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1 Introduction

The Euclidean and the discrete world are generally considered as antagonists.
Both worlds have different properties and it is reflected in the operations. Oper-
ations might be trivial in one world and difficult to transpose in the other one.
For instance, there isn’t a satisfying discrete rotation that is at the same time
one-to-one and commutative. Two primary properties of the Euclidean rotation.
Boolean operations (intersection, union, difference) that are trivial in the discrete
world become tedious to perform in the Euclidean world because of numerical
errors. The goal of this paper is to show how the specificities of both worlds
can be used to define operations with new interesting properties. To illustrate
this we propose two operations: one in the discrete (discrete smooth scaling)
and one in the Euclidean world (discrete based geometrical simplification). Each
operation is partly performed in the other world with a digitization and/or an
analytical reconstruction step. The digitization process allows us to move from
the Euclidean world to the discrete world. The analytical reconstruction process
allows us to move from the discrete to the Euclidean world.

The first operation that we are proposing is called ”discrete smooth scaling”.
The idea behind this operation is to describe a discrete object in a smaller (finer)
grid. We want to perform this operation without filtering or smoothing. The in-
formation in a discrete cell (pixel, voxel) can be a complex information that can’t
simply be smoothed. So far, discrete scaling didn’t respect geometrical proper-
ties of the object (discrete edge slopes for instance)[3]. To solve this problem, we
perform the dilation in the space best adapted: the Euclidean space. We perform
an analytical reconstruction on the original image followed by a Euclidean scal-
ing. The discretization provides us with the final ”refined” image. This discrete



smooth scaling operation possesses a remarkable property: the almost stability
by inverse scale. If we make a discrete smooth scale of factor α ≥ 1 followed by
a discrete smooth scale of factor β = 1

α
we obtain the original discrete object

with an error bounded by a factor proportional to 1
α
.

The second operation is a discrete based geometrical simplification opera-
tion. The operation consists, this time, starting with a Euclidean object, to
digitize with a given grid size and then to reconstruct it. When we reconstruct
a discrete object, the ”shape complexity” (resulting vertice and edge number)
depends on the size of the object. The smaller the object, the less complex the
reconstructed object. It is however difficult to assure a topological consistence
between the initial object and the reconstructed object. An interesting property
of this operation is that the Hausdorff distance between the original object and
the simplified object is bounded by a factor proportional to the grid size.

The interest of these two operations is that they each make use of the prop-
erties of the other world. The discrete operation uses the properties of the Eu-
clidean world and the Euclidean operation those of the discrete world. These
operations show how the duality between the discrete and the Euclidean world
can be used at our advantage.

In section two, we introduce the basic notions used in this paper such as
discrete analytical models, the principle of the analytical reconstruction method
and the notations used through out the paper. In the third section we intro-
duce the discrete discrete smooth scaling operation. In section four we present
the discrete geometrical simplification operation. We conclude and propose some
extensions in section five.

2 Preliminaries

2.1 Basic notations in discrete geometry

The following notations correspond to those given by Cohen and Kaufman in [6]
and those given by Andres in [1]. We provide only a short recall of these notions.

A discrete (resp. Euclidean) point is an element of Zn (resp. Rn ). A
discrete (resp. Euclidean) object is a set of discrete (resp. Euclidean) points.
We denote pi the ith coordinate of a point p of Z

n. The voxel V(p) ⊂ R
n of a

discrete nD point p is defined by V(p) = [p1 − 1
2 , p1 + 1

2 ]× ...× [pn − 1
2 , pn + 1

2 ].
For a discrete object D, V(D) =

⋃

p∈D V(p)
In this paper, we use the Hausdorff distance defined by:

Definition 1. Let h be the direct Hausdorff distance: A ⊂ Rn, B ⊂ Rn,

h(A, B) = maxa∈A (minb∈B (d2(a, b))) , where d2 is the Euclidean distance.

The Hausdorff distance H between A and B is H(A, B) = max (h(A, B), h(B, A))

This paper is based on the relations between the Euclidean and the discrete
world and the way operations can benefit from this duality. We present two
operations that are based on the Euclidean scale function noted Sc. We consider,
without loss of generality, that the center of the scale function Sc is the origin.



2.2 Digitization and reconstruction

The basic idea behind this paper is to profit from the possibility to travel between
the discrete world Zn and the Euclidean world Rn. The transformation from the
discrete to the Euclidean world is called digitization. The transformation from the
Euclidean world to the discrete world is called reconstruction. The experiments
presented in this paper have been conducted with the standard analytical model
[1] (see also Fig. 1). The theoretical results are however not restricted to the
standard analytical model and are also verified for a larger class of digitization
schemes. Most of the digitization schemes commonly used seem actually to fit
the definition that follows including the Bresenham algorithms, the supercover
model, the naive digitization, the standard model, etc. Let us try to propose a
characterisation of the digitization schemes that suit the purpose of this paper.

We consider digitization transforms defined by narrow offset areas. A narrow
offset area O is defined for classes of Euclidean objects. It simply has to verify two
fundamental conditions: A narrow offset area O (E) ⊂ Rn of a Euclidean object
E must be narrow meaning that if x ∈ O (E) ∩ Zn ⇒ V (x) ∩ E 6= ∅. It simply
requires that the digitization of an Euclidean object E to be composed of pixels
that are intersected by E. The second condition is a constructive condition. A
narrow offset area must verify a stability property for the union: O (E ∪ F ) =
O (E) ∪ O (F ).

Definition 2. The digitization based on a narrow offset area is defined by:

D : P(Rn) −→ P(Zn)

D (E) = {p ∈ Z
n |p ∈ O (E)} = O (E) ∩ Z

n

A good way to define a wide class of digitization tranforms is to define the
offset area with a distance d.

O (E) =

{

x ∈ R
n

∣

∣

∣

∣

d (x, E) ≤ 1

2

}

The best known discrete analytical model is called the supercover model
[2, 4, 11] with an offset defined by the Chebyshev distance d∞. The distance d1

defines the closed näıve model and the distance d2 defines the closed pythagorean
model. All distances, of course, don’t verify the narrowness property but many
do. There exist also narrow offset areas that aren’t defined with distances. This
is the case for the Bresenham algorithms, the standard analytical model, the
naive digitization, etc.

Digitization based on narrow offset areas verify, by construction, properties
such as D (E ∪ F ) = D (E)∪D (F ); D (E ∩ F ) ⊂ D (E)∩D (F ) and F ⊂ G =⇒
D (E) ⊂ D (F ). These properties ensure that we can build complex discrete
objects out of a set of basic elements. We can, for instance, build all linear
objects out of simplices.

Defining a reconstruction transform is much more difficult. If we want the
reconstruction transform to make any sense we must define some properties that



Fig. 1. supercover and standard model examples.

Fig. 2. Coherence between discrete and Euclidean world.

have to be verified. For any given analytical digitization, we have an infinity of
reconstruction operations [5, 7, 9, 10]. For instance, it’s natural to associate a
reconstruction transform to a digitization. Indeed, we can define a equivalence
relation ≈ between two Euclidean objects E and F by E ≈ F iff D (E) = D (F ).
There is a one-to-one mapping between the discrete objects and the equivalence
classes defined by ≈. One of the properties of any reconstruction R is to stay in
the equivalence class if we digitize and then reconstruct. Of course, in general,
R (D (E)) 6= E (see Fig. 2).

Definition 3. Reconstruction

A reconstruction operation R : P(Zn) −→ P(Rn) associated to an analytical

digitization D is an operation verifying, for any Euclidean object E:

R (D (E)) ≈ E

A property that we won’t have systematically but that will be verified in
many practical situations is: D (R (A)) = A for a given discrete object A. This
property will be verified if there isn’t any missing information in A. For instance,
if we reconstruct a Bresenham line segment, that isn’t missing any pixels, the
property will be verified.

3 Discrete-Euclidean operations

In this part, we will study two operations linking the discrete and Euclidean
world. The first is an operation from Zn to Zn that use the Euclidean scale
properties to define a discrete smooth scale. The second, from Rn to Rn, uses
the digitization properties to erase details in Euclidean objects.



3.1 Discrete smooth scaling

The first operation that we are proposing is called discrete smooth scaling. The
idea behind this operation is to describe a discrete object on a smaller grid. We
want to perform this operation without filtering or smoothing (see Fig. 3). We
therefore perform the dilation in the space best adapted: the Euclidean space.

Fig. 3. a) original discrete object. b)reduced grid size. c) classical smoothing. d) discrete
smooth scaling.

Definition 4. We call discrete smooth scaling of a discrete object A of Zn by a

scale α, α ∈ R
+∗, the following operation denoted DSSα (A):

DSSα (A) = D ◦ Scα ◦ R(A)

We can see in section 4 some examples of this operation on discrete objects.
The operation is meant to work for α ≥ 1. We can consider scales smaller
than 1 especially in order to define the inverse operation. However the intuitive
DSS 1

α

is actually not an exact inverse operation (see Fig. 4). We don’t know
for the moment how to define the exact inverse transform but we can estimate
the error commited with DSS 1

α

. This error is due to the reconstruction part
of the operation. We don’t measure the error between two discrete objects A

and DSS 1
α

(DSSα (A)) but between R (A) and Sc 1
α

(R (DSSα (A))). This error
measure is translation independant.

Note that the error bound we are proposing makes sense for objects veri-
fying D (R (A)) = A. In case of missing information and partial information
reconstruction the result of the theorem that follows stands but it’s not very
meaningful. Measuring an error between an incomplete discrete object and its
scaled and descaled reconstruction isn’t, in our case, very interesting. So, let us
suppose, for what follows, that D (R (A)) = A.

Let us introduce several notations: for a discrete object A, we note Afirst =
R(A) the reconstruction of the original discrete object and we note Alast =
Sc 1

α

(R (DSSα (A))) the Euclidean object which discretization is Alast ∩ Zn =

DSS 1
α

(DSSα (A)). The error measure is a bound on the Hausdorff distance
between both objects.



Fig. 4. Discrete smooth scaling: inversibility problem.

Fig. 5. Discrete smooth scaling inversibility.

Theorem 1.

H (Afirst, Alast) = H
(

R (A) , Sc 1
α

(R (D (Scα (R(A)))))
)

≤ 1

α

√
n.

Proof (see Fig. 5): Let A be a discrete object and let: Afirst = A(1) = R(A) ⊂
Rn, A(2) = Scα(A(1)) ⊂ Rn, A(3) = D(A(2)) ⊂ Zn, A(4) = R(A(3)) ⊂ Rn,
Alast = A(5) = Sc 1

α

(A(4)) ⊂ Rn and A(6) = D(A(5)) ⊂ Zn.According to our

notations, we have Afirst = A(1) and Alast = A(5).
Digitization and reconstruction definitions and properties provide the fol-

lowing result: A(2) ≈ A(4) and thus A(3) = (O(A(2))) ∩ Zn = (O(A(4))) ∩ Zn.
The narrowness property of the digitization tells us that A(2) and A(4) intersect
each voxel of A(3) and therefore, each voxel of A(3) contains at least one point
of A(2) and one of A(4). The Euclidean distance between these two points is
bounded by the voxel diagonal length:

√
n. We can generalize: ∀x ∈ A(2), ∃y ∈

D(4)|d2(x, y) ≤ √
n. This implies the following result on the direct Hausdorff dis-



tance: ∀x ∈ A(2), miny∈A(4) (d2(x, y)) ≤ √
n and therefore h(A(2), A(4)) ≤ √

n.

The same reasoning stands for h(A(4), A(2)) and leads to h(A(4), A(2)) ≤ √
n. The

result is : H(A(2), A(4)) ≤ √
n. We then apply the scale operation Sc 1

α

.We have

H
(

Sc 1
α

(

A(2)
)

, Sc 1
α

(

A(4)
)

)

= H
(

A(1), A(5)
)

≤ 1
α

√
n since Sc 1

α

(

A(2)
)

= A(1)

by construction and Sc 1
α

(

A(4)
)

= A(5) by definition.

Finally: H (Afirst, Alast) ≤ 1
α

√
n. �

Here are some comments on these results. The first obvious comment is that
the bigger the scaling factor, the smaller the possible difference between A and
DSS 1

α

(DSSα (A)) is (in case of D (R (A)) = A as already stated). Since R(A)−
Sc 1

α

(R (DSSα (A))) is smaller, there is a lesser chance that it contains a discrete
point. The result of our theorem is a quite general bounding value. It doesn’t
take into account the fact that the reconstruction algorithms are deterministic
and that it’s often the case that if A and B are very similar then R(A) is similar
to R(B). This occurs especially for small scale factors. We can thus suppose, and
experimentation supports it, that in many cases the actual Hausdorff distance is
much smaller than the theoretical bounding value we propose. For the case α = 1
we have no difference between Afirst = Alast and thus H (Afirst, Alast) = 0.

Corollary 1. limα→∞ H (Afirst, Alast) = 0.

The corollary tells us that the discrete smooth scaling is invertible when α

tends to infinite. In fact, the discrete smooth scaling operation can be seen as a
multi-scale digitization of the Euclidean scaling function with an approximation
factor α. We can say that when α tends to infinite then DSS tends to Sc. Some
more theoretical work needs to be done here. Non standard analysis is one way
of looking at this problem [12].

3.2 Discrete based geometrical simplification

The second operation we have studied and implemented is a discrete based geo-
metrical simplification operation. This operation acts on a Euclidean object that
is first digitized on a given grid size and then reconstructed. According to the
grid size, details are gathered in the same voxel and thus do not appear in the
reconstructed object. The bigger the voxel, the lesser details from the Euclidean
object will remain after the reconstruction. The object is simplified and can be
represented at different levels of details (see Fig. 6). In practice, it’s not the voxel
size that changes but the object size. The object is scaled with the Euclidean
scaling function to fit the grid size. For a scaling factor x the voxel size is 1

x
.

Definition 5. We call discrete based geometrical simplification of a Euclidean

object E of Rn by a factor α, α ∈ R+∗, the following operation denoted Spα(E):

Spα(E) = Sc 1
α

◦ R ◦ D ◦ Scα (E)



Digitizations

Associated reconstructions

Fig. 6. Discrete based geometrical simplification principle : α = 1, 1

2
and 1

4
.

We remark that the discrete based simplification has a similar property as the
discrete smooth scaling operation: the Hausdorff distance between the original
object and its simplification is bounded by a factor proportional to the grid size.

Theorem 2.

∀E ⊂ R
n, H(E, Spα(E)) ≤ 1

α

√
n.

Proof:

Theorem 2 is similar to theorem 1. We proved that

H
(

R (A) , Sc 1
α

(R (D (Scα (R(A)))))
)

≤ 1
α

√
n for A a discrete object. Now,

R (A) is a Euclidean object so, if we call E = R (A), we have

H
(

E, Sc 1
α

(R (D (Scα (E))))
)

≤ 1
α

√
n. By definition Sc 1

α

(R (D (Scα (E)))) =

Spα(E) which leads to H(E, Spα(E)) ≤ 1
α

√
n. �

The theorem tells us that the geometrical simplification process respects the
general shape of an object. The error we commit by replacing the Euclidean
object by its simplified version is bounded.

Corollary 2. limα→∞ Spα (E) = E.

4 Results: implementation and illustrations

Let us comment our implementation choices and present some images to illus-
trate the operations. The theoretical results we presented in this paper are valid



in dimension n for a very large class of digitization and related reconstructions
transforms. We implemented both operations in 2D. We present also an image
of our first results in 3D.

4.1 Implementation

For several years our discrete geometry team develops a multi-representation
modelling software intended to represent objects under four different embeddings
(see Fig. 7): a Euclidean version, its analytical equivalent, the region represen-
tation and finally a discrete 2D pixel or 3D voxel representation. This allows us
to choose the best adapted representation form depending on the type operation
we want to realise.

Fig. 7. Multi-representation modeller.

In this modeller discrete object are defined using the standard analytic model
[1] (see Fig. 1). The reconstruction implemented in the modeller was defined in
[5, 7] and is based on the preimage notion [8]. This algorithm computes the set of
Euclidean hyperplane segments which digitization contains the original discrete
object: R (A) ⊂ V (A) (the standard model is a cover). This approach is based
on discrete analytic geometry and is composed of two steps: the regognition of
discrete analytical hyperplane segments (see [10] for an overview on recognition
algorithms) and the analytical polygonalisation of the curve [9, 7].

4.2 Illustrations

Here we present illustrations of the discrete smooth scaling transform with scal-
ing factor α = 5 and α = 10.

The reconstruction operation we implemented [5, 7] reconstruct objects with
line segments, plane segments. The discrete smooth scaling is thus quite good on
discrete objects with linear borders. The arrows in figure 8 show that on more
circular parts the reconstruction creates less natural reconstruction shapes. This
comes of course from the fact that a circle in low resolution will be reconstructed
as a polygon.

The discrete based geometrical simplification operation decreases object de-
tail level and therefore decreases its complexity. This operation can be used to
simplify object when details are not perceptible by a human observer and when
only the global pattern of the object is meaningful. Our simplification operation



Fig. 8. Discrete smooth scale example (α = 5 and α = 10) with details.

allows to decrease significantly the number of object element to be rendered (see
Fig. 9).

Fig. 9. Edges and vertices number evolution.

However, as we can see on figure 9, for some coefficients (see dot lines), the
number of object element increases. This is due to the instability of the dig-
itization grid resulting from a simplification with coefficients in R and to the
non determinism of the number of reconstructed edges. Figure 9 shows several
resulting pictures. We can notice that the object topology is modified: a hole can
appear and then disappear. In [13], authors provide a theorem linking topology
modifications and grid size. This gives only a general bound because the recon-
struction process in not translation invariant. With a same grid size we can get
different topologies. Object topology not only depends on the grid size but on
its position. The center of the scaling function modifies the end result.

Figures 10 presents a discrete based simplification example and figure 11
shows its extention in 3D.



Fig. 10. Simplification example: α = 1, 1

2
, and 1

3.5
.

1 1

4

Fig. 11. 3D object simplification.

5 Conclusion

In this paper, we have presented two operations that both use Euclidean and
discrete world properties. Both operations are based on the Euclidean scaling
transform. In the first case it scales the object, in the second one, it scales the
grid. Both operations, while they seem quite different have a strong link and we
obtained similar error bounds for them. The first operation is called the ”discrete
smooth scaling”. We bounded the error done while trying to reverse this opera-
tion. The bigger the scale, the closer the discrete operation is to the Euclidean
scaling transform. The discrete smooth scaling can be seen as a digitization of
the Euclidean scale transform.

The second operation is a Euclidean operation that uses the discrete world
properties. We define an operation that digitizes and recontructs Euclidean ob-
jects according to a given grid size. Depending on the grid size, a certain number
of details are gathered in the same pixel and do therefore disappear during the
reconstruction process. The result is a simplified Euclidean object that can be
used in a multi-level representation form. The quality measure of a simplified ob-
ject is a bound of the Hausdorff distance between the simplified and the original
object proportional to the grid size.



In the future we are going to consider discrete-Euclidean transforms based
on Euclidean operations such as rotations, translations and general affine trans-
forms. We are also considering discrete-Euclidean transforms based on discrete
operations such as boolean operations, mathematical morphology operations,
etc. The long term theoretical goal of this study is to better understand the
relations between the Euclidean and the discrete world. In practice, we hope
to apply this new insight in multi-level topological structure operations or on
multi-scale described objects.
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