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2 SIC

Abstract. Off-line validation of hard real-time systems usually stands
on state based models. Such approaches always deal with both space
and time explosions. This paper proposes a geometrical approach to
model applications and to compute operational feasability from topo-
logical properties. Thanks to this model, we can decide the feasability
of real-time synchronous systems composed of periodic tasks, sharing
resources, running on multiprocessor architectures. This method avoids
state enumeration and therefore limits both space and time explosion.

Key words: Real-time, operational validation, multiprocessors, resource sharing,
geometrical modeling.

1 Introduction

In a real-time system, the correctness of a computation depends on both the log-
ical results of the computation and the dates when results are produced. Time
constraints are called strict if not respecting them involves irreparable conse-
quences on the system safety. In this case, the system is called hard [But97].
On the opposite, if not respecting deadlines keeps the system safe, the system
is called soft. In this study, we only consider hard real-time systems: time con-
straints are strict.

A real-time system is a task set: each task is a process designed to react
to an external incoming event. The systems we study use resources and run on
centralized multiprocessor architectures. All processors are identical; tasks are
preemptive and can move from a processor to another one at any time. Each
task 7; is specified by time characteritics: its first activation date r;, its deadline
D;, its period T3, and its execution time C; [LL73]. We assume that tasks are
periodic and no reentrant: Vi € [1,n],D; < T;.

The operational validation of a real-time system is reached by proving that
no task misses deadline, i.e by proving that there exists at least one time valid



scheduling sequence for the system. This proof is obtained by feasability con-
ditions or simulations. Validation is performed off-line for systems sharing re-
sources which run on multiprocessor architectures, since there exists no neces-
sary and sufficient feasability condition in this case [Mok83]. Off-line methods
are usually based on state models (Petri nets, automata) both in timed or time-
free versions. Timed models consider that time is explicit [ALU94], associating
time intervals with transitions or durations with states. Time free models use
implicit time [CHO96] (implicit timed models): each transition is associated with
the same duration and constraints are expressed as numbers of transitions. The
main advantage of implicit timed models is that very efficient tools are pro-
vided to analyse them. Therefore time is discrete in these models. In [LG02], we
have defined an implicit timed model, based on finite automata, that enumerates
states of systems and therefore involves both space and time explosion.

Observing the graphs of the automata we obtained in this approach, we have
conceived a new model, based on discrete geometry, that is presented in this
work. Our goal is to reduce notably both time and space explosion in the vali-
dation process. In this model, we associate each task with a geometrical figure
which only depends on time characteristics r, C, D, T. Geometrical operations
(extrusion, cartesian product, intersection) allow to model parallelism and syn-
chronization in a geometrical way. This model makes state enumeration implicit
and therefore decreases both space and time explosion while keeping a strong
expression capacity.

We define the geometrical model for a single task in section 2. In section 3,
we present compositional operations to integrate both parallelism and synchro-
nization in the model. Section 4 is dedicated to the presentation of a software
implementing this modeling process.

2 Model definitions

2.1 A two dimensional figure to model single tasks

A task is usually models by an automaton (see figure 1). Each transition of this
automaton is associated to a duration of one time unit (the time is discrete).
A task state is defined by the execution progress x=C(t) of the task and the
total time ¢ since the system activation. Therefore, we consider, for each task, a
two-dimensional space (t,c¢): t adresses absolute time and ¢ adresses z.

A task execution corresponds to the successive executions of its instances. At
time ¢, k instances of task 7 (r,C,D,T) are completed (corresponding to k x C
time units of CPU owning) and the (k + 1)th instance is running (Cp41 (t) time
units of past CPU owning). So, at time ¢, C(t)=k x C + Cyy1(¢t) time units have
been executed. During its execution, an instance of task 7 goes through several
states wether it owns the CPU or not: the initial state eq of 7’s first instance is
(r,0), its last state is (r + T, C). The final state of any instance is the first state
of the next instance. The final state ey, of the k! instance of 7 is (eg—1+ (T, C)).
We denote r* = r + k x T the activation date of the kP task’s instance of .
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Fig. 1. Automaton model for task 7 (r=2,C=3,D=>5,T=T7).

A task execution is then totaly defined by the set of all instance states. This
set is the graph of a function in space (t,¢). This function is called “trace” (see
figure 2) . Note that for 7, this function is not unique.

x : tnstance 1 instance 2

time
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Fig. 2. A trace of task 7 (r=2,C=3,D=5,T=7).

Let us now characterize traces. Since tasks can not be parallelized, a task
can not be in more than one state at once and its state can not be undefined.
Therefore, a task trace is a mapping between time and task execution progress.
This mapping is an increasing function: either the task is progressing during
execution; or the task is suspended and its execution progress state keeps the
same value. Moreover, during any time interval [t,t+1], no task can progress
more than 1 since it is the maximal CPU time that can be allocated to the task
for its execution during this interval. Therefore, a trace is a mapping.

Definition 1. We call trace of task T an increasing mapping Tr(t):

Tr, : 7+ — 7+
t o Tr(t) such that ¥Vt > 0, Tr (t+ 1) € {Tr.(t),Tr.(t) + 1}.

Task T must deal with its temporal characterisation (r,C,D,T): this property
imposes geometrical constraints on execution traces of 7 (see Figure 3). Some
task traces are comptatible with task operational charateristics: they are "valid
task traces”. Others are not compatible: they are unvalid.



Definition 2. A wvalid trace of T (r,C,D,T) is an execution trace Tr; V such
that:
Tr; V([0,r]) ={0}
Tr. V([f* ;7 +D]) = [(i-1)x C,kx C]
Tr, V([r* +D,”*+1]) = {kx C}
We call TV (7) the set of 7’s valid traces. If 7 misses no deadline, no instance

of 7 run on time intervals [0,r] and [r*+D,r*+1]. Therefore, traces Tr,V are
constant functions over these intervals. The equation Tr, V(r*+D)=kxC means

that the execution requirement C; of the kth instance of 7; is completed before
its deadline. Thus, such a trace is a valid trace. Then, we can characterize the
set 2(7) which collects all points of valid traces.

Definition 3. The validity space 2(7) of a task T is:

2n = U {Gyv@))

YeETV (1)
We note T'(£2(r)) for TV (7).
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Fig. 3. Discrete model for two instances of task 7 (r=2,C=3,D=5,T=7).

Figure 3 presents the validity space for the two first instances of a task. Fach
valid state of T is associated with a point of Z2.

2.2 Concurrency modeling

Let I'=(7;);e[1,n] be a set of tasks, designed to run concurrently. The state of I"
at time t is defined by the states of all 7;. At time t, I is valid if and only if all
tasks of I" are valid.

a) T1 ) T2 b)
1 . 1 .
&:Eﬂgle time

1
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T2
Fig. 4. Examples: 71 (r=0, C=1,D=2,T=3), » (r=0,C=2,D=3,T=6)



Definition 4. A wvalid state P of a system I' at time t is defined by:
P = (t,z1,...,xn)/ Vi € [L,n], (t,x;) € 2(r3)
Therefore, the space of I'’s valid states is (n+1)-dimensional (see Figure 4).

) ={t,z1,...,zn)/ Yi € [1,n] (t,2;) € (1)}

2.3 Computing 2(I")

We consider a system I" of n tasks. However, for drawings, we get n=2 (see Fig-
ure 4). In this case £2(I") is a three-dimensional object, easy to view on a page.

Geometrical basic notions:
Two discrete points p and ¢ in n dimension are k-neighbour, for 0 < k <mn,

n
ifVi<i<mn |pp—q| <landif k < n—Z|pi—qi|. A k-path in a
i=1
discrete obect A is a A discrete point list such that two consecutive points of
this list are k-neighbour (A task trace is a 0-path in 2-dimension). k-connexite
et k-composantes !I''A FAIRE!!!

Definition 5. Let T={iy,..., 4|7} (i1 < i2 < ... <i|z|). We define the injection
operation Jz n in the following way: Jz rn : 7 — g+t

n+1

(@1, s 2z]) = (0, ., 0, 21,0, ..., 0,25,0, ..., 0,27, 0, ..., 0)
il 1,']‘ ’L'|I‘
Notations:
- Z,n:j{l,i—f—l},n: (a,b) — (a,O,..,O,b,O...,O)
1 i+1
- Az, is the following cartesian product:

Az = Z971 x {0} x Z77 27 x {0} x ... x ZAz—hzi-1mh 5 [0} x Z LT,
- A; , is the cartesian product A;, = {0} x Z7! x {0} X Z"*=Ayq i11},0-

Definition 6. We define the interleaved cartesian product jIA,n : 7T p(znt)
(z1, ...,:Um) — {jz,n((ajl, ...,:Um)) +A A€ AI,n}

Notations:
- *Z?n:j{q,i+l},n:{‘7i,n((aa b)) + )‘a A€ Ai,n}

Definition 7. We call ”concurrent product” (denoted ®) of 2(11) and 2(r2)
the set Q(Tl) ® Q(Tz)z Jll}n(Q(Tl)) n %?H(Q(Tz))
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Fig. 5. Example: J{}Q(Q(Tl)) and jQ/}z(Q(Tz)).
Remarks:

-The operation ® is associative, therefore we can generalize the notation:

2y, ® ()
-V 7€ Jh((a,b), Vk €1, z—l]U[z—}-l n] 3z, € Z such that:
J = (a;xla"'axi—labami-l—la"-amn)

- Projection IT;: (y1,---,¥it1,---s¥nt1) — (Y1,¥ix1) is a reverse operation of ‘71/1"

=n
Theorem 1. (') = ® 0(r;).
i=1
i=n
Proof: Let us show that ® 2(r;) C I):
i=1

i=n

Let P=(t,x1,x2,....25) € ® £2(7;). The definition of ® gives:

P=(t,z1,%2,...xy) € ﬂ (Jffn(ﬂ(n))) Since P belongs to an intersection
i€[l,n]

set, we get: Vi € [1,n], P € an (£2(r;)). Using the two-dimensional projection

on 7-space (t,7;): Vi € [1,n], II;(P) € I;(J/,(2(r))) = £2(7:). And then

Vi € [1,n], (t,2;) € 2(;). Therefore P e D).

Let us show that 02(I") ®

Let P=(t,z1,22,....x,) € !2( ). We consider the projection of P on each
plane (t,7;): Vi € [1,n] II;(P) € £2(r;). We then consider 77}, for each IT; (P):
Vi € [1,n] JA,(I1;(P)) C JA,(£2(r;)). Finally, we consider the intersection of
all sets we have obtained:

N (74me))c N (d4(@@)) since () (74(LP)) =
i€[1,n] i€[1,n] i€[1,n]

{(t, 21,22, ...20) } = {P}, we get: P € ® 0(r;). O

i=1
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Fig. 6. Example: geometrical modeling for a two tasks system, £2(71) ® £2(72).

2.4 Synchronization integration

Resource sharing

In real-times systems, tasks use critical resources (there is mutual exclusion):
only one task can use resource R at time t. Therefore, some states of 2(I")
become invalid from the resource sharing point of view. On a geometric plan,
the kth instance of a task corresponds to the task execution progress interval
[Cixk, C;xk+C;]. We define uF(1) and u*(2) such that this instance uses R
during the execution time interval: Ju¥(1),u¥(2)[ c [C;xk, C;xk+C;].

We denote by u; the time interval union |J]u¥(1),uf(2)[, corresponding to
keN
all resource requirement intervals for all instances of 7; (see Figure 7).

C1— x () EZ R-exclusion zone
uf(@)) A AN S
w | BB
uy : | : %2 (1)
aml @ waf  we)

u2

Fig. 7. Example: both 71 and 7 use resource R

Since a task cannot own the resource if another task already uses it, two tasks
cannot be in R critical section at the same time. Then if P=(t,21, ..., z,) and z;
€ u;, we must get Vj # i,z; & u;. Therefore, for a valid state P=(t,z1, ..., z,)
of I', the following property stands: |{z;/z; € u;}| < 1. The validity space of I"
respecting resource R sharing is (see figure 8):

Or() = {(t,z1, ..., xn) € () /|{wi/x: € ui}| < 1}

Here, we deal only with one resource R. For many resources, since resources are
independant, the technique can be applied by induction. Let I'r=(7;) ez, be the
set of tasks sharing resource R (we note Zg the set of indices of tasks sharing
R). The states of I'r which are associated with a simultaneous use of R are
unvalid. The R-exclusion zone 2(R) of R collects all states of I'r corresponding
R incorrect uses. £2(R) is part of the subspace associated with all tasks sharing
R, since it implies the simultaneous run of at least two of these tasks.



Definition 8. The R-exclusion zone is (see Figure 7):

2(R) = {(®i)iezn/ {zi/zi € wi}| > 1}.

A state of 2(R) only concerns tasks of I'r. An state s=(t, 21, ..., ) is unvalid if
IIr,(s) € 2(R). Therefore, the set ng = {(¢,%1,...,Tn)/t € Z, |{zi/T; € u;}| >
1} of unvalid states can be obtained thanks to a concurrent cartesian product
and an extrusion operation.

Theorem 2. ng = Extr(Z,J2 . (2(R))).

Ry

Proof: This theorem comes directly from the definitions of 2(R), the extrusion
operation and interleaved cartesian product operation. 2(R) collects all unvalid
states of I'g: it is a |Zg|-dimensional object. The interleaved cartesian prod-
uct associates these states with all possible states of I' \ I'g. Then all states
of I' that are unvalid in the R-sharing point of view are reached. jzAn,n(Q(R))
is an n-dimensional object. Now one must integrate that these states are al-
ways unvalid. This is done by extruding this objet following the time direc-
tion (Z). This operation collects all R-sharing unvalid states of I'. Then we get
ne = Extr (Z,J2. ,(2(R))) . ng is a (n+1)-dimensional object. |

ZR,’!L
Theorem 3. Qr(I') = (') \ nr.

Therefore, the set of valid traces including resource sharing is:

T(r(D) = {¢ € T(AT))/ Vt € Z¥, Y(t) = (21, 2n), (t,21, ., 20) € 2r(D)}.

T1

T2

T2

Fig. 8. Geometrical model of a system including resource sharing.

Processor sharing

While building 2g(I"), we have not considered the number of processors.
However, this parameter makes each trace w in Tg(I") valid or unvalid according
to the minimal number of processors useful to execute w.

During an execution, the number of active processors is constant between
two consecutive context switches. Then, to decide the validity of a trace, we
only have to look at it at context switch times. Let us note by q the scheduling
quantum. If there are k running tasks between two given context switches a and
b, the trace is called k-concurrent between a and b.



Definition 9. A tracey € T(2r(I)) is k-concurrent between two contexrt switch
times i X q and (i + 1) X q if and only if:
Y (1x q)=(1}q,(%i )iep1,n)) and P ((i+1)x )=((i+1)X ¢, (Y )ie[1,n)) =

Z (yi) — Z (zi) =k xg.

i€[1,n] i€[1,n]

We said that discrete points ¥ (i x ¢) and ((i + 1) x q) are k-concurrent. This
definition of k-concurrency in a n + 1 dimensional space corresponds to the
definition of the n — k-neighbourhood. A k-concurrent trace is then a n — k-path
in 2g(I"). We denote by Tg (") the set of k-concurrent traces of T(2g(I")).

Definition 10. A set 2gr(I") is k-concurrent if there exists at least one k-
concurrent trace v in Tr(I').

Remark: If a set 2g(I") is k-concurrent, then it is a n — k-componant and there
exists at least one valid sheduling sequence for I" on a k processor architecture.

2.5 Feasability decision

For a system running on a k processor architecture and sharing a resource R, a
valid scheduling is a k-concurrent trace in TS2g(I"). The feasability decision is
reached by evaluating of the predicate: Tg x(I") # 0.

3 Implementation

We have developped the software GemSMARTS (Geometric Scheduling Mod-
eling and Analysis of Real-Time Systems) which computes the set 25(I"). We
have tested a discret data structure implemented through classical matrices.
In this first version of our tool, we only consider synchronous task systems
(Vi € [1,n],m; = 0). System states are elements of N**! and since an execu-
tion cycle duration is known and is equal to PPCM((T;);e[1,5]), Point sets are
finite. On drawings, each cube models a system state at a context switch time.

T1

time

T2
Fig. 9. System geometrical model : 71=(0,7,10,12), 72=(0,3,6,6)
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Figure 9 shows g (I") for a two-tasks system sharing a resource. The optimal
number p of processors is obtained in the following way: for each possible value
of k, we evaluate Tg(I")# 0, considering only k-concurrent traces. p is the min-
imum of the obtained values. For the example, p = 2: this system is not feasible
on a single processor but it is with two. A two-processors scheduling sequence is
represented by light grey cubes on Figure 9.

4 Conclusion

Validity spaces are useful to model hard real-time systems running on multi-
processor architectures and sharing resources. Feasability of task systems and
optimal numbers of processors can be computed thanks to the k-concurrency
concept.

Feasability is usually decided using state based model and model checkers
[LGO2]. Using validity spaces involves a noteworthy improvement: the time saved
on a time free automata model is about 85%. The data structure we have tried
(matrices) is useful to implement our model and developed algorithms are al-
ready more efficient than the previous ones (using automata) although they are
far from being optimized. We have reached a limited time complexity depend-
ing mainly on the number of tasks whereas classical models follow complexities
which depend on time. This method allows to drive back both space and time
explosion.We are studying space and time complexities for optimized version of
the geometrical algorithms.

Ongoing works concern definitions of both topological and geometrical prop-
erties to precisely characterize scheduling sequences. We plan, for example, to
define topological properties for validate on-line classical scheduling (RM, ED,
and so on), in order to propose multiprocessor versions of on-line validation
techniques integrating resource sharing.
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