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The least significant digit first decomposition of integer vectors into words of digit vectors provides a natural way for representing sets of integer vectors by automata. In this paper, the minimal automata representing Presburger sets are proved structurally Presburger: automata obtained by moving the initial state and replacing the accepting condition represent Presburger sets.

Recently, automata transformations that move the initial state or replace the accepting condition have provided interesting applications. First, we have provided a polynomial time algorithm for deciding if an automaton is Presburger by extracting "simple sets" thanks to these automata transformations [START_REF] Leroux | A polynomial-time presburger criterion and synthesis for number decision diagrams[END_REF]. Recall that the previous algorithm for deciding this property was given by Muchnik in 1991 [START_REF] Muchnik | Definable criterion for definability in presburger arithmetic and its applications[END_REF][START_REF] Muchnik | The definable criterion for definability in presburger arithmetic and its applications[END_REF][START_REF] Bruyère | Logic and p-recognizable sets of integers[END_REF], and it works in quadrupleexponential time. Second, Bartzis and Bultan [START_REF] Bartzis | Widening arithmetic automata[END_REF] provided a widening operator for automata in order to enforce the convergence of sequence of increasing set of integer vectors represented by automata (such a sequence naturally appear during the state space exploration of infinite state systems). This operator is obtained by modifying the accepting condition of Presburger automata, but they do not prove that the obtained automata remain Presburger. However, from practical and theoretical point of view, working only with Presburger automata has some advantages. First the manipulation complexity (boolean operations and variable elimination) is at most 3-exponential time for Presburger automata (see [START_REF] Klaedtke | On the automata size for presburger arithmetic[END_REF][START_REF] Leroux | A polynomial-time presburger criterion and synthesis for number decision diagrams[END_REF]) and non-elementary for general automata (see [START_REF] Blumensath | Finite presentations of infinite structures[END_REF]). Second, we can compute in polynomial time, a Presburger formula that defines the set represented by a Presburger automaton and the computed formula can be exploited in other tools like Omega.

Contribution:

In this paper, we introduce a new automata-based representation for sets of integer vectors encoded by the least significant digit first decomposition, called digit vector automata. Even if the digit vector automaton representation is very similar to other automata-based representations [START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Spaces[END_REF][START_REF] Boudet | Diophantine equations, Presburger arithmetic and finite automata[END_REF][START_REF] Bruyère | Logic and p-recognizable sets of integers[END_REF], it is the first one that is canonical (there exists a unique minimal for the number of states digit vector automaton that represents a given set X), stable by moving the initial state (this stability provides a natural way for associating a set of integer vectors to any state), and stable by modifying the accepting condition. We prove that minimal digit vector automata representing Presburger sets are structurally Presburger: that means, digit vector automata obtained by modifying the initial state and replacing the accepting condition represent Presburger sets.

Outline: In section 1 the usual least significant digit first decomposition of integer values is extended to integer vectors. In section 2 we introduce digit vector automata, a new automata-based representation using the least significant digit first decomposition. In section 3 the expressiveness of this representation is logically defined. In section 4 we characterize the sets obtained from (r, m)-digit vector automata by moving the initial state. This characterization is used in the next section 5 to prove that sets representable by digit vector automata are represented by a unique (up to isomorphism) minimal for the number of states digit vector automaton. In section 6 we characterize the sets obtained from (r, m)-digit vector automata by replacing the accepting condition by another one. Finally, in section 7 we prove that the minimal digit vector automata that represent Presburger sets are structurally Presburger.

Least Significant Digit First Decomposition

The usual least significant digit first decomposition provides a natural way to associate words of digits to integer values. In this section, we extend this decomposition to integer vectors. Intuitively this extension is obtained component wise. More formally, we denote by Z and N\{0} respectively the set of integers and the set of non-negative integers. The least significant digit first decomposition is parameterized by an integer r ≥ 2 called basis of decomposition and an integer m ≥ 1 called the dimension. The set Σ r,m = Σ m r with Σ r = {0, . . . , r -1} is called the set of (r, m)-digit vectors and the set S r,m = S m r with S r = {0, r -1} is called the set of (r, m)-sign vectors. A (r, m)decomposition of an integer vector x ∈ Z m is a couple (σ, s) ∈ Σ * r,m × S r,m such that x = ρ r,m (σ, s) where ρ r,m : Σ * r,m × S r,m → Z m is defined by the following equality for any b 1 , . . . , b k ∈ Σ r,m and for any s ∈ S r,m :

ρ r,m (b 1 . . . b k , s) = r k s 1 -r + k i=1 r i-1 b i Example 1 (011, 0) is a (2, 1)-decomposition of 6 = 2 1 + 2 2 .
Example 2 (ǫ, 1), (1, 1), (11, 1), ..., (1 . . . 1, 1) are the (2, 1)-decompositions of -1 and (ǫ, 0), (0, 0), ..., (0 . . . 0, 0) are the (2, 1)-decompositions of 0.

Following notations introduced in [START_REF] Leroux | The affine hull of a binary automaton is computable in polynomial time[END_REF], function ρ r,m can be expressed thanks to the unique sequence (γ r,m,σ ) σ∈Σ * r,m of functions γ r,m,σ :

Z m → Z m such that γ r,m,σ 1 .σ 2 = γ r,m,σ 1 • γ r,m,σ 2 for σ 1 , σ 2 ∈ Σ *
r,m , γ r,m,ǫ is the identity function, and such that γ r,m,b (x) = rx + b for any (b, x) ∈ Σ r,m × Z m . In fact, an immediate induction over the length of σ provides the following equality for any (r, m)-decomposition (σ, s):

ρ r,m (σ, s) = γ r,m,σ ( s 1 -r )
Observe that any integer vector in Z m has at least one (r, m)-decomposition. Such a decomposition is not unique and the following lemma characterizes the (r, m)-decompositions of the same vector.

Lemma 3 For any

(σ 1 , s 1 ), (σ 2 , s 2 ) ∈ Σ * r,m × S r,m we have ρ r,m (σ 1 , s 1 ) = ρ r,m (σ 2 , s 2 ) if and only if s 1 = s 2 and σ 1 s * 1 ∩ σ 2 s * 2 = ∅.
PROOF. First of all, observe that γ r,m,s ( s 1-r ) = s 1-r and thus ρ r,m (σs k , s) = ρ r,m (σ, s) for any (σ, s) ∈ Σ * r,m × S r,m . Moreover, an immediate induction over n ∈ N shows that for any n ∈ N, for any w 1 , w 2 ∈ Σ * r,m such that |w 1 | = n = |w 2 | and for any s 1 , s 2 ∈ S r,m such that ρ r,m (w 1 , s 1 ) = ρ r,m (w 2 , s 2 ) we have (w 1 , s 1 ) = (w 2 , s 2 ). Now, let us consider (σ 1 , s 1 ), (σ 2 , s 2 ) ∈ Σ * r,m × S r,m . Assume first that s 1 = s 2 and σ 1 s * 1 ∩ σ 2 s * 2 = ∅ and let us prove that ρ r,m (σ 1 , s 1 ) = ρ r,m (σ 2 , s 2 ). As

σ 1 s * 1 ∩ σ 2 s * 2 = ∅, there exists k 1 , k 2 ∈ N such that σ 1 s k 1 1 = σ 2 s k 2 2 .
With s 1 = s 2 we deduce that (σ 1 s k 1 1 , s 1 ) = (σ 2 s k 2 2 , s 2 ). Thus ρ r,m (σ 1 , s 1 ) = ρ r,m (σ 2 , s 2 ). Conversely, let us assume that ρ r,m (σ 1 , s 1 ) = ρ r,m (σ 2 , s 2 ) and let us prove that s 1 = s 2 and σ

1 s * 1 ∩ σ 2 s * 2 = ∅. Let us consider k 1 , k 2 ∈ N such that |σ 1 s k 1 1 | = |σ 2 s k 2 2 | and let w 1 = σ 1 s k 1 1 and w 2 = σ 2 s k 2 2 . From ρ r,m (σ 1 , s 1 ) = ρ r,m (σ 2 , s 2 ) we get ρ r,m (w 1 , s 1 ) = ρ r,m (w 2 , s 2 ). As |w 1 | = |w 2 | we deduce that (w 1 , s 1 ) = (w 2 , s 2 ). In particular s 1 = s 2 and σ 1 s * 1 ∩ σ 2 s * 2 = ∅. ✷ 2 Digit Vector Automata
Function ρ r,m provides a natural way to associate the language L = ρ -1 r,m (X) to any set X ⊆ Z m . Intuitively ρ -1 r,m (X) is the language of (r, m)-decompositions of vectors in X. Such a language L is said (r, m)-saturated. In this section we introduce a new automata-based representation for recognizing (r, m)-saturated languages stable by moving the initial state.

We first introduce graphs labelled by (r, m)-digit vectors.

Definition 4 A (r, m)-digit vector graph is a tuple G = (Q, Σ r,m , δ) where Q is a non-empty finite set of states and δ : Q × Σ r,m → Q is a transition function.

In the sequel, with slightly abusing notations, we denote by δ : Q × Σ * r,m → Q the unique extension of δ satisfying δ(q, ǫ) = q and δ(q, σ 1 σ 2 ) = δ(δ(q, σ 1 ), σ 2 ) for any q ∈ Q and for any σ 1 , σ 2 ∈ Σ * r,m . A tuple (q, σ, q ′ ) such that q ′ = δ(q, σ) is called a path.

Naturally, by equipping a (r, m)-digit vector graph G = (Q, Σ r,m , δ) with an initial state q ∈ Q and a function F : Q → P(S r,m ) we obtain an automatabased representation for recognizing languages L ⊆ Σ * r,m × S r,m . Since we are interested in an automata-based representation recognizing (r, m)-saturated languages and stable by moving the initial state, we introduce the following definition that provides a natural restriction on the functions F considered in the sequel.

Definition 5 A function F : Q → P(S r,m ) is called an accepting condition for a (r, m)-digit vector graph G = (Q, Σ r,m , δ) if the following language is (r, m)-saturated for any state q ∈ Q: {(σ, s) ∈ Σ * r,m × S r,m | s ∈ F (δ(q, σ))} (1) 
The following proposition characterizes functions that are accepting conditions for a digit vector graph.

Proposition 6 A function F : Q → P(S r,m ) is an accepting condition for a (r, m)-digit vector graph G = (Q, Σ r,m , δ) if and only if F (q 1 ) ∩ {s} = F (q 2 ) ∩ {s} for any path (q 1 , s, q 2 ) ∈ Q × S r,m × Q.
PROOF. For any state q ∈ Q let us consider the language

L q = {(σ, s) ∈ Σ * r,m × S r,m | s ∈ F (δ(q, σ))}.
Assume first that F is an accepting condition for G and let us prove that F (q 1 ) ∩ {s} = F (q 2 ) ∩ {s} for any path (q 1 , s, q 2 ) ∈ Q × S r,m × Q. As F is an accepting condition for G, the language L q is (r, m)-saturated for any state q ∈ Q. Therefore, there exists a set X q ⊆ Z m such that L q = ρ -1 r,m (X q ). Assume first that s ∈ F (q 1 ) and let us prove that s ∈ F (q 2 ). In this case (ǫ, s) ∈ ρ -1 r,m (X q 1 ). Since ρ r,m (s, s) = ρ r,m (ǫ, s) we deduce that (s, s) ∈ ρ -1 r,m (X q 1 ). The path (q 1 , s, q 2 ) shows that s ∈ F (q 2 ). Conversely, assume that s ∈ F (q 2 ) and let us prove that s ∈ F (q 1 ). The path (q 1 , s, q 2 ) proves that (s,

s) ∈ ρ -1 r,m (X q 1 ). From ρ r,m (s, s) = ρ r,m (ǫ, s) we deduce that (ǫ, s) ∈ ρ -1
r,m (X q 1 ). Thus s ∈ F (q 1 ). We have proved that F (q 1 ) ∩ {s} = F (q 2 ) ∩ {s}. Now, assume that F (q 1 ) ∩ {s} = F (q 2 ) ∩ {s} for any path (q 1 , s, q 2 ) ∈ Q × S r,m ×Q and let us prove that F is an accepting condition for G. An immediate induction shows that F (q 1 ) ∩ {s} = F (q 2 ) ∩ {s} for any (q 1 , q 2 ) ∈ Q × Q such that there exists k 1 , k 2 ∈ N satisfying δ(q 1 , s k 1 ) = δ(q 2 , s k 2 ). Given a state q ∈ Q we denote by X q = ρ r,m (L q ). As expected we are going to prove that L q = ρ -1 r,m (X q ). As X q = ρ r,m (L q ) we get the inclusion L q ⊆ ρ -1 r,m (X q ). For the other inclusion let us consider (σ 1 , s 1 ) ∈ ρ -1 r,m (X q ). We deduce that ρ r,m (σ 1 , s 1 ) ∈ X q . Thus there exists (σ 2 , s 2 ) ∈ L q such that ρ r,m (σ 1 , s 2 ) = ρ r,m (σ 2 , s 2 ). This equality implies s 1 = s 2 and there exists

k 1 , k 2 ∈ N such that σ 1 s k 1 1 = σ 2 s k 2 2 .
In particular the states q 1 = δ(q, σ 1 ) and q 2 = δ(q, σ 2 ) satisfy δ(q 1 , s k 1 1 ) = δ(q 2 , s k 2 2 ). From (σ 2 , s 2 ) ∈ L q we deduce that s 2 ∈ F (q 2 ). Thus s 1 ∈ F (q 1 ) from the beginning of this paragraph and s 1 = s 2 . We have proved that (σ 1 , s 1 ) ∈ L q . Therefore L q = ρ -1 r,m (X q ). We deduce that L q is (r, m)-saturated. ✷ Definition 7 A (r, m)-digit vector automaton is a tuple A = (q 0 , G, F 0 ) where G = (Q, Σ r,m , δ) is a (r, m)-digit vector graph, q 0 ∈ Q is the initial state, and F 0 is an accepting condition for G.

The set X = ρ r,m ({(σ, s) ∈ Σ * r,m × S r,m | s ∈ F 0 (δ(q 0 , σ))})
is called the set represented by the (r, m)-digit vector automaton A.

Expressiveness

Recall [BHMV94] that a set X ⊆ Z m is said r-definable if it can be denoted by a formula in the first order theory FO (Z, N, +, V r ) where V r : N → N is the r-valuation function defined by V r (0) = 0 and V r (x) is the greatest power of r that divides x ∈ N\{0} (a (r, 2)-digit vector automaton that represents V r is provided in Fig. 1). As expected, in this section we prove that a set X ⊆ Z m is representable by a (r, m)-digit vector automaton if and only if it is r-definable.

∅ q ⊥ V r (x[1]) = x[2] q 0 x[2] = 0 q 1 {(0,0)} {(0,0)} b ∈ Σ r , 2 ( ¬ ( b [ 1 ] = 0 ∧ b [ 2 ] = 0 ) ) ∧ ( ¬ ( b [ 1 ] = 0 ∧ b [ 2 ] = 1 ) ) Σ r × ( Σ r \ { 0 } ) (Σr\{0})×{1} {(0,0)} Σr×{0} Σ r,2 Fig. 1. A r,2 ({x ∈ Z 2 | V r (x[1]) = x[2]})

Note [WB00] that a Number Decision Diagram (NDD)

A in basis r and in dimension m representing a set X ⊆ Z m is an automaton over the alphabet Σ r,m that recognizes the regular language {σs | (σ, s) ∈ ρ -1 r,m (X)}. Recall that a set X ⊆ Z m can be represented by a NDD in basis r if and only if it is r-definable [START_REF] Wolper | On the construction of automata from linear arithmetic constraints[END_REF]. From this result, we deduce the following corollary 8.

Corollary 8 A set X ⊆ Z m can be represented by a (r, m)-digit vector automaton if and only if X is r-definable.

PROOF. Observe that a NDD in basis r that represents a r-definable set X is computable from a (r, m)-digit vector automaton that represents X, and conversely a (r, m)-digit vector automaton that represents a r-definable set X is computable from a NDD in basis r that represents X. ✷ We do not consider NDD in this paper because (1) the class of regular languages included in Σ * r,m S r,m is not stable by residue which means the automaton obtained by moving the initial state of a NDD is not an NDD anymore, and (2) rather than replacing the accepting conditions of digit vector automata by other accepting conditions is structurally obvious, the corresponding operation over NDD is not immediate.

Moving The Initial State

The digit vector automaton obtained from a digit vector automaton A = (q 0 , G, F 0 ) by replacing the initial state q 0 by another state q is denoted by A q = (q, G, F 0 ). Given a set X implicitly represented by a digit vector automaton A, we denote by X q the set represented by A q . Naturally the set X q is r-definable for any state q. In this section we show that if X is Presburger then X q is Presburger for any reachable state q from the initial state q 0 . We first geometrically characterize the set X q 2 in function of X q 1 for any path

(q 1 , w, q 2 ) ∈ Q × Σ * r,m × Q. Proposition 9 X q 2 = γ -1 r,m,w (X q 1 ) for any path (q 1 , w, q 2 ) ∈ Q × Σ * r,m × Q.
PROOF. Consider x ∈ γ -1 r,m,w (X q 1 ) and let us prove that x ∈ X q 2 . We denote by (σ, s) a (r, m)-decomposition of x. Note that x 1 = γ r,m,w (x) is in X q 1 . Thus there exists a (r, m)-decomposition (σ 1 , s 1 ) of x 1 such that s 1 ∈ F 0 (δ(q 1 , σ 1 )). As F 0 is an accepting condition, by replacing σ 1 by a word in σ 1 s * 1 we can also assume that |σ 1 | ≥ |w| + |σ|. Now observe that γ r,m,w (x) = ρ r,m (σ 1 , s 1 ) and x = ρ r,m (σ, s) implies ρ r,m (wσ, s) = ρ r,m (σ 1 , s 1 ). Thus s = s 1 and wσs * ∩ σ 1 s * 1 = ∅. From |σ 1 | ≥ |w| + |σ| and the previous non-empty intersection, there exists k ∈ N such that σ 1 = wσs k . From s = s 1 , s 1 ∈ F 0 (δ(q 1 , σ 1 )) and δ(q 1 , σ 1 ) = δ(q 1 , wσs k ) = δ(q 2 , σs k ) we deduce that s ∈ F 0 (δ(q 2 , σs k )). Therefore ρ r,m (σs k , s) ∈ X q 2 As ρ r,m (σs k , s) = ρ r,m (σ, s) = x, we have proved that x ∈ X q 2 . Conversely, let us consider x ∈ X q 2 and let us prove that x ∈ γ -1 r,m,w (X q 1 ). From x ∈ X q 2 we deduce that there exists a (r, m)-decomposition (σ, s) of x such that s ∈ F 0 (δ(q 2 , σ)). As δ(q 2 , σ) = δ(q 1 , wσ) we deduce that ρ r,m (wσ, s) ∈ X q 1 . As ρ r,m (wσ, s) = γ r,m,w (ρ r,m (σ, s)), we have proved that γ r,m,w (x) ∈ X q 1 . Therefore x ∈ γ -1 r,m,w (X q 1 ). ✷

We deduce the following theorem 10.

Theorem 10 Let X be a Presburger set represented by a (r, m)-digit vector automaton A = (q 0 , G, q). The set X q is Presburger for any state q reachable from the initial state q 0 . PROOF. Let φ(x) be a Presburger formula denoting X and consider a path (q 0 , σ, F 0 ). From proposition 9, we deduce that X q is denoted by the Presburger formula φ(γ r,m,σ (x)). Therefore X q is Presburger. ✷

Minimal Digit Vector Automata

In this section, we prove that any r-definable set X ⊆ Z m is represented by a unique (up to isomorphism) minimal for the number of states (r, m)-digit vector automaton denoted by A r,m (X).

We first associate a (r, m)-digit vector graph G r,m (X) to any r-definable set

X ⊆ Z m . Proposition 9 shows that Q r,m (X) = {γ -1 r,m,σ (X) | σ ∈ Σ * r,m } is finite. We deduce that G r,m (X) = (Q r,m (X), Σ r,m , δ r,m ) is a (r, m)-digit vector graph where δ r,m is defined by δ r,m (Y, b) = γ -1 r,m,b (Y ) for any Y ∈ Q r,m (X) and b ∈ Σ r,m . Definition 11 G r,m (X) is called the canonical (r, m)-digit vector graph of X.
As expected, we are going to prove that A r,m (X) = (X, G r,m (X), F r,m ) is a (r, m)-digit vector graph that represents X where F r,m is the function defined by F r,m (Y ) = S r,m ∩ ((1r)Y ) for any Y ∈ Q r,m (X).

Proposition 12

The tuple A r,m (X) is a (r, m)-digit vector automaton that represents X.

PROOF. Let us first prove that F r,m is an accepting condition for

G r,m (X). It is sufficient to show that F r,m (Y 1 ) ∩ {s} = F r,m (Y 2 ) ∩ {s} for any path (Y 1 , s, Y 2 ) ∈ Q r,m (X) × S r,m × Q r,m (X). Note that by definition of G r,m (X) we have Y 2 = γ -1 r,m,s (Y 1 ). Moreover, by definition of F r,m we get F r,m (Y 1 ) = S r,m ∩ ((1 -r)Y 1 ) and F r,m (Y 2 ) = S r,m ∩ ((1 -r)Y 2 ). As γ r,m,s ( s 1-r ) = s 1-r we deduce that F r,m (Y 1 ) ∩ {s} = F r,m (Y 2 ) ∩ {s}. Thus F r,
m is an accepting condition for G r,m (X). We deduce that A r,m (X) is a (r, m)-digit vector automaton. We denote by X ′ the set represented by A r,m (X). As expected, we are going to prove that X ′ = X. Let x ∈ X ′ and let us prove that x ∈ X. There exists a (r, m)-decomposition (σ, s) of x such that s ∈ F r,m (δ r,m (X, σ)). Thus s ∈ S r,m ∩ ((1-r)γ -1 r,m,σ (X)). We deduce that γ r,m,σ ( s 1-r ) ∈ X. As γ r,m,σ ( s 1-r ) = ρ r,m (σ, s) we have proved that x ∈ X. Conversely let x ∈ X and let us prove that x ∈ X ′ . Let us consider a (r, m)-decomposition (σ, s) of x. As x = ρ r,m (σ, s) and ρ r,m (σ, s) = γ r,m,σ ( s 1-r ), we get s ∈ S r,m ∩ ((1r)γ -1 r,m,σ (X)). Therefore s ∈ F r,m (δ r,m (X, σ)) and we deduce x ∈ X ′ . We have proved that X = X ′ . ✷ Definition 13 A r,m (X) is called the canonical (r, m)-digit vector automaton that represents a r-definable set X ⊆ Z m . Z Sr Σr N {0} Σr Fig. 2. On the left, A r,1 (Z). On the right, A r,1 (N)

∅ q ⊥ x[1] + x[2] = x[3] q 0 x[1] + x[2] + 1 = x[3] q 1 s∈S r,3 s[1]+s[2]=s[3] s∈S r,3 s[1]+s[2]+1=s[3]+r b∈Σ r,3 b[1]+b[2]=b[3] b∈Σ r,3 b[1]+b[2]+1=b[3]+r Σ r,3 b ∈ Σ r , 3 b [ 1 ] + b [ 2 ] ∈ b [ 3 ] + r . Z b ∈ Σ r , 3 b [ 1 ] + b [ 2 ] + 1 ∈ b [ 3 ] + r . Z b∈Σ r,3 b[1]+b[2]+1=b[3] b∈Σ r,3 b[1]+b[2]=b[3]+r Fig. 3. A r,3 ({x ∈ Z 3 | x[1] + x[2] = x[3]})
Example 14 The canonical (r, m)-digit vector automata A r,2 (V r ), A r,1 (Z), A r,1 (N) and A r,3 (X + ) where 1, 2 and 3. Observe that states Y ∈ Q r,m (X) are labelled by formulas denoting Y and we draw dot-edges from Y to a formula denoting F r,m (Y ) when this last set is not empty.

X + = {x ∈ Z 3 | x[1]+x[2] = x[3]} are represented in Fig.
The following proposition shows that A r,m (X) is the unique (up to isomorphism) minimal for the number of states (r, m)-digit vector automaton that represents X.

Proposition 15 For any r-definable set X ⊆ Z m , the canonical (r, m)-digit vector automaton A r,m (X) is the unique (up to isomorphism) minimal for the number of states (r, m)-digit vector automaton that represents X.

PROOF. First of all, observe that proposition 9 proves that for any (r, m)digit vector automaton A = (q 0 , G, F 0 ) that represents X the set of states

Q satisfies |Q| ≥ |Q r,m (X)|. Thus, if |Q| is minimal we have |Q| = |Q r,m (X)|.
Note that in this case proposition 9 shows that A and A r,m (X) are isomorph by the bijective function q → X q . ✷ 6 Replacing The Final Function

The digit vector automaton obtained from a digit vector automaton A = (q 0 , G, F 0 ) by replacing the accepting condition F 0 by another accepting condition F for G is denoted by A F = (q 0 , G, F ). Given a r-definable set X implicitly represented by a digit vector automaton A, we denote by X F the set represented by the digit vector automaton A F .

Definition 16 A set X ′ ⊆ Z m is said (r, m)-detectable in a r-definable set X ⊆ Z m if
for any (r, m)-digit vector automaton A = (q 0 , G, F 0 ) that represents X there exists an accepting function F for G such that X ′ is represented by A F .

In section 6.1 we characterize the (r, m)-detectability property. Observe that a set X ′ ⊆ Z m that is (r, m)-detectable in a r-definable set X ⊆ Z m is rdefinable. In section 6.2 we prove that if X is Presburger then X ′ is also Presburger.

Detectable sets

In order to characterize the (r, m)-detectability property, we first prove the following technical lemma.

Lemma 17 For any r-definable set X ⊆ Z m and for any accepting condition F for G r,m (X), the set X ′ represented by the (r, m)-digit vector automaton

(X, G r,m (X), F ) satisfies γ -1 r,m,σ 1 (X ′ ) = γ -1 r,m,σ 2 (X ′ ) for any words σ 1 , σ 2 ∈ Σ * r,m such that γ -1 r,m,σ 1 (X) = γ -1 r,m,σ 2 (X). PROOF. Let us consider σ 1 , σ 2 ∈ Σ * r,m such that γ -1 r,m,σ 1 (X) = γ -1 r,m,σ 2 (X)
. By construction of A r,m (X), we deduce that δ r,m (X, σ 1 ) = δ r,m (X, σ 2 ). From proposition 9, as X ′ is represented by A r,m (X) F , we deduce that γ

-1 r,m,σ 1 (X ′ ) = γ -1 r,m,σ 2 (X ′ ). ✷ Proposition 18 A set X ′ ⊆ Z m is (r, m)-detectable in a r-definable set X ⊆ Z m if and only if γ -1 r,m,σ 1 (X ′ ) = γ -1 r,m,σ 2 (X ′ ) for any words σ 1 , σ 2 ∈ Σ * r,m such that γ -1 r,m,σ 1 (X) = γ -1 r,m,σ 2 (X). PROOF. Assume first that X ′ is (r, m)-detectable in X. Since A r,m (X) = (X, G r,m (X), F r,m
) is a (r, m)-digit vector automaton that represents X and X ′ is (r, m)-detectable in X, there exists an accepting condition F for G r,m (X) such that X ′ is represented by (X, G r,m (X), F ). From lemma 17 we deduce that

γ -1 r,m,σ 1 (X ′ ) = γ -1 r,m,σ 2 (X ′ ) for any words σ 1 , σ 2 ∈ Σ * r,m such that γ -1 r,m,σ 1 (X) = γ -1 r,m,σ 2 (X). Conversely, assume that X ′ satisfies γ -1 r,m,σ 1 (X ′ ) = γ -1 r,m,σ 2 (X ′ ) for any words σ 1 , σ 2 ∈ Σ * r,m such that γ -1 r,m,σ 1 (X) = γ -1 r,m,σ 2 (X).
Let us consider a (r, m)-digit vector automaton A = (q 0 , G, F 0 ) that represents X. Let F be the function defined by

F (q) = {s ∈ S r,m | ∃σ ∈ Σ * r,m | δ(q 0 , σ) ∈ δ(q, s * ) ∧ ρ r,m (σ, s) ∈ X ′ }.
We first prove that F is an accepting condition for G. Consider a path (q, s, q ′ ) with s ∈ S r,m , and let us prove that s ∈ F (q) if and only if s ∈ F (q ′ ). Assume first that s ∈ F (q) and let us prove that s ∈ F (q ′ ). As s ∈ F (q), we deduce that there exists σ ∈ Σ * r,m such that δ(q 0 , σ) ∈ δ(q, s * ) and ρ r,m (σ, s) ∈ X ′ . Observe that δ(q 0 , σs) ∈ δ(q ′ , s * ) and since ρ r,m (σs, s) = ρ r,m (σ, s) we deduce that s ∈ F (q ′ ). Now, assume that s ∈ F (q ′ ) and let us prove that s ∈ F (q). Since s ∈ F (q ′ ) there exists σ ∈ Σ * r,m such that δ(q 0 , σ) ∈ δ(q ′ , s * ) and ρ r,m (σ, s) ∈ X ′ . Remark that δ(q, s) = q ′ and thus δ(q ′ , s * ) ⊆ δ(q, s * ). In particular δ(q 0 , σ) ∈ δ(q, s * ). We deduce that s ∈ F (q). We have proved that F is an accepting condition for G.

Finally, let us prove that X ′ = X F . Let x ′ ∈ X ′ and let us prove that x ′ ∈ X F . We denote by (σ, s) a (r, m)-decomposition of x ′ . We have ρ r,m (σ, s) ∈ X ′ . The state q = δ(q 0 , σ) satisfies δ(q 0 , σ) ∈ δ(q, s * ). Thus s ∈ F (q) and we deduce that ρ r,m (σ, s) ∈ X F . We have proved that x ′ ∈ X F . Conversely, let x ′ ∈ X F and let us prove that x ′ ∈ X ′ . There exists a (r, m)-decomposition (w, s) of x ′ such that s ∈ F (δ(q 0 , w)). Denoting by q = δ(q 0 , w), the definition of F (q) shows that there exists σ ∈ Σ * r,m satisfying δ(q 0 , σ) ∈ δ(q, s * ) and ρ r,m (σ, s) ∈ X ′ . Thus there exists k ∈ N such that δ(q 0 , σ) = δ(q, s k ). From δ(q 0 , σ) = δ(q 0 , ws k ) and proposition 9 we deduce that γ -1 r,m,σ (X) = γ -1 r,m,ws k (X). We deduce that γ

-1 r,m,σ (X ′ ) = γ -1 r,m,ws k (X ′ ). From ρ r,m (σ, s) ∈ X ′ we deduce that s 1-r ∈ γ -1 r,m,σ (X ′ ). Therefore s 1-r ∈ γ -1 r,m,ws k (X ′
). We deduce that ρ r,m (ws k , s) ∈ X ′ . As ρ r,m (ws k , s) = x ′ we get x ′ ∈ X ′ . We have proved that X ′ = X F . ✷ Let us now characterize the sets (r, m)-detectable in any r-definable set X ⊆ Z m . Let Z r,m,s = ρ r,m (Σ * r,m × {s}) be the set of vectors x ∈ Z m satisfying the following Presburger formula:

(

i|s[i]=0 x[i] ≥ 0) ∧ ( i|s[i]=r-1 x[i] < 0) Proposition 19 A set X ′ ⊆ Z m is (r, m)-detectable in any r-definable set X ⊆ Z m if
and only if there exists S ⊆ S r,m such that X ′ = s∈S Z r,m,s .

PROOF. Let us consider S ⊆ S r,m and a (r, m)-digit vector automaton A = (q 0 , G, F 0 ) that represents a r-definable set X and just remark that s∈S Z r,m,s is represented by the (r, m)-digit vector automaton A F where F : Q → P(S r,m ) is defined by F (q) = S for any q ∈ Q. Therefore s∈S Z r,m,s is (r, m)-detectable in any r-definable set X ⊆ Z m . Conversely, let us consider a set X ′ ⊆ Z m that is (r, m)-detectable in any r-definable set X. Note that ∅ is represented by the canonical (r, m)-digit vector automaton A r,m (∅) with the set of states Q r,m (∅) = {∅}. As X ′ is (r, m)-detectable in ∅, we deduce that there exists an accepting condition F such that X ′ is represented by A r,m (∅) F . Let S = F (∅) and observe that X ′ = s∈S Z r,m,s . ✷ Remark 20 The set X 1 #X 2 is (r, m)-detectable in a r-definable set X for any (r, m)-detectable sets X 1 , X 2 in X, and for any # ∈ {∪, ∩, \, ∆}.

Presburger detectable sets

Naturally, if a set X ′ ⊆ Z m is (r, m)-detectable in a r-definable set X ⊆ Z m , then X ′ is r-definable. In this section, we show that if X is Presburger then X ′ is also Presburger.

We first prove the following technical lemma.

Lemma 21 For any integer n ≥ 1 there exists an integer k ≥ 1 such that r k+k ∈ r k + nZ m . PROOF. Consider the function h r : N\{0} → N\{0} defined by h r (i) = i gcd(i,r) where gcd(i, r) is the greatest common divisor of i and r. Since h r satisfies 0 < h r (i) ≤ i for any i ∈ N, there exists an integer k ∈ N such that

h k+1 r (n) = h k r (n). Let n ′ = h k r (n). Since h r (n ′ ) = n ′ ,
the integer n ′ is relatively prime with r. In particular there exists k ′ ∈ N\{0} such that r k ′ ∈ 1 + n ′ Z. An immediate induction over j ∈ N shows that n divides r j h j r (n) for any j ∈ N. In particular n divides Let us consider the following Presburger formula ψ i,z (y, x ′ ) parameterized by 1 ≤ i ≤ j and 0 ≤ z < k:

r k h k r (n) = r k n ′ . From r k ′ ∈ 1 + n ′ Z, we get r k ′ +k ∈ r k + n ′ r k Z. We have proved that r k ′ +k ∈ r k + nZ. Observe that k = (1 + k ′ )k + k ′ satisfies r k+k ∈ r k + nZ.
ψ i,z (y, x ′ ) := s∈Sr,m        x ′ ∈ Z r,m,s ∧( α i , y -s 1-r < 0 ∨ ( α i , y -s 1-r = 0 ∧ α i , x ′ < c i )) ∧r k+z (y -s 1-r ) + x ′ ∈ a + n i Z m       
Let us prove that for any (r, m)-decomposition (σ, s) ∈ Σ * r,m × S r,m the two formulas φ i (γ r,m,σs k (y)) and ψ i,f k (|σ|) (y, ρ r,m (σ, s)) are equivalent. We denote by z the integer z = f k (|σ|). As γ r,m,σs k (y) = r |σ|+k (y -s 1-r )+ρ r,m (σ, s) we deduce that α i , γ r,m,σs k (y) < c i if and only if α i , y -s 1-r < c i -α i ,ρr,m(σ,s)

r |σ|+k . Since ||ρ r,m (σ, s)|| ∞ ≤ r |σ| and |c i | + m ||α i || ∞ < r k , we get | c i -α i ,ρr,m(σ,s) r |σ|+k | < 1. As α i , y -s 1-r ∈ Z for any y ∈ Z m , we deduce that α i , γ r,m,σs k (y) < c i if and only if α i , y -s 1-r < 0 ∨ ( α i , y -s 1-r = 0 ∧ α i , ρ r,m (σ, s) < c i ). Moreover as γ r,m,σs k (y) = r k+|σ| (y -s 1-r ) + ρ r,m (σ, s) and r k+k ∈ r k + n i Z we deduce that γ r,m,σs k (y) ∈ a i + n i Z if and only if r k+z (y -s 1-r ) + ρ r,m (σ, s) ∈ a i + n i Z.
We have proved that the two formulas φ i (γ r,m,σs k (y)) and ψ i,f k (|σ|) (y, ρ r,m (σ, s)) are equivalent.

Let us consider the Presburger formula ψ z (y, x ′ ) := R(. . . , ψ i,z (y, x ′ ), . . .) parameterized by 0 ≤ z < k. Let us prove that for any (r, m)-decomposition (σ, s) ∈ Σ * r,m × S r,m we have ψ f k (|σ|) (y, ρ r,m (σ, s)) if and only if y ∈ γ -1 r,m,σs k (X). From the previous paragraph we deduce that ψ f k (|σ|) (y, ρ r,m (σ, s)) is equiv-alent to R(. . . , φ i (γ r,m,σs k (y)), . . .). Thus ψ f k (|σ|) (y, ρ r,m (σ, s)) if and only if γ r,m,σs k (y) ∈ X if and only if y ∈ γ -1 r,m,σs k (X).

As X ′ is (r, m)-detectable in X, there exists a function

f : Q r,m (X) → Q r,m (X ′ ) such that f (γ -1 r,m,σ (X)) = γ -1 r,m,σ (X ′ ) for any σ ∈ Σ * r,m .
Moreover, as X is Presburger observe that any set Y ∈ Q r,m (X) is Presburger. Thus, there exists a Presburger formula φ Y (y) that denotes Y . Let us consider the following Presburger formula ψ(x ′ ).

ψ(x ′ ) := Y ∈Qr,m(X) s∈Sr,m∩((1-r)f (Y )) z∈{0,...,k-1} (x ′ ∈ Z r,m,s ∧ (∀y ψ z (y, x ′ ) ⇐⇒ φ Y (y)))
Let us prove that ψ(x ′ ) denotes the set X ′ . Consider a vector x ′ ∈ X ′ and let us prove that ψ(x ′ ) is satisfied. Consider a (r, m)-decomposition (σ, s) of x ′ . By definition of s we have x ′ ∈ Z r,m,s . Let Y = γ -1 r,m,σs k (X) and let z = f k (|σ|). From ρ r,m (σ, s) ∈ X ′ and ρ r,m (σ, s) = ρ r,m (σs k , s) we deduce that s ∈ (1r)γ -1 r,m,σs k (X ′ ). By definition of the function f we deduce that f (γ -1 r,m,σs k (X)) = γ -1 r,m,σs k (X ′ ). We have proved that s ∈ S r,m ∩ ((1r)f (Y )). Recall that ψ z (y) is equivalent to y ∈ γ -1 r,m,σs k (X). Thus the formula ∀y ψ z (y, x ′ ) ⇐⇒ φ Y (y) is satisfied. We have proved that ψ(x ′ ) is true. Conversely let us consider a vector x ′ ∈ Z m that satisfies ψ(x ′ ). There exists Y ∈ Q r,m (X), s ∈ S r,m ∩((1-r)f (Y )) and 0 ≤ z < k such that x ′ ∈ Z r,m,s and such that ∀y ψ z (y, x ′ ) ⇐⇒ φ Y (y). As x ′ ∈ Z r,m,s , there exists a word σ ∈ Σ * r,m such that (σ, s) is a (r, m)decomposition of x ′ . By replacing σ by a word in σs * , we can also assume that z = f k (|σ|). Observe that in this case ψ z (y, ρ r,m (σ, s)) is equivalent to y ∈ γ -1 r,m,σs k (X). As ψ z (y, ρ r,m (σ, s)) is equivalent to y ∈ Y we deduce that Y = γ -1 r,m,σs k (X). Therefore f (Y ) = γ -1 r,m,σs k (X ′ ). From s 1-r ∈ f (Y ) we get ρ r,m (σs k , s) ∈ X ′ . As ρ r,m (σ, s) = ρ r,m (σs k , s) we get x ′ ∈ X ′ . We have proved that ψ(x ′ ) denotes X ′ . ✷ 7 Structural Presburger Digit Vector Automata A (r, m)-digit vector graph G = (Q, Σ r,m , δ) is said Presburger if the (r, m)digit vector automaton (q, G, F ) represents a Presburger set for any initial state q ∈ Q and for any accepting condition F for G. A (r, m)-digit vector automaton A = (q 0 , G, F 0 ) is said structurally Presburger if G is Presburger. Observe that we have proved the following result.

Theorem 23 The canonical (r, m)-digit vector automaton A r,m (X) of a Pres-burger set X ⊆ Z m is structurally Presburger.

PROOF. Let X ⊆ Z m be a Presburger set and let G r,m (X) be the canonical (r, m)-digit vector graph of X. Let us consider an accepting condition F for G r,m (X). Lemma 17 shows that the set X ′ represented by the (r, m)-digit vector automaton (X, G r,m (X), F ) is (r, m)-detectable in X. As X Presburger, theorem 22 proves that X ′ is Presburger. Now, let us consider a state q ∈ Q r,m (X). As q is reachable from X and X ′ is Presburger, theorem 10 proves that the set represented by the (r, m)-digit vector automaton (q, G r,m (X), F ) is Presburger. We have proved that G r,m (X) is Presburger. ✷

The previous theorem shows that the digit vector automata obtained from minimal digit vector automata representing Presburger sets by moving the initial states and replacing the accepting conditions also represent Presburger sets. That means, a criterion for deciding if a digit vector automaton represents a Presburger set should be invariant by these two transformations.

  Thus r k+k ∈ r k + nZ. ✷ Theorem 22 A set detectable in a Presburger set is Presburger.PROOF. Consider a set X ′ ⊆ Z m that is (r, m)-detectable in a Presburger set X ⊆ Z m . A quantification elimination shows that there exists a propositional formula R(p 1 , . . . , p j ) and a sequence (φ i (x)) 1≤i≤j of Presburger formulas of the formφ i (x) := α i , x < c i ∧ x ∈ a i + n i Z m where α i , a i ∈ Z m , c i ∈ Zand n i ∈ N\{0} such that X is denoted by the Presburger formula φ(x) := R(. . . , φ i (x), . . .). The product n = n 1 . . . n j and lemma 21 proves that there exists an integer k ≥ 1 such that r k+k ∈ r k +n i Z for any i. By replacing k by an integer in (N\{0})k larger enough, we can also assume that |c i |+m ||α i || ∞ < r k for any i. Given an integer z ∈ Z, we denote by f k (z) the unique integer in {0, . . . , k -1} such that f k (z) ∈ z + kZ.