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The convex hull of a regular set of integer vec-

tors is polyhedral and effectively computable
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Jérôme Leroux

DIRO, Université de Montréal, Montréal, QC, Canada

Abstract

Number Decision Diagrams (NDD) provide a natural finite symbolic representation
for regular set of integer vectors encoded as strings of digit vectors (least or most
significant digit first). The convex hull of the set of vectors represented by a NDD
is proved to be an effectively computable convex polyhedron.

Key words: approximation algorithm, symbolic representation, polyhedral convex
set, Presburger arithmetic

Presburger arithmetic [Pre29] is a decidable logic used in a large range of ap-
plications. Different techniques [GBD02] and tools have been developed for
manipulating the Presburger-definable sets (the sets of integer vectors satis-
fying a Presburger formula): by working directly on the Presburger-formulas
(implemented in Omega [Ome]), by using semi-linear sets [GS66] (imple-
mented in Brain [RV02]), or by using NDD (automata that represent regular
sets of integer vectors encoded as strings of digit vectors, least or most sig-
nificant digit first) [Boi98, WB95, BC96] (implemented in Fast [BFLP03],
Lash [Las] and CSL-ALV[BB03]). Presburger-formulas and semi-linear sets
lack canonicity: there does not exist a natural way to canonically represent
a set. As a direct consequence, a set that possesses a simple representation
could unfortunately be represented in an unduly complicated way. Moreover,
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deciding if a given vector of integers is in a given set, is at least NP-hard
[Ber77, GS66]. On the other hand, a minimization procedure for automata
provides a canonical representation for NDD-definable sets (a set represented
by a NDD). That means, the NDD that represents a given set only depends
on the set and not on the way we have computed it. For this reason, NDD are
well adapted for applications that require a lot of Boolean manipulations like
model-checking.

Verification of systems with unbounded integer variables is undecidable in
general. That explains why we are interested in over-approximating the reach-
ability set of such a system. By computing the convex hull of the set of initial
states of such a system and by using a widening operator [CH78, HPR97], an
over-approximation of the set of reachability set can be effectively computed.

In this presentation, the convex hull of a set of integer vectors represented
by a NDD is proved to be a convex polyhedron. That shows that it can be
finitely represented as a finite intersection of half-spaces or dually as a finite
set of rays. Indeed, we provide an exponential time algorithm that effectively
computes this convex hull (the exact complexity remains open).

This result is obtained by first proving that “the convex hull” of the language
σ∗

1.σ
∗
2 is equal to the convex hull of σ∗

2 .σ
∗
1 for any pair of words (σ1, σ2). From

this commutativity result, we deduce that the convex hull of any regular lan-
guage L, is equal to the convex hull of a finite union of regular languages of
the form w0.σ

∗
1 . . . wn−1.σ

∗
n.wn.

1 Closed sets and convex sets

Recall that the scalar product of two real vectors x, y ∈ R
m where m ≥ 1 is the

real 〈x, y〉 =
∑m

i=1 x[i].y[i] where x[i] ∈ R corresponds to the ith component

of x. We denote by |x|2 the norm |x|2 =
√

〈x, x〉. The open ball centered in

x ∈ R
m with a radius ǫ > 0 is the subset Bx,ǫ = {y ∈ R

m; |x−y|2 < ǫ}. Recall
that a subset X ⊆ R

m is said open if for any x ∈ X there exists ǫ > 0 such
that Bx,ǫ ⊆ X. A closed set X is a subset of R

m such that difference R
m\X is

open. Recall that any infinite or finite intersection of closed sets is closed and
any subset X is included into a minimal (for the inclusion) closed set, called
the closure of X. We denote by cl : P(Rm) → P(Rm) the function such that
cl(X) is the closure of X for any X ⊆ R

m.

An half-space H is a subset of real vectors R
m such that there exists α ∈ R

m

and c ∈ R satisfying H = {x ∈ R
m; 〈α, x〉 + c#0} where # ∈ {≥, >}. Recall

that such an half space H is closed if # is equal to ≥ and it is open if # is
equal to >.
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We denote by R+ and R− respectively the set of non-negative reals R+ = {x ∈
R; x ≥ 0} and the set of non-positive reals R−{x ∈ R; x ≤ 0}.

A convex set is a finite or infinite intersection of half-spaces. The convex hull
of a subset X ⊆ R

m is the least (for the inclusion ⊆) convex set that contains
X. We denote by conv : P(Rm) → P(Rm) the function such that conv(X) is
the convex hull of X for any X ⊆ R

m. Recall that a vector y is in conv(X)
if and only if there exists a finite sequence (xi)1≤i≤n of n ≥ 1 vectors in X

and a sequence (ti)1≤i≤n of n reals in R+ such that
∑n

i=1 ti = 1 and such that
y =

∑n
i=1 ti.xi. Recall that the closure of a convex set remains a convex set.

A convex set C is said polyhedral if C is equal to a finite intersection of closed
half-spaces (in particular, a polyhedral convex set is closed). Recall that any
polyhedral convex set P can be represented by a finite set of rays R ⊆ R

m×R+

such that P = P (R) = {x ∈ R
m; (x, 1) ∈ C(R)} where C(R) ⊆ R

m × R+ is
the polyhedral cone defined by the following equality:

C(R) = {
∑

r∈R

tr.r; tr ∈ R+}

Recall that for any pair (P1, P2) of polyhedral convex sets respectively repre-
sented by a pair of finite set of rays (R1, R2), the convex set cl ◦ conv(P1 ∪P2)
is polyhedral and represented by the set of rays R1 ∪ R2.

2 Regular sets of integer vectors

Let us consider an integer r ≥ 2 called the basis of the decomposition and an
integer m ≥ 1 called the dimension of the represented vectors. A digit vector b

is an element of the finite alphabet Σrm = {0 . . . r−1}m. The vector ρ(σ) ∈ N
m

associated with a word σ = b1 . . . bn of n ≥ 1 digit vectors bi ∈ Σrm is defined
by ρ(σ) =

∑n
i=1 ri−1.bi. We naturally define ρ(ǫ) = (0, . . . , 0), also written 0.

The set X represented by a language L ⊆ Σ∗
rm is defined by X = ρ(L) =

{ρ(σ); σ ∈ L}. If L is regular (that means accepted by a finite automaton),
the set X is naturally said regular. Let us recall that regular sets of vectors can
be efficiently manipulated with finite automata (see [WB00, BC96]) and they
correspond to the sets defined by a formula in the first order logic 〈N, +,≤, Vr〉
where Vr is the valuation function in base r defined by y = Vr(x) if and only
if y is the greatest power of r that divides x [BHMV94].

Example 1 Consider the following automaton A+ with basis r = 2 and di-
mension m = 3 depicted below. Intuitively, this automaton represents the set
of vectors (x, y, z) ∈ N

3 such that x + y = z where the state qi corresponds to
the carry i ∈ {0, 1} of the addition.
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q0 q1

(0, 1, 1)

(1, 0, 1)

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(1, 1, 1)

(1, 1, 0)

(0, 0, 1)

3 The convex hull of a regular set of integer vectors

The main result of this paper is proved in this section. We show that the
closure of the convex hull of a regular set of integer vectors is polyhedral and
represented by a set of rays effectively computable in exponential time from
any regular expression that defines this regular set.

As ρ(σw) = r|σ|.ρ(w) + ρ(σ) for any pair of words (σ, w), we introduce the
function Γσ : R

m → R
m defined by Γσ(x) = r|σ|.x + ρ(σ). Remark that any

regular language L can be decomposed into a finite union of regular languages
of the form σn+1.L

∗
n.σn . . . L∗

1.σ1 where σi ∈ Σ∗
rm and Li ⊆ Σ∗

rm . The following
lemma is a first step toward the computation of cl ◦ conv ◦ ρ(L).

Proposition 2 Let us consider a language L = σn+1.L
∗
n.σn . . . L∗

1.σ1 where
n ≥ 0, σi ∈ Σ∗

rm and Li ⊆ Σ∗
rm. We have the following equality:

cl◦conv◦ρ(L) = Γσn+1...σ1
◦cl◦

(

{(0, . . . , 0)} ∪
n
⋃

i=1

R−.Γ−1
σi...σ1

◦ cl ◦ conv ◦ ξ(L∗
i )

)

where σ → ξ(σ) is partially defined over Σ+
rm, by the following equality:

ξ(σ) =
ρ(σ)

1 − r|σ|

PROOF. We denote by C(σn+1, Ln, σn, . . . , L1, σ1), the following set:

Γσn+1...σ1
◦ cl ◦

(

{(0, . . . , 0)} ∪
n
⋃

i=1

R−.Γ−1
σi...σ1

◦ cl ◦ conv ◦ ξ(L∗
i )

)

Let us first prove inclusion (1):

C(σn+1, Ln, σn, . . . , L1, σ1) ⊆ cl ◦ conv ◦ ρ(σn+1.L
∗
n.σn . . . L∗

1.σ1) (1)

If n = 0, inclusion is immediate. Assume that n ≥ 1 and let i ∈ {1 . . . n}, we
have just to show that R−.Γσi...σ1

◦cl◦conv◦ξ(L∗
i ) ⊆ cl◦conv◦ρ(L). Naturally,

if Li\{ǫ} = ∅, this inclusion is immediate. Otherwise, let w ∈ L∗
i \{ǫ}. For any
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k ∈ N, we have σn+1 . . . σi+1.w
k.σi . . . σ1 ⊆ L. From the following equality, we

get R−.Γσi...σ1
◦ cl ◦ conv ◦ ξ(L∗

i ) ⊆ cl ◦ conv ◦ ρ(L):

ρ(σn+1 . . . σi+1.w
k.σi . . . σ1) = Γσn+1...σ1

((1 − rk.|w|).Γ−1
σi...σ1

(ξ(w))

In particular, we have proved inclusion (1). Let us prove the converse inclu-
sion. Consider a sequence (wi)1≤i≤n+1 such that wi ∈ L∗

i \{ǫ}. An immediate
induction over n ≥ 0, proves the following equality:

ρ(σn+2.wn+1.σn+1 . . . w1.σ1) = Γσn+1...σ1

(

n+1
∑

i=1

r|wn+1...wi+1|.(1 − r|wi|).Γ−1
σi...σ1

◦ ξ(wi)

)

As r|wn+1...wi+1|.(1 − r|wi|) ∈ R−, we deduce the following inclusion:

cl ◦ conv ◦ ρ(σn+1.(L
∗
n\{ǫ}).σn . . . (L∗

1\{ǫ}).σ1) ⊆ C(σn+1, Ln, σn, . . . , L1, σ1)

Naturally, from the previous inclusions taken over n ≥ 0, we deduce the con-
verse inclusion of (1). 2

The previous proposition explains why we are interested in computing cl ◦
conv ◦ ξ(L∗) where L is a regular language. In fact, we have the following
lemma.

Lemma 3 For any L ⊆ Σ∗
rm, we have conv ◦ ξ(L∗) = conv ◦ ξ(L).

PROOF. From L ⊆ L∗, we deduce the inclusion conv ◦ ξ(L) ⊆ conv ◦ ξ(L∗).
Let us prove the converse inclusion. Let w ∈ L∗\{ǫ}. There exists a sequence
σ1, ..., σk of k ≥ 1 words in L\{ǫ} such that w = σ1 . . . σk. An immediate
induction over k ≥ 1 proves the following equality:

ξ(σ1 . . . σk) =
k
∑

i=1

r|σ1...σi−1|
r|σi| − 1

r|σ1...σk| − 1
.ξ(σi)

As
∑k

i=1 r|σ1...σi−1| r|σi|−1
r|σ1...σk|−1

= 1 and r|σ1...σi−1| r|σi|−1
r|σ1...σk|−1

∈ R−, we deduce that

ξ(w) ∈ conv ◦ ξ(L). We deduce ξ(L∗) ⊆ conv ◦ ξ(L) and by minimality of the
convex hull of ξ(L∗), we get conv ◦ ξ(L∗) ⊆ conv ◦ ξ(L). 2

Once again, we use the fact that a regular language L can be decomposed into
a finite union of languages of the form σn+1.L

∗
n.σn. · · ·L∗

1.σ1.

Proposition 4 Let us consider a language L = σn+1.L
∗
n.σn . . . L∗

1.σ1 where
n ≥ 0, σi ∈ Σ∗

rm and Li ⊆ Σ∗
rm. We have the following equality:

cl ◦ conv ◦ ξ(L) = cl ◦ conv

(

ξ({σn+1 . . . σ1})
n
⋃

i=1

Γ−1
σi...σ1

◦ cl ◦ conv ◦ ξ(Li)

)
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PROOF. Let us consider a language L of the form L = σ2.L
∗
1.σ1 where

σ1, σ2 ∈ Σ∗
rm and L1 ⊆ Σ∗

rm and let us prove the proposition for L. Remark
that if L1\{ǫ} = ∅ or if σ2.σ1 = ǫ, lemma 3 proves the proposition. So, we can
assume that L1\{ǫ} 6= ∅ and σ2.σ1 6= ǫ. Let C = cl ◦ conv(ξ({σ2.σ1}) ∪ Γ−1

σ1
◦

cl ◦ conv ◦ ξ(L1)) and consider σ ∈ L1\{ǫ} and k ∈ N. We have the following
equality:

ξ(σ2.σ
k.σ1) =

r|σ2.σ1| − 1

r|σ2.σ1|+k.|σ| − 1
.ξ(σ2.σ1) +

r|σ2.σ1|.(rk.|σ| − 1)

r|σ2.σ1|+k.|σ| − 1
.Γ−1

σ1
(ξ(σ))

In particular we deduce that Γ−1
σ1

◦ ξ(σ) ∈ cl ◦ ξ(σ2.σ
∗.σ1). From σ2.σ

∗.σ1 ⊆ L,
we get Γ−1

σ1
◦ξ(L1) ⊆ cl◦ξ(L). And by minimality of the closure and the convex

hull, we get Γ−1
σ1

◦ cl ◦ conv ◦ ξ(L1) ⊆ cl ◦ conv ◦ ξ(L). From σ2.σ1 ∈ L, we
deduce that ξ({σ2.σ1}) ⊆ ξ(L). We obtain C ⊆ cl◦conv◦ξ(L). Let us prove the
converse inclusion. Consider σ ∈ L. There exists w ∈ L∗

1 such that σ = σ2.w.σ1.
If w = ǫ then ξ(σ) = ξ(σ1.σ2) ∈ C. Otherwise, lemma 3 proves that ξ(w) ∈

conv ◦ ξ(L1). As ξ(σ) = r|σ2.σ1|−1
r|σ2.σ1|+|w|−1

.ξ(σ2.σ1) + r|σ2.σ1|.(r|w|−1)

r|σ2.σ1|+|w|−1
.Γ−1

σ1
(ξ(w)), we

deduce that ξ(σ) ∈ C. We deduce that the other inclusion cl◦conv◦ξ(L) ⊆ C.
Therefore, the proposition is proved for L.

Now, assume the proposition proved for an integer n ≥ 1 and let us consider
a language L = σn+2.L

∗
n+1.σn+1 . . . L∗

1.σ1 where σi ∈ Σ∗
rm and Li ⊆ Σ∗

rm and
let us prove the proposition for L. Consider wn+1 ∈ L∗

n+1. As the proposition
is proved for n, we deduce the following equality:

cl ◦ conv ◦ ξ(σn+2.wn+1.σn+1.L
∗
n.σn . . . L∗

1.σ1)

= cl ◦ conv

(

ξ({σn+2.wn+1.σn+1 . . . σ1})
n
⋃

i=1

Γ−1
σi...σ1

◦ cl ◦ conv ◦ ξ(Li)

)

We get in particular the following equality:

cl ◦ conv ◦ ξ(σn+2.L
∗
n+1.σn+1.L

∗
n.σn . . . L∗

1.σ1)

= cl ◦ conv

(

ξ(σn+2.L
∗
n+1.σn+1 . . . σ1})

n
⋃

i=1

Γ−1
σi...σ1

◦ cl ◦ conv ◦ ξ(Li)

)

= cl ◦ conv

(

cl ◦ conv ◦ ξ(σn+2.L
∗
n+1.σn+1 . . . σ1)

n
⋃

i=1

Γ−1
σi...σ1

◦ cl ◦ conv ◦ ξ(Li)

)

As the proposition is proved in the case n = 1, we also get the following
equality:

cl ◦ conv ◦ ξ(σn+2.L
∗
n+1.σn+1 . . . σ1)

= cl ◦ conv
(

ξ({σn+2 . . . σ1}) ∪ Γ−1
σn+1...σ1

◦ cl ◦ conv ◦ ξ(Ln+1)
)

The two previous equality proved the proposition for L. By induction over
n ≥ 1, we have proved the proposition for any n ≥ 1. 2
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We can now prove our main result that extends [Lat04].

Theorem 5 The convex hull of a regular set of integer vectors X = ρ(L) is
polyhedral and a finite set of rays R that represents conv(X) can be computed
in exponential time from any regular expression that defines L.

PROOF. Let C be a polyhedral convex set represented by a finite set of
rays R. We know that for any w ∈ Σ∗

rm , the convex sets Γw(C) and Γ−1
w (C)

are polyhedral and respectively represented by {(r|w|.α + c.ρ(w), c); (α, c) ∈
R} and {(α − c.ρ(w), r|w|.c); (α, c) ∈ R}. Moreover, we also know that the
convex set cl(R−.C) is polyhedral and represented by the finite set of rays
{(0, 1)}∪ {(−α, 0); (α, c) ∈ R}. By applying propositions 2 and 4 and lemma
3 over a regular expression that represents a regular language L, we deduce
that cl ◦ conv ◦ ρ(L) is polyhedral and represented by a finite set of rays
R computable in exponential time from any regular expression that defines
L. 2

References

[BB03] Constantinos Bartzis and Tevfik Bultan. Efficient symbolic repre-
sentations for arithmetic constraints in verification. International
Journal of Foundations of Computer Science (IJFCS), 14(4):605–
624, August 2003.

[BC96] Alexandre Boudet and Hubert Comon. Diophantine equations,
Presburger arithmetic and finite automata. In Proc. 21st Int. Coll.
on Trees in Algebra and Programming (CAAP’96), Linköping,
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