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Abstract we want to be able to use integers as parameters for a

concise representation of pure reals : for instance, reals a

We tackle the issue of representing infinite sets of real- used for the values of clocks and integers for expressing the
valued vectors. This paper introduces an operator for com- parameters in CPDBM.
bining integer and real sets. Using this operator, we decom-
pose three well-known logics extending Presburger with re-  Fortunately, the first-order additive logic over integers
als. Our decomposition splits a logic into two parts : one and reals is decidable. Nevertheless, the algorithmic of
integer, and one decimal (i.e. onthe inter{@l1[). We also  sets combining integers and reals does not seem simple,
give a basis for an implementation of our representation.  even when it is based on finite automata like Real Vector

Automata [1B[ 16] or weak RVA[]8], or based on quantifier
elimination [29].

1 Introduction N .
For that matter, the algorithmic of Presburger (using
- ) ) ) finite automata) and variations of DBM are quite efficient.
~ Verification (and model-checking in particular) of Hence, ourideais to reduce the algorithmic difficulty of the
infinite systems  like timed automatd] [1] (and hybrid first-order additive logic of integers and reals (and of some
systems) and counter systenf$ [5] need good symbolicspclasses and decidable extensions) by decomposing a
representation classes ; lgpod we mean having closure  complex set of integers and reals into a finite union of
properties (by first-order logic operators) and decidgbili  g,ms of integer sets and decimal sets. By decimal, we
results (for testing inclusion and emptiness). Presburgeryean numbers in the dense intef@l1[ ; then, we define
arithmetic [27[2B] enjoys such good properties, and someg new class of sets as follows. Givensets of integers
efficient implementations (using finite automata) have (Z:)o<i<n andn sets of decimalgD; )o<i<n, We introduce
been intensively used for the analysis of counter systemsi,e oE)e_ratorfinite union of sumswhich builds the finite
[E’@’]- unions of the sumg; + D;. This class is shown stable
under boolean operations, cartesian product, quantditati

Despite the fact that the complete arithmetic on reals and reordering if both of the two initial classes are also
is decidable[[28], only some restricted classes of the first-gtaple.

order additive logic of reals (DBM, CPDBM, finite unions

of convex polyhedra) have been used for the analysis of onhe of our aims is then to re-use, in combining the
timed automata. This is mainly due to the fact that the o representations of these two initial SEE )o<i<n
algorithmic complexity of DBM is polynomial, which 5.4 (Di)o<i<n, the best libraries dealing with them to
is the basis of efficient verification algorithms for timed efficiently handle finite unions ofZ; + D;)o<i<n (for
automatain WeAAL (L1, 25]. instance : RESTAF [ff] for the integers and PPL[][4] for

) ) the reals).
However, we would like to be able to use both integers

gnd reals, for at least two reasons. First_, we want to ane_il_yse We show that three of the main classes of mixed integer
timed counter system§] [}, B.]13] in which the reachability 4 reaj sets are in fact finite unions of sums of well-known
sets contain vectors with both integers and reals. Secondclasses. We prove that finite unions of sums of Presburger
*Work supported by the Agence Nationale de la Recherchet gran S€t of integers, and sets definable in the first-order a@ditiv
ANR-06-SETIN-001. logic of decimals are exactly the sets definable in the




first-order logic of integers and reals. The finite unions (c; ;,<;;) means that; — r; <;; ¢; ;, wherer;,r; are

of CPDBM are expressible as the finite unions of sums of clocks. Thus, each element of a DBM represents a diagonal

Presburger-definable sets and DBM-definable decimal setsconstraint (i.e. a bounded difference). Finally, termd tha

Moreover, when we go beyond Presburger by consideringdo not represent any actual constraint are symbolized by

RVA, we show that the class of sets representable byc; ; = +oc.

RVA in basisb is the finite unions of sums of Presburger

extended with a predicaf, (which gives integer powers

in baseb) and the additive logic of decimals extended with 2.2  About extensions of DBM

a predicatel?}, (which, similarily to V;,, gives negative

powers in basé). On the following example taken frorf] [9], the timed au-
tomaton features 2 clocks andy, and a unique location.
The automaton’s behaviour is very simplgis reset td) as

2 Representations mixing integers and reals  soon as it reaches while = flows continually. In the initial
state, the clocks are both settoMoreover, an invariant in

In this section, we motivate our work with a small the location ensures thainever exceeds.

example of timed automaton. We show that extracting

integers from reals can yield more concise formula than y:=0

pure reals. Then we introduce an operator combining z:=0

integer and real sets of vectors.

2.1 Timed Automata and DBM
The clock diagram associated to the automaton ex-

In order to study real-life systems involving behaviours plicitely shows this behaviour :
that depend on time elapsing, timed automata are probably

the most used and well-known model for such systems. Y
As described in[J1], the basic idea of timed automata is to

add real-valued variables (called clocks) to finite aut@mat 2
These clocks model temporal behaviours of the system, 1

flowing at a universal constant rate ; each clock can be com-

pared to an integer constant, and possibly resét tdhe

only other guard allowed is called a diagonal constraint, 0
consisting in comparing the difference of two clocks to A classical forward analysiq [lL7] is considered here,
an integer constant. As the clocks’ values are unboundedpy computing the reachable states (i.elocation x
the state-space generated by a timed automaton is infinite ;;ock values) from the initial one (where: = y = 0).

therefore, regions are used to model a finite abStraCtiOﬂThen’ we build the Corresponding zones, each zone being
of the SyStem'S behaviour. Practica”y intractable beeaus represented by aDBM : here’ we have an infinite yet count-
of its size, the region graph is then implemented as zonesgpe set of DBM as follows. Note that in this examplds

in most verification tools[[31], %4, 1§, [24] modelling such always< ; therefore, we will omit it in the matrices.
real-time systems.

0 T Yy
Technically, zones are represented by Difference Bound 0 0 —i 0
Matrices (DBM) ,] in these tools. A DBM is a square  [i+1 0 4
matrix representing the constraints betweetiocks defin- y 1 —i
ing a zone. Here, we see a DBM as a tufite<), where 620
¢ = (Cijo<ij<ns < = (Kij)o<ij<n, Cij € ZU {+00}, In order to make the state-space computable, abstraction
and=; ;€ {<, <}. Each element of this tuple is an element techniques are used to get a finite number of zones. The
of the square matrix, defining a DBM set as follows : abstraction being used in most model-checkers is based on

maximum constants : a cloaks valuation is considered
equal tooo as soon as it exceeds the maximal constant to
which ¢ is ever compared. On the example, if a guarded
In order to deal with constraints involving only one clock, transitionz > 10° leads to another state, then the clock
the fictive clockr is always set to the valu® An element  diagram becomes as follows :

Re < ={reR"| /\ Ti —Tj =ij Cij)

0<é,j<n



Y the union of the following three sums suffices :
2 ({0,...,10671}><{0}+%)
1 .
U({wG} x {0} +1)
0 U({106+1,...,oo}><{0}+.)
More formally, this abstraction yields the following set ] ) ] .
of DBM : This latter symbolic representation of such a reachabil-

ity set is much smaller than DBM. Indeed, representing

0 . 0 ey zones with DBM implies memorizing a possibly huge

o/ 0 —i 0 0/0 0 0 number of matrices, depending on the maximal constant

lic1 0 I 0 0 for the clocks (one million, in this example). However, by

s\ 1 —i 0 J\1 —108 0o introducing integers to express periodicity, we can reduce
0<i<108 the representation to three small combinations of interval

This set of DBM is finite, but remains hugel0® -+ 2 Moreover, we can even get rid of the abstraction, so as
matrices need to be com,puted and memorized. which!© 9€t an exact representation for the same cost. CPDBM
seems exaggerated, a fortiori for such a simple example. InaISO have 'thse_advantages, but are unfjeudz_able because
[E]’ a more elaborate abstraction is proposed : the cIocks’Of the multiplication. Hence, let us specify a little more
maximal constants are no more global to the system what is our representation : we take finite unions of reals,
but location-dependent. Another abstraction techniquereal numbers being decomposed as sums of integers and

is proposed in |EO], distinguishing between upper and smaller rea_ls (callgd dec'm?‘!s)- . These _|r_1tegers and reals
lower bounds within maximal constants. To the best of €@" be defined using quantification, addition, and boolean

our knowledge, these are the only zone-based abstractior?perators'
technigues ; in each of them, the number of DBM still

heavily depends on maximal constants. Actually, our approach comes down to representing sets

of real numbers by extracting their integer components ;
the interesting point is that adding integers to real sets ca

Writing here such an infinite or huge number of DBM ~ = "' ) ) ; .
would have been impossible : therefore, we naturally used a3|mpl|fy their representation and ease their handling. One

parametric representation of these DBM. Actually, thiside might think that adding int.egers to such a first-order real

is also used by Constrained Parametric DBM (CPDBM) logic would make it undecidable, but se_ctlﬂn 3 proves the

[P, which is the data structure implemented in theeD® qpposne. Before that, we need to formalize our representa-

[E model-checker. CPDBM are indeed a more expressivet'on‘

version of DBM, extended in two steps. First, we consider

PDBM, in which ¢; ; constants becomg ; arithmetical o

terms (the parameters). Such arithmetical tetmee given ~ 2-3 Composing integers and reals

by thegrammat == 0 | 1 | |t —¢ | t+t | t*t,

wherez belongs to a sef’ of real variables. Second, a Notations. The set[0, 1[ is denoted byD in the sequel.

PDBM becomes a CPDBM as terms are constrained byWe also call adecimal (number) anyd € D, and a

quantifier-free first-order formulag. Such formulas are ~ decimal setany D C D. We write x to denote avector

defined byp ==t <t | —¢ | ¢V ¢ | Is_int(t) (Where the (z1,...,2,). Sometimes, in order to be concise, we use

predicatel s_int(t) is true iff ¢ is an integer). Each of the FO(...) to denote the sets represented by this first-order

two sets of matrices hereinabove is in fact a single CPDBM. logic. However, it does not make our statements incorrect,
because we mostly discuss the expressive power of such

Consider now another way to represent the set of reachJ0dics.

able clock values. On the second diagram showing the ab-

straction, we can see an obvious regular pattern algng ~ Let3 € P(Z") and® C P(D") ; we will assume in

defined by three shapes /%, , and B. We define this paper that we are using-dimensional vectors, with

each shape as follows /= {(z,y) € [0,1? | = = y}, n € N. We denote by 3 W D the class of real vectors

A p
A= {(z,y) €[0,1° |z >y}, andB= {(z,y) €[0,1’}. R CR"st R = UJ(Z: + Dy), with (2;,D;) € 3x D
If we want to represent the same set as the previous ab- i1
stracted zones, but without DBM, we can express the peri- ithe symbols is sometimes used for the disjoint union, but we do not
odicity of each pattern with integers. To formalize it, tadsi use such unions in this paper.




andp > 1.

Definition 5. A classh C J,,c, P(R") is stableif it is
closed under boolean operations, cartesian product, quan-

Here are some examples of simple sets that might be of-tification, and reordering.

ten used, written as finite unions of sums of integers and

decimals :

Example 1. The empty seft is written + (. The sefR™ is
written Z™ 4+ D™. The seZ”™ is writtenZ™ + {0}.

Example 2. The setR- = {r € R? | r; = ro} is written
{ZEZQ|21:ZQ}+{d€[D2|d1:d2}

Example 3. The setR< = {r € R? | r; < ro} is written :

{z€7% |2 <2}+{deD?|d <do}
Hz€Z? |21 < 2} +{d € D? | dy > do}

Example 4. The setR, = {r € R® | r; + 7y = r3}is
written U,c o131z € Z° | 21 + 22 + ¢ = 23} +{d €
D3 | dy + d2 = d3 + ¢}, wherec denotes a carry.

The limits of our representation can be seen with
the following counter-example. Consider the set

N 1
n= U+ {7
(and not simplyy) to avoid the case where the decimal part
is % = 1for j = 1 (because it would not be a decimal,
i.e. in[0,1[). Our representation can not deal with such

}) ; note that we usg + 1

Notice that taking the union of two such sets is trivial, as
they are already unions of integer and decimal parts. Then,
observethatZ,4+D1)N(Z2+D3) = (Z1NZ2)+(D1ND3)
for any 71,7, C 7™ and for anyD;, D, C D" ; thus,
the stability by union of3,, W ©,, provides the stability by
intersection. From the equaliyZ; + D1)\(Z2 + D3)
((Z1\Z2) + D1) U (Z1 + (D1\D2)) we get the stability by
difference. The stability by cartesian productis providgd
(Z1 + Dl) X (ZQ +D2) = (Z1 X Z2) + (Dl X DQ) The
stability by projection comes from; R = (3;Z) + (3;D),
whereR = Z + D. Finally, the stability by reordering is
obtained thanks ta(Z + D) = (nZ) + (xD). We have
proved the following proposition, which is later used in the
proofs of theorenfi] 7 and propositipr] 10 :

Proposition 6 (Stability). The class3 w © is stable if3
and® are stable.

3 First-order additive logic over integers and
reals

Using at the same time integers and reals in the whole
arithmetic is known to be undecidable. However, when
multiplication is left apart, the first-order additive logs
decidable ; its decidability has been suggested by Buchi,

a set ; indeed, despite the fact that it is a union of sums, o proved by @6] with automata and b[l[29] using

of integers and decimals, we can see that the union is

inherently infinite. We insist on the finiteness of the union
in our representation, mainly for implementability reason
this will be discussed in sectidh 5.

Now, let us consider the stability of our representation.
We prové that if 3 C ,,c, P(Z™) and® C |J,,,, P(D™)

guantifier elimination. Actually, it can be seen as the
Presburger logic[[37] extended to the reals. This first-
order logic FOQR, Z, +, <) can encode complex linear con-
straints combining both integral and real variables. Is thi
section we prove that sets definable in this logic can be de-
composed into finite unions of + R where Z is defin-
able in FO(Z, +,<) and R is definable in FQD, +, <).

are stable by the classical first order operations then therhjs result proves that complex linear constraints combin-

class3 WD = J,cp 30 WD, Where3, = 3N P(Z")
and®, = © N P(D") is also stable by these operations.
The operations we consider are :
(union, intersection, difference), cartesian produciargu
tification, and reordering. We use the following defini-
tions for these last two operations. First, quantificati®n i

done by projecting away variables from the considered vec-

tor: VR C R*, 4;R = {(7‘1,.. T 1, Tk, - - .,Tn) |
Ir; (r1y..., 71,74, Tit1,---,Tn) € R}. Second, a re-
ordering is a mere permutation functianof the variables
order in avector VR C R", 7R = {(rx(1), -+ Tn(n)) |
(ri,...,r) € R}. Then, we introduce a generic definition
for stability :

2Here we have to take unions, depending on the number of diorens
for a technical purpose : the projection of a component invéwor.

ing integral and real variables can be decomposed into lin-
ear constraints over integers, and linear constraintsrever

boolean combinationsys. More precisely, we prove the following decomposition :

Theorem 7. FO(R,Z,+,<)
FO (D, +, <).

FO(Z,+,<) W

Proof. First of all, observe that any set definable in the
logic FO(Z,+,<) W FO(D,+, <) is also definable in
FO(R,Z,+,<). Conversely, the sets andZ, the func-
tion + : R x R — R and the predicatel are definable
in FO(Z,+, <) W FO(D, +, <) from exampleg]1[] 2] 4] 4.
Thus, stability by first order operations provides the inclu
sion FO(R,Z,+,<) C FO(Z,+,<) W FO(D, +,<). We
deduce the equality. O



Now, let us recall that sets definable in the Presburgerformulay(x) denoting a seZ C Z™ and let us prove that

logic FO(Z,+, <) can be characterized thanks ltnear
sets[3]. In fact, a seZ C 7" is definable in this logic if
and only if it is equal to a finite union of linear sdis+ P*
whereb € 7", P is a finite subset oZ", and P* denotes
the set of finite sumilepi with p1,...,pr € P and

Z + D is a| JCP-DBM,. set. Observe that € Z + D

if and only if there existe € Z such thatr — z € D.
The conditionr —z € D is equivalent to/\,; ;,, 7i —

rj =i, Ci;+%i—z;. Letus consider the Presburger formula
Y(p) :=3z € Z" p;; = ¢;; + z; — z; and observe that

k € N. This geometrical characterization can be extended Ry~ = Z + D. We have proved the inclusian.

to the class of sets definable in kD, +, <)WFO(D, +, <)
by introducing the class gfolyhedral convex setsA set
C C R" is saidpolyhedral convexf C is defined by a fi-
nite conjunction of formulagae, x) < ¢ wherea € 77,
<€ {<, <} andc € Z. Recall that &ourier-Motzkin quan-
tification eliminationproves that a set’ C R™ is definable
in FO(R, +, <) if and only if it is equal to a finite union of

polyhedral convex sets. Ifi [22], the authors have proved the

following geometrical characterization :

A setR C R" is definable in FQR, Z, +, <) if and only if
it is equal to a finite union of sets of the foltt4- P* where
C C R"™ is a polyhedral convex set arfd is a finite subset
of 7.

3.1 Decomposing DBM-based representations

In this section, we characterize an extension of DBM. We
denote by ) DBMy, the finite unions of DBM sets which are

included inD™. Notice thai J DBMp is stable by first order

operations, thanks to a Fourier-Motzkin quantifier elimina

tion.

A CP-DBM(, is a DBM where the vectaris no longer a

For the converse inclusion, let us consider a CP-DBM
setRy . LetZq = 7™ N (Ry,« — d) indexed byd € D™.
Observe thaZ, is actually the following set of vectors :

Zq = U ZGZ”| /\ i — 25 =i Ci7j+(dj 7dz)

cE=¢ 0<4,5<n

Sinced; —d; € ]—1,1[andz; — zj, ¢; ; € Z we deduce that
Zi — Zj =44 Cij + (dj - dl) is equivalent to; — 25 < ¢
if d; —d; <;; 0anditis equivalentta; — z; <c¢;; —1
otherwise. Given a matrixa = (m; ;)o<i j<n SUch that
m;; € {0,1} forany0 < 4,5 < n, we denote by, and
D, the following sets:

Im:{ZEZn |E|C¢)(C)/\ /\ Zi— Zj Sci,j*mi,j}
0<i,j7<n

/\ (di —dj <i,; 0 <= m;; =0)}

0<i,j<n

Dy ={deD"|

Note thatD,,, is a DBM set andZyq = I, for anyd € Dy,.
From{J,,, Dm = D" we deduce thaky, < = Uqcpn Za +
{d} = U,, Im + Dm. We have proved thak, - is defin-

constant, but a vector of parameters constrained by a for-able in FO(Z, +, <) & J DBMp. O

mula ¢(c) defined in a logicL. More precisely, a CP-
DBM is a tuple(¢, <) representing a sty < S.t. :

R¢,< = U Rc,<
ck=¢

4 Beyond Presburger

We have just shown our decomposition to be working on
FO(R,Z,+, <) and below. Now, we prove that it can also

As introduced in |]I2], CPDBM correspond to CP-DBM  be used on more expressive logics. We take the example of
where L is the first-order arithmetic without quantifiers ; Real Vector Automata (RVA)[16], which is, to the best of
in particular, multiplication is allowed in this formalism our knowledge, the most expressive decidable implemented
In this section, we study another variation of DBM : representation for sets of real and integer vectors. RVA are
CP-DBM,, which is CP-DBM, wherel is the decidable  used in the tool LASH[[A4, 35]. In this section, the class of
Presburger logic FQZ,+,<). That is, CP-DBM. are sets representable by RVA is proved decomposable into our
CPDBM with quantifiers but without multiplication. We formalism.

denote by J CP-DBM, the finite unions of? -, i.e. finite

. Letb > 2 be an integer called tHesis of decomposition
unions of CP-DBM sets.

We denote by, = {0,...,b—1} the finite set ofligitsand

- . . by S, = {0,b — 1} the set ofsign digits An infinite word
We show that finite unions of CP-DBMsets are in fact 0 =Say...ap*a5 18542 . .. Over the alphabeEp U{x} is

acomb|nat|9n of Presburger-definable sets and finite UnIoNS, iy correctif s € S anda, € P for anyi > 1. In this
of DBM decimal sets :

case is called amost significant digit first decomposition
Proposition 8. We haved JCP-DBM; = FO(Z,+,<) W of the following real vectop, (o) € R™:

(U DBMp.
Proof. Let us first prove the inclusio®. Let us consider py(o) = bF 4 Zb—iai
a DBM (c, <) denoting a sefD C D™ and a Presburger 1-b i>1



A Real Vector Automaton (RVAY) basisb is a Biichi au-
tomatonA over the alphabeL} U {x} such that the lan-
guagelLan(A) recognized byA contains onlyb-correct
words. The sefA] represented byl is defined by[A] =
{pp(c) | 0 € Lan(A)}. A setR C R" is said b-
recognizablef there exists a RVAA in basisbh such that
R = [A].

According to [1p], the class dfrecognizable sets can be
logically characterized by FQR, Z, +, <, X;,) whereX,, is
an additional predicate. The predicatg overR? is such
that Xy (x, u, a) is true if and only if there exists a most sig-
nificant digit first decomposition = sa; ...ax * ag+1 - -
of z and an integei € N such that; = a andu = b*~7.

Theorem 9. [E] A setR C R” is b-recognizable if and
only if it is definable in FQR, Z, +, <, X3).

In order to provide a decompostion of
FO(R,Z,+, <, X}), the predicateX, is proved expressible
by two valuation function$;, andW;, where :

e V}, : Z\{0} — Z is theinteger valuation functiom-
troduced in [IP] and defined by, (z) = b7, where
j € Z is the greatest integer such tiat’ z € Z.

e W, : D\{0} — D isthedecimal valuation functiode-
fined byW,(d) = v/, wherej € Z is the least integer
such thab—7d ¢ D.

By expressing X, in FO(R,Z,+,<,V,, Ws)
and V,,W, in FO(R,Z,+,<,X;) we deduce that
FO(R,Z,+,<,X;,) = FO(R,Z,+,<,V,, W;). Finally,
from proposition[b and theorelﬂ 7, we get the following
proposition.

Proposition 10. FO(R,Z,+,<,Xy)
FO(Z,+,<,V,) W FO(D, +, <, Wy).

Moreover, it is clear that the logic F@,+,<,V;) W
FO(D, +, <, W) extends FQZ,+,<) & FO(D, +, <).
However, even if the functio®’, is crucial to logically
characterize the class tfrecognizable sets, this predicate
is not used in practice. In fact, in order to get efficient al-
gorithms for manipulating Buichi automata (more precisely
minimization and determinization), we only consider sets
R C R™ that can be represented byva@ak RVA{E]. Re-
call that a Biichi automatoA is saidweakif any strongly
connected componeist satisfiesS € ForSNF = 0§,

where I is the set of accepting states. Unfortunately, the

class of setsR C R™ representable by a weak RVA is
not logically characterized since this class is not stalle b
first order operations (because of projection). In pragtice
since any sek C R™ definable in FQR, Z, +, <,V}) can

be represented by a weak RVA, the RVA symbolic repre- Ifr] =
sentation is only used for representing sets in this logic

(i.e. withoutT). Just remark that F(R, Z, +, <, V}) =
FO(Z,+,<,W) W FO(D, +, <). Finally, note that weak
RVA are used in the tool LIRA[8], whose benchmarks
show very efficient computation times for sets defined in
FO(R,Z,+,<).

5 Towards an implementation

From an implementation perspective, our decomposition
has been designed to fitEGEPIs requirements. GNEPI
[@] is a modular framework supporting Presburger-based
solvers and model-checkers, distributed under GNU Public
License. Its core consists of a plugin manager, which
computes generic operations (such as boolean opera-
tions, quantification, satisfiability) on sets encoded a&s th
solutions of Presburger-like formulas. Different imple-
mentations of these operations can be used as plugins ;
existing ones include ®ESTAF, LIRA, LASH, MONA,
OMEGA, and PPL. We have begun to design a plugin for
our decomposition, which uses two existing plugins : one
for the integer part, and one for the decimal part.

Once this plugin is ready, any combination of two other
plugins is possible : for example, one could trgEETAF
over integers and PPL over decimals. One could even
be curious and study the efficiency of two instances of
LIRA plugins, each one working on its own part (integer
or decimal). Another benefit, coming from the new decom-
position of RVA, would be to use the LASH plugin only
on one part, and manage the other one differently : this
might improve the effectiveness of RVA, which are very
expressive but not really efficient in practice. So far, our
first tests on small conjunctions of linear constraints show
execution times close to the ones of LIRA.

What we need now for an implementation is a unique
way to represent sets. Indeed, in order to avoid unduly
complicated representations of sets, we have to make
our representation canonical. Therefore, let us set the
theoretical framework we use in practice.

Let3 € P(Z") and® C P(D™). Notice that ifR =
we will always suppose tha@ is closed under union wlog.
Then, notice thak C R™ can be represented by a partially
defined functionfr such that :

JR:3—D
Zi — D

This  function’s interpretation is defined as

P
U(Zi+fR(Zi)), which matches the natu-

i=1



ral writing of R introduced in sectiof 2.3. Note that this
representatiorfz is not unique.

For technical reasons, we exterfg to a totally de-
fined functionfr s.t. fr(Z) = 0if Z ¢ dom(fr) and
fr(Z) = fr(Z) otherwise. Moreover, we define the
support offr assupp(fr) = {Z | fr(Z) # 0}. Inthe
remainder of this paper, we will use without ambiguity the
notationfy instead off 5.

We are now able to represent the gewith a function
we wish to handle. Therefore, we want to identffy and
[fr] : in order to do so, this latter interpretation has to be
an injection. Generally, this is not the case : using the pre
vious definitions, we could have different writings [ofz].
However, if the images byy are disjoint, then the interpre-
tation [ fz] is an injection. Finally, for effectivity reasons,
we will only consider functions whose support is finite. In
the remainder of this section, we formalize this reasoning.
Let F3_0 = {f: 3 — D | supp(f) is finite}.

Definition 11. The interpretation function].] associates
to everyf € Fs3_p a set of real vectors defined by

U= U (z+72).

Zesupp(f)

Notice that sincesupp(f) is finite, F3_,» do not suf-
fice to represent every set of real vectors, as shown in th

counter-example on paﬂe 4. Let us now restrict ourselves t

the functions we handle :

Definition 12. An IDF (Integer-Decimal Function)s a
function f € F3_p such that J, f(Z) = D™ and such
thatZ # 72/ = f(Z) N f(Z') = 0. We denote them alll
byIDF;_5 = {f € F3_o | f isan IDF}. We also write
[IDFs;-o] ={[f] | f € IDF3_.2}.

f<(Z<) = D< and f<(Z) = () otherwise where:
Zo={z€7? |2 <z} Ds={decD?|d >ds}
ZS:{ZEZ2|Z:[§ZQ} DSZ{dE[D2|d1§d2}

Example 16. The setR, = {r € R® | r1 + 12 = r3}
is represented by the IDF, defined byf,(Z,) = Dy,
f+(Z1) = D1, f+(0) = D*\(D1 U Ds) and f1(Z) = 0
otherwise where (intuitively € {0, 1} denotes a carry) :

Ze={2€7% |21+ 20+ c=z3}
Dc:{dED3|d1+d2:d3+C}

Observe thatany set [ DF5, .o, ]isin3,w,,. The
-converse is obtained by proving the following proposition :

Proposition 17 (Closure by wunion). Let R €
[IDF5, _.5.,]. Then, foranyZ € 3, andD € ©,, we
alsohaveR U (Z + D) € [IDF3, »,].

Proof. We consider an IDF : 3,, — ©,, such thaf f] =
R and two setsZ € 3,, andD € ©,,. We must prove that
there exists an IDF’ : 3,, — ©,, such thaf[f’] = R’
with R’ = RU(Z+ D). We consider the following function:

f/: 371 — Dn
U

7 — (1z)\D) (r(z)np)
zZn | z"uz=2z'

As expected we are going to prove thfdtis an IDF such
Shat [f'] = R’. We first show thatf’ is an IDF. First of
Oall observe that J,,, f'(Z') = D". Next, letZ}, Z} € 3,

such thatf’(Z)) N f'(Z%) # 0 then either(f(Z])\D) N

(f(Z)O\D) # 0 or there existZ]', Z4 such thatZ] U Z =

Zyandzy Uz = Zyand(f(Z))ND)N(f(Z5)ND) # 0

since the other cases are not possible. Gi{Z])\D) N

(f(Z5H)\D) # 0 implies f(Z]) N f(Z4) # 0 and sincef is

anIDFwe getZ] = Z,. And(f(Z{)NnD)N(f(Z4)ND) #

() implies Z = Z§ and in particularz; = Z. We have

The sets from exampl¢b[l,[2,[3, 4 are represented by thebroved that” is an IDF. Finally, equality /'] = R’ comes

following IDF :

Example 13. The empty s is represented by the IDFF,
defined byf, (Z) = 0 foranyZ # () and byf, (0) = D™.
The setR” is represented by the IDF+ (also notedfg-)
defined byfr(2") = D™ and f+(Z) = 0 otherwise. The
setZ" is represented by the IDF~ defined byfz- (Z2™)
{0} and fz» (Z) = () otherwise.

Example 14. The setR- = {r € R? | r; ro} is
represented by the IDF_ defined byf_(Z-) = D_,
f=(0) = D*\D— and f_(Z) = 0 otherwise, where:

Z_={z€7? |2 =%} D_={decD?|d =ds}

Example 15. The setR< = {r € R? | 1y < mo}is
represented by the IDF< defined byf<(Z.) = D-,

from:

1= + (2"
~U(' + (szn\0y)
U

Z" | Z1nuz=2'

=@ + @)ooy Juz"vz) + (f(2")n D))

VAL

=J@" + (f(z"\D)u (£(2") N D))

u(Z+Dn(Jrz")

=[f1u(Z+ D)

(' +(f(2")n D))



O
Hence, we have just proved the following proposition :
Proposition 18. 3, W®, = [IDF5, o, ]
Let us prove that this new representation is canonical :

Proposition 19. For any f1,fo € IDF5_», [fi] =
[fe] = fi=1fa.

Proof. ConsiderZ; C Z™ and let us prove thaf; (Z,) C
f2(Z1). Naturally, we can assume thét(Z;) # 0 since
otherwise the inclusion is immediate. In this case, there
existsd € f1(Z1). As (f2(Z))z forms a sharing oD™,
there existsZ, such thatd € f>(Z2). Let us prove that
71 C Z5. We can assume that; # (). Letz, € Z; and
observe that, = z; +d € [fi] and from[fi] = [f2]
we getr; € [f2]. Thus, there exist&} such thatr; €
Zh + fo(Z5). SinceZ, C Z™ and f»2(Z;) C D™ we get
z1 € Zyandd € f2(Z4). As (f2(Z))z forms a sharing
of D™ andd € f2(Z2) N f2(Z5) we getZ, = Z5. In
particularz; € Z; and we have proved that; C Z,. The
other inclusionZ, C Z; is obtained symetrically. We have
proved thatZ; = Z,. Therefore f1(Z1) C f2(Z1) for any
Z1. By symmetry we deduce thgt(Z) = f2(Z) for any
7. Thereforef; = fs. O

Notice that in practice, this canonicity depends on how
the sets i3 and® are represented. Indeed, if any of these

representations are not canonical, then we can not guarante

that an/ D F5_,5 will be canonical.

6 Conclusion

We have proposed a decomposition of three known
classes into finite unions of sums of integers and decimals,
providing a new characterization. This decomposition can

be applied to other subsets of real vectors, and possibly

yield an interest in the exploration of decidable subclasse
of the full arithmetic.

Our main goal is to use this representation of real vectors
to verify infinite systems involving counters and clocks.
Indeed, we wish to extend the abilities of the toalsF
[ﬂ] to the reals, so that it can compute exact reachability
sets using acceleration techniques. A first step in such
an implementation is the frameworke®er|, allowing
to solve mixed integer and real constraints defined in
first-order theories. Thus, our decomposition would allow
working separately on integers and reals.

Another advantage of our decomposition is that we
can now compute operations that we did not know how to
perform on certain logics. For example, there is currently

no algorithm computing directly the convex hull of a set
defined in FQR, Z, 4+, <) ; but thanks to our decomposi-
tion, the problem reduces to the computation of the convex
hull of Presburger-definable sets (as autom@i [19] or as
semi-linear setq [23]), and the convex hull of sets definable
in FO(D, +, <) (as finite unions of convex sets, using
Fourier-Motzkin). We can push this reasoning to other
symbolic representations and to other operations, such as
upward or downward closure.

Globally, this method of separating integers and reals
would speed up the software development process, because
of the ease of using already existing plugins. As mentioned
above, one can test the combination of any pair of plugins
(provided there’s at least one working on reals and another
one on integers). Furthermore, a very interesting point is
that a programmer can test his new plugin for real sets
directly in GENEPI, and then extend its expressivity by
coupling it with RRESTAF or another plugin handling
integer sets. Obviously, the converse (extending an in-
teger plugin to the reals) is also possible in the same fashio
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