreover, an invariant in
the location ensures thaty never exceeds1.

(y ≤ 1)

y := 0
x := 0

x ≥ 1 ∧ y = 1,
y := 0

The clock diagram associated to the automaton ex-
plicitely shows this behaviour :

0 1 2 3 4 5 x

1

2

y

A classical forward analysis [17] is considered here,
by computing the reachable states (i.e.location ×
clock values) from the initial one (wherex = y = 0).
Then, we build the corresponding zones, each zone being
represented by a DBM ; here, we have an infinite yet count-
able set of DBM as follows. Note that in this example≺ is
always≤ ; therefore, we will omit it in the matrices.















0 x y

0

x

y





0 −i 0
i+ 1 0 i

1 −i 0



















i≥0

In order to make the state-space computable, abstraction
techniques are used to get a finite number of zones. The
abstraction being used in most model-checkers is based on
maximum constants : a clockc’s valuation is considered
equal to∞ as soon as it exceeds the maximal constant to
which c is ever compared. On the example, if a guarded
transitionx ≥ 106 leads to another state, then the clock
diagram becomes as follows :
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0 1 2 · · · 106 x

1

2

y

More formally, this abstraction yields the following set
of DBM :

































0 x y

0

x

y





0 −i 0
i+ 1 0 i

1 −i 0



















0≤i≤106

,

0 x y

0

x

y





0 ∞ 0
∞ 0 ∞
1 −106 0























This set of DBM is finite, but remains huge :106 + 2
matrices need to be computed and memorized, which
seems exaggerated, a fortiori for such a simple example. In
[9], a more elaborate abstraction is proposed : the clocks’
maximal constants are no more global to the system,
but location-dependent. Another abstraction technique
is proposed in [10], distinguishing between upper and
lower bounds within maximal constants. To the best of
our knowledge, these are the only zone-based abstraction
techniques ; in each of them, the number of DBM still
heavily depends on maximal constants.

Writing here such an infinite or huge number of DBM
would have been impossible ; therefore, we naturally used a
parametric representation of these DBM. Actually, this idea
is also used by Constrained Parametric DBM (CPDBM)
[2], which is the data structure implemented in the TREX
[3] model-checker. CPDBM are indeed a more expressive
version of DBM, extended in two steps. First, we consider
PDBM, in which ci,j constants becometi,j arithmetical
terms (the parameters). Such arithmetical termst are given
by the grammart ::= 0 | 1 | x | t − t | t + t | t ∗ t,
wherex belongs to a setX of real variables. Second, a
PDBM becomes a CPDBM as terms are constrained by
quantifier-free first-order formulasφ. Such formulas are
defined byφ ::= t ≤ t | ¬φ | φ ∨ φ | Is int(t) (where the
predicateIs int(t) is true iff t is an integer). Each of the
two sets of matrices hereinabove is in fact a single CPDBM.

Consider now another way to represent the set of reach-
able clock values. On the second diagram showing the ab-
straction, we can see an obvious regular pattern alongx,
defined by three shapes : , , and . We define
each shape as follows : = {(x, y) ∈ [0, 1]2 | x = y},

= {(x, y) ∈ [0, 1]2 | x ≥ y}, and = {(x, y) ∈ [0, 1]2}.
If we want to represent the same set as the previous ab-
stracted zones, but without DBM, we can express the peri-
odicity of each pattern with integers. To formalize it, taking

the union of the following three sums suffices :

(

{0, . . . , 106 − 1} × {0} +
)

⋃

(

{106} × {0} +
)

⋃

(

{106 + 1, . . . ,∞}× {0} +
)

This latter symbolic representation of such a reachabil-
ity set is much smaller than DBM. Indeed, representing
zones with DBM implies memorizing a possibly huge
number of matrices, depending on the maximal constant
for the clocks (one million, in this example). However, by
introducing integers to express periodicity, we can reduce
the representation to three small combinations of intervals.
Moreover, we can even get rid of the abstraction, so as
to get an exact representation for the same cost. CPDBM
also have these advantages, but are undecidable because
of the multiplication. Hence, let us specify a little more
what is our representation : we take finite unions of reals,
real numbers being decomposed as sums of integers and
smaller reals (called decimals). These integers and reals
can be defined using quantification, addition, and boolean
operators.

Actually, our approach comes down to representing sets
of real numbers by extracting their integer components ;
the interesting point is that adding integers to real sets can
simplify their representation and ease their handling. One
might think that adding integers to such a first-order real
logic would make it undecidable, but section 3 proves the
opposite. Before that, we need to formalize our representa-
tion.

2.3 Composing integers and reals

Notations. The set[0, 1[ is denoted byD in the sequel.
We also call adecimal (number) anyd ∈ D, and a
decimal setanyD ⊆ D. We write x to denote avector
(x1, . . . , xn). Sometimes, in order to be concise, we use
FO(. . . ) to denote the sets represented by this first-order
logic. However, it does not make our statements incorrect,
because we mostly discuss the expressive power of such
logics.

Let Z ⊆ P(Zn) andD ⊆ P(Dn) ; we will assume in
this paper that we are usingn−dimensional vectors, with
n ∈ N. We denote by1 Z ⊎ D the class of real vectors

R ⊆ Rn s.t. R =

p
⋃

i=1

(Zi + Di), with (Zi, Di) ∈ Z × D

1The symbol⊎ is sometimes used for the disjoint union, but we do not
use such unions in this paper.
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andp ≥ 1.

Here are some examples of simple sets that might be of-
ten used, written as finite unions of sums of integers and
decimals :

Example 1. The empty set∅ is written∅ + ∅. The setRn is
writtenZn + Dn. The setZn is writtenZn + {0}.

Example 2. The setR= = {r ∈ R2 | r1 = r2} is written
{z ∈ Z2 | z1 = z2} + {d ∈ D2 | d1 = d2}

Example 3. The setR≤ = {r ∈ R2 | r1 ≤ r2} is written :

{z ∈ Z2 | z1 ≤ z2} + {d ∈ D2 | d1 ≤ d2}
⋃

{z ∈ Z2 | z1 < z2} + {d ∈ D2 | d1 > d2}

Example 4. The setR+ = {r ∈ R3 | r1 + r2 = r3} is
written

⋃

c∈{0,1}{z ∈ Z3 | z1 + z2 + c = z3} + {d ∈D3 | d1 + d2 = d3 + c}, wherec denotes a carry.

The limits of our representation can be seen with
the following counter-example. Consider the set

R =

∞
⋃

j=1

(

{j} +

{

1

j + 1

}

)

; note that we usej + 1

(and not simplyj) to avoid the case where the decimal part
is 1

j
= 1 for j = 1 (because it would not be a decimal,

i.e. in [0, 1[). Our representation can not deal with such
a set ; indeed, despite the fact that it is a union of sums
of integers and decimals, we can see that the union is
inherently infinite. We insist on the finiteness of the union
in our representation, mainly for implementability reasons ;
this will be discussed in section 5.

Now, let us consider the stability of our representation.
We prove2 that if Z ⊆

⋃

n∈N P(Zn) andD ⊆
⋃

n∈N P(Dn)
are stable by the classical first order operations then the
classZ ⊎ D =

⋃

n∈N Zn ⊎ Dn whereZn = Z ∩ P(Zn)
andDn = D ∩ P(Dn) is also stable by these operations.
The operations we consider are : boolean combinations
(union, intersection, difference), cartesian product, quan-
tification, and reordering. We use the following defini-
tions for these last two operations. First, quantification is
done by projecting away variables from the considered vec-
tor : ∀R ⊆ Rn, ∃iR = {(r1, . . . , ri−1, ri+1, . . . , rn) |
∃ri (r1, . . . , ri−1, ri, ri+1, . . . , rn) ∈ R}. Second, a re-
ordering is a mere permutation functionπ of the variables
order in a vector :∀R ⊆ Rn, πR = {(rπ(1), . . . , rπ(n)) |
(r1, . . . , rn) ∈ R}. Then, we introduce a generic definition
for stability :

2Here we have to take unions, depending on the number of dimensions,
for a technical purpose : the projection of a component in thevector.

Definition 5. A classR ⊆
⋃

n∈N P(Rn) is stableif it is
closed under boolean operations, cartesian product, quan-
tification, and reordering.

Notice that taking the union of two such sets is trivial, as
they are already unions of integer and decimal parts. Then,
observe that(Z1+D1)∩(Z2+D2) = (Z1∩Z2)+(D1∩D2)
for anyZ1, Z2 ⊆ Zn and for anyD1, D2 ⊆ Dn ; thus,
the stability by union ofZn ⊎ Dn provides the stability by
intersection. From the equality(Z1 + D1)\(Z2 + D2) =
((Z1\Z2) +D1)∪ (Z1 + (D1\D2)) we get the stability by
difference. The stability by cartesian product is providedby
(Z1 +D1) × (Z2 +D2) = (Z1 × Z2) + (D1 ×D2). The
stability by projection comes from∃iR = (∃iZ) + (∃iD),
whereR = Z + D. Finally, the stability by reordering is
obtained thanks toπ(Z + D) = (πZ) + (πD). We have
proved the following proposition, which is later used in the
proofs of theorem 7 and proposition 10 :

Proposition 6 (Stability). The classZ ⊎ D is stable ifZ
andD are stable.

3 First-order additive logic over integers and
reals

Using at the same time integers and reals in the whole
arithmetic is known to be undecidable. However, when
multiplication is left apart, the first-order additive logic is
decidable ; its decidability has been suggested by Büchi,
then proved by [16] with automata and by [29] using
quantifier elimination. Actually, it can be seen as the
Presburger logic [27] extended to the reals. This first-
order logic FO(R,Z,+,≤) can encode complex linear con-
straints combining both integral and real variables. In this
section we prove that sets definable in this logic can be de-
composed into finite unions ofZ + R whereZ is defin-
able in FO(Z,+,≤) andR is definable in FO(D,+,≤).
This result proves that complex linear constraints combin-
ing integral and real variables can be decomposed into lin-
ear constraints over integers, and linear constraints overre-
als. More precisely, we prove the following decomposition :

Theorem 7. FO(R,Z,+,≤) = FO(Z,+,≤) ⊎
FO(D,+,≤).

Proof. First of all, observe that any set definable in the
logic FO(Z,+,≤) ⊎ FO(D,+,≤) is also definable in
FO(R,Z,+,≤). Conversely, the setsR andZ, the func-
tion + : R × R → R and the predicate≤ are definable
in FO(Z,+,≤) ⊎ FO(D,+,≤) from examples 1, 2, 3, 4.
Thus, stability by first order operations provides the inclu-
sion FO(R,Z,+,≤) ⊆ FO(Z,+,≤) ⊎ FO(D,+,≤). We
deduce the equality.
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Now, let us recall that sets definable in the Presburger
logic FO(Z,+,≤) can be characterized thanks tolinear
sets[23]. In fact, a setZ ⊆ Zn is definable in this logic if
and only if it is equal to a finite union of linear setsb + P ∗

whereb ∈ Zn, P is a finite subset ofZn, andP ∗ denotes
the set of finite sums

∑k

i=1 pi with p1, . . . , pk ∈ P and
k ∈ N. This geometrical characterization can be extended
to the class of sets definable in FO(Z,+,≤)⊎FO(D,+,≤)
by introducing the class ofpolyhedral convex sets. A set
C ⊆ Rn is saidpolyhedral convexif C is defined by a fi-
nite conjunction of formulas〈α,x〉 ≺ c whereα ∈ Zn,
≺∈ {≤, <} andc ∈ Z. Recall that aFourier-Motzkin quan-
tification eliminationproves that a setC ⊆ Rn is definable
in FO(R,+,≤) if and only if it is equal to a finite union of
polyhedral convex sets. In [22], the authors have proved the
following geometrical characterization :
A setR ⊆ Rn is definable in FO(R,Z,+,≤) if and only if
it is equal to a finite union of sets of the formC +P ∗ where
C ⊆ Rn is a polyhedral convex set andP is a finite subset
ofZn.

3.1 Decomposing DBM-based representations

In this section, we characterize an extension of DBM. We
denote by

⋃

DBMD the finite unions of DBM sets which are
included inDn. Notice that

⋃

DBMD is stable by first order
operations, thanks to a Fourier-Motzkin quantifier elimina-
tion.

A CP-DBML is a DBM where the vectorc is no longer a
constant, but a vector of parameters constrained by a for-
mula φ(c) defined in a logicL. More precisely, a CP-
DBML is a tuple(φ,≺) representing a setRφ,≺ s.t. :

Rφ,≺ =
⋃

c|=φ

Rc,≺

As introduced in [2], CPDBM correspond to CP-DBML
whereL is the first-order arithmetic without quantifiers ;
in particular, multiplication is allowed in this formalism.
In this section, we study another variation of DBM :
CP-DBM+, which is CP-DBML whereL is the decidable
Presburger logic FO(Z,+,≤). That is, CP-DBM+ are
CPDBM with quantifiers but without multiplication. We
denote by

⋃

CP-DBM+ the finite unions ofRφ,≺, i.e. finite
unions of CP-DBM+ sets.

We show that finite unions of CP-DBM+ sets are in fact
a combination of Presburger-definable sets and finite unions
of DBM decimal sets :

Proposition 8. We have
⋃

CP-DBM+ = FO(Z,+,≤) ⊎
⋃

DBMD.

Proof. Let us first prove the inclusion⊇. Let us consider
a DBM (c,≺) denoting a setD ⊆ Dn and a Presburger

formulaψ(x) denoting a setZ ⊆ Zn and let us prove that
Z + D is a

⋃

CP-DBM+ set. Observe thatr ∈ Z + D
if and only if there existsz ∈ Z such thatr − z ∈ D.
The conditionr − z ∈ D is equivalent to

∧

0≤i,j≤n ri −
rj ≺i,j ci,j+zi−zj. Let us consider the Presburger formula
ψ(p) := ∃z ∈ Zn pi,j = ci,j + zi − zj and observe that
Rψ,≺ = Z +D. We have proved the inclusion⊇.

For the converse inclusion, let us consider a CP-DBM+

setRφ,≺. LetZd = Zn ∩ (Rφ,≺ − d) indexed byd ∈ Dn.
Observe thatZd is actually the following set of vectors :

Zd =
⋃

c|=φ







z ∈ Zn| ∧

0≤i,j≤n

zi − zj ≺i,j ci,j + (dj − di)







Sincedj−di ∈ ]−1, 1[ andzi−zj, ci,j ∈ Z we deduce that
zi − zj ≺i,j ci,j + (dj − di) is equivalent tozi − zj ≤ ci,j
if di − dj ≺i,j 0 and it is equivalent tozi − zj ≤ ci,j − 1
otherwise. Given a matrixm = (mi,j)0≤i,j≤n such that
mi,j ∈ {0, 1} for any0 ≤ i, j ≤ n, we denote byIm and
Dm the following sets:

Im = {z ∈ Zn | ∃c φ(c) ∧
∧

0≤i,j≤n

zi − zj ≤ ci,j −mi,j}

Dm = {d ∈ Dn |
∧

0≤i,j≤n

(di − dj ≺i,j 0 ⇐⇒ mi,j = 0)}

Note thatDm is a DBM set andZd = Im for anyd ∈ Dm.
From

⋃

m
Dm = Dn we deduce thatRφ,≺ =

⋃

d∈Dn Zd +
{d} =

⋃

m
Im +Dm. We have proved thatRφ,≺ is defin-

able in FO(Z,+,≤) ⊎
⋃

DBMD.

4 Beyond Presburger

We have just shown our decomposition to be working on
FO(R,Z,+,≤) and below. Now, we prove that it can also
be used on more expressive logics. We take the example of
Real Vector Automata (RVA) [16], which is, to the best of
our knowledge, the most expressive decidable implemented
representation for sets of real and integer vectors. RVA are
used in the tool LASH [14, 15]. In this section, the class of
sets representable by RVA is proved decomposable into our
formalism.

Let b ≥ 2 be an integer called thebasis of decomposition.
We denote byΣb = {0, . . . , b−1} the finite set ofdigitsand
by Sb = {0, b− 1} the set ofsign digits. An infinite word
σ = sa1 . . .ak⋆ak+1ak+2 . . . over the alphabetΣnb ∪{⋆} is
saidb-correct if s ∈ Snb andai ∈ Σnb for anyi ≥ 1. In this
case,σ is called amost significant digit first decomposition
of the following real vectorρb(σ) ∈ Rn:

ρb(σ) = bk





s

1 − b
+

∑

i≥1

b−iai




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A Real Vector Automaton (RVA)in basisb is a Büchi au-
tomatonA over the alphabetΣnb ∪ {⋆} such that the lan-
guageLan(A) recognized byA contains onlyb-correct
words. The setJAK represented byA is defined byJAK =
{ρb(σ) | σ ∈ Lan(A)}. A set R ⊆ Rn is said b-
recognizableif there exists a RVAA in basisb such that
R = JAK.

According to [16], the class ofb-recognizable sets can be
logically characterized by FO(R,Z,+,≤, Xb) whereXb is
an additional predicate. The predicateXb overR3 is such
thatXb(x, u, a) is true if and only if there exists a most sig-
nificant digit first decompositionσ = sa1 . . . ak ⋆ ak+1 . . .
of x and an integeri ∈ N such thatai = a andu = bk−i.

Theorem 9. [16] A setR ⊆ Rn is b-recognizable if and
only if it is definable in FO(R,Z,+,≤, Xb).

In order to provide a decompostion of
FO(R,Z,+,≤, Xb), the predicateXb is proved expressible
by two valuation functionsVb andWb where :

• Vb : Z\{0} → Z is the integer valuation functionin-
troduced in [19] and defined byVb(z) = bj , where
j ∈ Z is the greatest integer such thatb−jz ∈ Z.

• Wb : D\{0} → D is thedecimal valuation functionde-
fined byWb(d) = bj , wherej ∈ Z is the least integer
such thatb−jd 6∈ D.

By expressing Xb in FO(R,Z,+,≤, Vb,Wb)
and Vb,Wb in FO(R,Z,+,≤, Xb) we deduce that
FO(R,Z,+,≤, Xb) = FO(R,Z,+,≤, Vb,Wb). Finally,
from proposition 6 and theorem 7, we get the following
proposition.

Proposition 10. FO(R,Z,+,≤, Xb) =
FO(Z,+,≤, Vb) ⊎ FO(D,+,≤,Wb).

Moreover, it is clear that the logic FO(Z,+,≤, Vb) ⊎
FO(D,+,≤,Wb) extends FO(Z,+,≤) ⊎ FO(D,+,≤).
However, even if the functionWb is crucial to logically
characterize the class ofb-recognizable sets, this predicate
is not used in practice. In fact, in order to get efficient al-
gorithms for manipulating Büchi automata (more precisely,
minimization and determinization), we only consider sets
R ⊆ Rn that can be represented by aweak RVA[14]. Re-
call that a Büchi automatonA is saidweakif any strongly
connected componentS satisfiesS ⊆ F or S ∩ F = ∅,
whereF is the set of accepting states. Unfortunately, the
class of setsR ⊆ Rn representable by a weak RVA is
not logically characterized since this class is not stable by
first order operations (because of projection). In practice,
since any setR ⊆ Rn definable in FO(R,Z,+,≤, Vb) can
be represented by a weak RVA, the RVA symbolic repre-
sentation is only used for representing sets in this logic

(i.e. withoutWb). Just remark that FO(R,Z,+,≤, Vb) =
FO(Z,+,≤, Vb) ⊎ FO(D,+,≤). Finally, note that weak
RVA are used in the tool LIRA [8], whose benchmarks
show very efficient computation times for sets defined in
FO(R,Z,+,≤).

5 Towards an implementation

From an implementation perspective, our decomposition
has been designed to fit GENEPI’s requirements. GENEPI

[26] is a modular framework supporting Presburger-based
solvers and model-checkers, distributed under GNU Public
License. Its core consists of a plugin manager, which
computes generic operations (such as boolean opera-
tions, quantification, satisfiability) on sets encoded as the
solutions of Presburger-like formulas. Different imple-
mentations of these operations can be used as plugins ;
existing ones include PRESTAF, LIRA, LASH, MONA,
OMEGA, and PPL. We have begun to design a plugin for
our decomposition, which uses two existing plugins : one
for the integer part, and one for the decimal part.

Once this plugin is ready, any combination of two other
plugins is possible : for example, one could try PRESTAF
over integers and PPL over decimals. One could even
be curious and study the efficiency of two instances of
LIRA plugins, each one working on its own part (integer
or decimal). Another benefit, coming from the new decom-
position of RVA, would be to use the LASH plugin only
on one part, and manage the other one differently : this
might improve the effectiveness of RVA, which are very
expressive but not really efficient in practice. So far, our
first tests on small conjunctions of linear constraints show
execution times close to the ones of LIRA.

What we need now for an implementation is a unique
way to represent sets. Indeed, in order to avoid unduly
complicated representations of sets, we have to make
our representation canonical. Therefore, let us set the
theoretical framework we use in practice.

Let Z ⊆ P(Zn) andD ⊆ P(Dn). Notice that ifR =
(Z+D1)∪(Z+D2), thenR = Z+D withD = D1∪D2 ;
we will always suppose thatD is closed under union wlog.
Then, notice thatR ⊆ Rn can be represented by a partially
defined functionfR such that :

fR : Z −→ D

Zi 7−→ Di

This function’s interpretation is defined as

JfRK =

p
⋃

i=1

(

Zi + fR(Zi)
)

, which matches the natu-
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ral writing of R introduced in section 2.3. Note that this
representationfR is not unique.

For technical reasons, we extendfR to a totally de-
fined functionfR s.t. fR(Z) = ∅ if Z /∈ dom(fR) and
fR(Z) = fR(Z) otherwise. Moreover, we define the
support offR assupp(fR) = {Z | fR(Z) 6= ∅}. In the
remainder of this paper, we will use without ambiguity the
notationfR instead offR.

We are now able to represent the setR with a function
we wish to handle. Therefore, we want to identifyfR and
JfRK : in order to do so, this latter interpretation has to be
an injection. Generally, this is not the case : using the pre-
vious definitions, we could have different writings ofJfRK.
However, if the images byfR are disjoint, then the interpre-
tation JfRK is an injection. Finally, for effectivity reasons,
we will only consider functions whose support is finite. In
the remainder of this section, we formalize this reasoning.
LetFZ→D = {f : Z −→ D | supp(f) is finite}.

Definition 11. The interpretation functionJ.K associates
to every f ∈ FZ→D a set of real vectors defined by

JfK =
⋃

Z∈supp(f)

(

Z + f(Z)
)

.

Notice that sincesupp(f) is finite, FZ→D do not suf-
fice to represent every set of real vectors, as shown in the
counter-example on page 4. Let us now restrict ourselves to
the functions we handle :

Definition 12. An IDF (Integer-Decimal Function)is a
functionf ∈ FZ→D such that

⋃

Z f(Z) = Dn and such
thatZ 6= Z ′ =⇒ f(Z) ∩ f(Z ′) = ∅. We denote them all
by IDFZ→D = {f ∈ FZ→D | f is an IDF}. We also write
JIDFZ→DK = {JfK | f ∈ IDFZ→D}.

The sets from examples 1, 2, 3, 4 are represented by the
following IDF :

Example 13. The empty set∅ is represented by the IDFf⊥
defined byf⊥(Z) = ∅ for anyZ 6= ∅ and byf⊥(∅) = Dn.
The setRn is represented by the IDFf⊤ (also notedfRn )
defined byf⊤(Zn) = Dn andf⊤(Z) = ∅ otherwise. The
setZn is represented by the IDFfZn defined byfZn(Zn) =
{0} andfZn(Z) = ∅ otherwise.

Example 14. The setR= = {r ∈ R2 | r1 = r2} is
represented by the IDFf= defined byf=(Z=) = D=,
f=(∅) = D2\D= andf=(Z) = ∅ otherwise, where:

Z= = {z ∈ Z2 | z1 = z2} D= = {d ∈ D2 | d1 = d2}

Example 15. The setR≤ = {r ∈ R2 | r1 ≤ r2} is
represented by the IDFf≤ defined byf≤(Z<) = D>,

f≤(Z≤) = D≤ andf≤(Z) = ∅ otherwise where:

Z< = {z ∈ Z2 | z1 < z2} D> = {d ∈ D2 | d1 > d2}

Z≤ = {z ∈ Z2 | z1 ≤ z2} D≤ = {d ∈ D2 | d1 ≤ d2}

Example 16. The setR+ = {r ∈ R3 | r1 + r2 = r3}
is represented by the IDFf+ defined byf+(Z0) = D0,
f+(Z1) = D1, f+(∅) = D3\(D1 ∪ D2) and f+(Z) = ∅
otherwise where (intuitivelyc ∈ {0, 1} denotes a carry) :

Zc = {z ∈ Z3 | z1 + z2 + c = z3}

Dc = {d ∈ D3 | d1 + d2 = d3 + c}

Observe that any set inJIDFZn→Dn
K is in Zn⊎Dn. The

converse is obtained by proving the following proposition :

Proposition 17 (Closure by union). Let R ∈
JIDFZn−→Dn

K. Then, for anyZ ∈ Zn andD ∈ Dn, we
also haveR ∪ (Z +D) ∈ JIDFZn→Dn

K.

Proof. We consider an IDFf : Zn −→ Dn such thatJfK =
R and two setsZ ∈ Zn andD ∈ Dn. We must prove that
there exists an IDFf ′ : Zn −→ Dn such thatJf ′K = R′

withR′ = R∪(Z+D). We consider the following function:

f ′ : Zn −→ Dn

Z ′ −→
(

f(Z ′)\D
)

⋃

Z′′ | Z′′∪Z=Z′

(

f(Z ′′) ∩D
)

As expected we are going to prove thatf ′ is an IDF such
that Jf ′K = R′. We first show thatf ′ is an IDF. First of
all observe that

⋃

Z′ f ′(Z ′) = Dn. Next, letZ ′
1, Z

′
2 ∈ Zn

such thatf ′(Z ′
1) ∩ f ′(Z ′

2) 6= ∅ then either(f(Z ′
1)\D) ∩

(f(Z ′
2)\D) 6= ∅ or there existsZ ′′

1 , Z
′′
2 such thatZ ′′

1 ∪Z =
Z ′

1 andZ ′′
2 ∪Z = Z ′

2 and(f(Z ′′
1 )∩D)∩ (f(Z ′′

2 )∩D) 6= ∅
since the other cases are not possible. But(f(Z ′

1)\D) ∩
(f(Z ′

2)\D) 6= ∅ impliesf(Z ′
1) ∩ f(Z ′

2) 6= ∅ and sincef is
an IDF we getZ ′

1 = Z ′
2. And(f(Z ′′

1 )∩D)∩(f(Z ′′
2 )∩D) 6=

∅ impliesZ ′′
1 = Z ′′

2 and in particularZ ′
1 = Z ′

2. We have
proved thatf ′ is an IDF. Finally, equalityJf ′K = R′ comes
from:

Jf ′K =
⋃

Z′

(Z ′ + f ′(Z ′))

=
⋃

Z′

(

(Z ′ + (f(Z ′)\D))

⋃

Z′′ | Z′′∪Z=Z′

(Z ′ + (f(Z ′′) ∩D))
)

=
⋃

Z′

(Z ′ + (f(Z ′)\D))
⋃

Z′′

((Z ′′ ∪ Z) + (f(Z ′′) ∩D))

=
⋃

Z′′

(Z ′′ + ((f(Z ′′)\D) ∪ (f(Z ′′) ∩D)))

∪ (Z +D ∩ (
⋃

Z′′

f(Z ′′)))

= JfK ∪ (Z +D)
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Hence, we have just proved the following proposition :

Proposition 18. Zn ⊎ Dn = JIDFZn→Dn
K

Let us prove that this new representation is canonical :

Proposition 19. For any f1, f2 ∈ IDFZ→D, Jf1K =
Jf2K =⇒ f1 = f2 .

Proof. ConsiderZ1 ⊆ Zn and let us prove thatf1(Z1) ⊆
f2(Z1). Naturally, we can assume thatf1(Z1) 6= ∅ since
otherwise the inclusion is immediate. In this case, there
existsd ∈ f1(Z1). As (f2(Z))Z forms a sharing ofDn,
there existsZ2 such thatd ∈ f2(Z2). Let us prove that
Z1 ⊆ Z2. We can assume thatZ1 6= ∅. Let z1 ∈ Z1 and
observe thatr1 = z1 + d ∈ Jf1K and fromJf1K = Jf2K
we getr1 ∈ Jf2K. Thus, there existsZ ′

2 such thatr1 ∈
Z ′

2 + f2(Z
′
2). SinceZ ′

2 ⊆ Zn andf2(Z ′
2) ⊆ Dn we get

z1 ∈ Z ′
2 andd ∈ f2(Z

′
2). As (f2(Z))Z forms a sharing

of Dn and d ∈ f2(Z2) ∩ f2(Z
′
2) we getZ2 = Z ′

2. In
particularz1 ∈ Z2 and we have proved thatZ1 ⊆ Z2. The
other inclusionZ2 ⊆ Z1 is obtained symetrically. We have
proved thatZ1 = Z2. Therefore,f1(Z1) ⊆ f2(Z1) for any
Z1. By symmetry we deduce thatf1(Z) = f2(Z) for any
Z. Thereforef1 = f2.

Notice that in practice, this canonicity depends on how
the sets inZ andD are represented. Indeed, if any of these
representations are not canonical, then we can not guarantee
that anIDFZ→D will be canonical.

6 Conclusion

We have proposed a decomposition of three known
classes into finite unions of sums of integers and decimals,
providing a new characterization. This decomposition can
be applied to other subsets of real vectors, and possibly
yield an interest in the exploration of decidable subclasses
of the full arithmetic.

Our main goal is to use this representation of real vectors
to verify infinite systems involving counters and clocks.
Indeed, we wish to extend the abilities of the tool FAST

[6] to the reals, so that it can compute exact reachability
sets using acceleration techniques. A first step in such
an implementation is the framework GENEPI, allowing
to solve mixed integer and real constraints defined in
first-order theories. Thus, our decomposition would allow
working separately on integers and reals.

Another advantage of our decomposition is that we
can now compute operations that we did not know how to
perform on certain logics. For example, there is currently

no algorithm computing directly the convex hull of a set
defined in FO(R,Z,+,≤) ; but thanks to our decomposi-
tion, the problem reduces to the computation of the convex
hull of Presburger-definable sets (as automata [19] or as
semi-linear sets [23]), and the convex hull of sets definable
in FO(D,+,≤) (as finite unions of convex sets, using
Fourier-Motzkin). We can push this reasoning to other
symbolic representations and to other operations, such as
upward or downward closure.

Globally, this method of separating integers and reals
would speed up the software development process, because
of the ease of using already existing plugins. As mentioned
above, one can test the combination of any pair of plugins
(provided there’s at least one working on reals and another
one on integers). Furthermore, a very interesting point is
that a programmer can test his new plugin for real sets
directly in GENEPI, and then extend its expressivity by
coupling it with PRESTAF or another plugin handling
integer sets. Obviously, the converse (extending an in-
teger plugin to the reals) is also possible in the same fashion.
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