
HAL Id: hal-00345968
https://hal.science/hal-00345968v1

Submitted on 10 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FAST: acceleration from theory to practice
Sebastien Bardin, Alain Finkel, Jérôme Leroux, Laure Petrucci

To cite this version:
Sebastien Bardin, Alain Finkel, Jérôme Leroux, Laure Petrucci. FAST: acceleration from theory to
practice. International Journal on Software Tools for Technology Transfer, 2008, 10 (5), pp.401-424.
�10.1007/s10009-008-0064-3�. �hal-00345968�

https://hal.science/hal-00345968v1
https://hal.archives-ouvertes.fr

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

FAST: Acceleration from theory to practice ⋆

Sébastien Bardin1, Alain Finkel2, Jérôme Leroux3, Laure Petrucci4

1 LSL (LIST, CEA), Saclay
e-mail: sebastien.bardin@cea.fr

2 LSV (UMR CNRS 8643, ENS de Cachan), Cachan
e-mail: finkel@lsv.ens-cachan.fr

3 LaBRI (UMR CNRS 5800, ENSEIRB, Université Bordeaux-1), Bordeaux
e-mail: leroux@labri.fr

4 LIPN (UMR CNRS 7030, Université Paris-13), Villetaneuse
e-mail: laure.petrucci@lipn.univ-paris13.fr

The date of receipt and acceptance will be inserted by the editor

Abstract. Fast is a tool for the analysis of systems ma-
nipulating unbounded integer variables. We check safety
properties by computing the reachability set of the sys-
tem under study. Even if this reachability set is not nec-
essarily recursive, we use innovative techniques, namely
symbolic representation, acceleration and circuit selec-
tion, to increase convergence. Fast has proved to per-
form very well on case studies. This paper describes
the tool, from the underlying theory to the architecture
choices. Finally, Fast capabilities are compared with
those of other tools. A range of case studies from the
literature is investigated.

Keywords: counter systems, infinite reachability set,
symbolic representation, acceleration

1 Introduction

Automatic verification of reactive systems is a major
field of research. A popular way of modeling such sys-
tems is by means of concurrent automata with shared
variables. The automata represent the control structure
of the system, while variables encode data. Many classes
of such extended automata have been studied, consider-
ing variables ranging over integers (counters), real num-
bers (time), words (queues, stacks) and so on.

The semantics of such an extended automaton is given
by a transition system (C,−→), defined by a set of config-
urations C and a transition relation −→. A configuration
c ∈ C is a tuple of control locations (one for each com-
ponent) and a valuation for each variable of the system.

⋆ This paper is mainly based on results presented at CAV 2003,
TACAS 2004 and ATVA 2005.

The transition relation −→ is a binary relation over the
set of configurations. A configuration c′ is reachable from
a configuration c if and only if (c, c′) ∈−→∗, where −→∗ de-
notes the reflexive and transitive closure of −→. The set
of configurations reachable from the configuration c0 is
called the reachability set from c0.

Safety properties are expressed in terms of “safe reach-
able configurations”. They are the most commonly en-
countered properties in practice, and allow specification
of important properties such as the absence of deadlock,
capacity overflow and division by zero.

The class of counter systems, where variables range
over integers, appears to be interesting. From a practi-
cal point of view, these systems allow the modeling of,
for example, communication protocols [18], multi-thread
programs or programs with pointers [8]. From a theoret-
ical view, many well-known classes appear to be encom-
passed by counter systems, like Minsky machines, Petri
nets extended with reset/ inhibitor/ transfer arcs [32,
39], reversal-bounded counter machines [47] and broad-
cast protocols [33,34].

The counterpart of the expressiveness of counter sys-
tems is that only two counters with increment, decre-
ment and test-to-zero can simulate a Turing machine.
Then checking even basic safety properties of counter
systems is undecidable. Many works have been conducted
on identifying decidable subclasses, like Petri nets [60]
and reversal-bounded counter machines [46,47]. How-
ever few of these results have been implemented, mainly
for two reasons. First since each result applies for a re-
stricted subclass, there is no generic method for a large
class of counter systems. Second, these algorithms are
often inefficient in practice.

2 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

1.1 The tool Fast

In this paper, we present the tool Fast [5,9], designed to
check safety properties on counter systems. We made the
choice to consider a very large subclass of counter sys-
tems, namely linear counter systems, for which checking
safety properties is undecidable.

The safety properties are expressed in terms of Pres-
burger constraints over counters. They strictly include
the usual reachability properties, expressed in terms of
control location or upward closed / convex sets of con-
figurations.

The tool Fast has four main advantages:

Since linear counter systems and Presburger constraints
are very expressive, Fast can be applied to a large
spectrum of applications and the tool is not tied to
a particular specific case-study.

Despite the inherent theoretical limitations, a powerful
engine based on recently developed techniques (accel-
eration, flattening, reduction) allows Fast to check
the correctness of the system in most practical cases.

Fast design is fully based on a clear theoretical frame-
work (flat acceleration). Abilities and limits of the
tool are clearly identified: Fast is complete for the
class of flattable systems [7]. Moreover since many
decidable subclasses of counter systems are flattable,
Fast provides a unified verification algorithm for all
these classes [56,57].

Finally, in case the automatic verification fails, the user
can guide the tool using a script language. We think
that this is an important feature since termination
cannot be guaranteed.

1.2 Theoretical foundations

Symbolic model checking. Fast follows the model check-
ing approach [13,26], based on the exhaustive explo-
ration of the reachability set. However, since one manip-
ulates potentially infinite sets of configurations, called
regions, the model checking must be “symbolic”. A sym-
bolic representation must support the following opera-
tions: (1) post- and/or pre-image computation, (2) union
to collect all reachable configurations, (3) inclusion to
test for fixpoint. The most popular symbolic represen-
tations are based on regular languages: these are quite
expressive and automata-theoretical data structures pro-
vide well-known and efficient algorithms performing the
previous operations. With these ingredients, it becomes
possible to launch a fixpoint computation for forward
or backward reachability sets (see for example [51]), as
exemplified in procedure 1.

Acceleration. In practice, an iterative symbolic reacha-
bility set computation similar to the one of procedure 1
will surely fail. A solution to help convergence is to use

procedure reach1(x0)
input: symbolic configuration x0.

1: x← x0

2: while post(x) 6⊑ x do

3: x← post(x) ⊔ x
4: end while

5: return x

Procedure 1: standard symbolic procedure

acceleration techniques. Acceleration consists of comput-
ing in one step the effect of the transitive closure of a
transition or a sequence of transitions.

First ideas of acceleration can be found in the cover-
ing tree of Petri nets by Karp and Miller in 1969 [49],
extended by Finkel to well-structured transitions sys-
tems [36]. The first paper on the acceleration of counter
systems is probably due to Boigelot and Wolper in [21],
considering functions with increment/ decrement/ reset
and convex guards. Since then, lots of work has been
achieved in this area, for example [2,14,41,42,50]. Re-
sults of [20,37,66] extend those of Wolper and Boigelot
to linear functions with Presburger-definable guards.

Flat acceleration framework. An efficient acceleration
algorithm is not sufficient to compute the reachability
set. The question is how to find out the circuits (se-
quences of transitions) of the system, whose acceleration
will lead to a successful computation of the reachability
set. This issue was not clearly treated until we intro-
duced the flat acceleration framework [7]. We proposed
the notion of flattening, and showed that flat acceler-
ation computes the reachability set if and only if the
system is flattable. Moreover, we designed a complete
heuristic for flattable systems, and generic optimizations
called reductions. The framework is articulated around
four key points: (1) the system under consideration, (2)
the symbolic representation, (3) the acceleration algo-
rithm and (4) a heuristic to select circuits to be acceler-
ated.

The tool Fast follows strictly the flat acceleration
framework. The systems analyzed (linear counter sys-
tems with finite monoid) and the corresponding accel-
eration algorithms can be found in [37,66]. The sym-
bolic representation is based upon the automata repre-
sentation of semi-linear sets (see [23,67]). The selection
heuristic is the one described in [7] with the reduction
presented in [37].

Even though the reachability set of a linear counter
system is not Presburger definable in general, in prac-
tice the systems manipulated are regular enough to have
a Presburger definable reachability set. The techniques
presented throughout the paper allow for model checking
many counter systems (more than forty tests).

Moreover, Leroux and Sutre have shown in [56,57]
that Fast is guaranteed to terminate for many sub-

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 3

classes of counter systems: 2-counters VASS, reversal-
bounded counter machines, lossy VASS, BPP, Cyclic
Petri nets and other subclasses.

1.3 Other tools for counter systems

The following approaches and tools have been developed
to check correctness of counter systems.

Reachability set computation. Tools Alv [25,68], Lash [55]
and TReX [3] implement symbolic methods to compute
the forward reachability set of counter systems. Alv pro-
vides two different symbolic representations for integer
vectors: Presburger formula or automata as in Fast. Ac-
celeration is available for the formula-based representa-
tion [50], but not for the automata-based representation.
The tool is mostly used in backward computation or in
approximated forward computation [12]. Lash [55] foun-
dations are close to those of Fast, with similar symbolic
representations and acceleration algorithms. The main
difference is that Lash does not implement any circuit
search and the user has to provide circuits to the tool.
TReX [3] follows the same framework but uses rather
different technologies. A comparison of Alv, Fast, Lash

and TReX is presented in section 8.

Co-reachability set computation. One of the most inter-
esting results for counter systems verification is the com-
putability of the co-reachability set of monotonic VASS:
monotonic VASS is a large subclass, efficient symbolic
representations have been developed and interesting case
studies have been conducted. We can cite the work on
covering sharing trees of Delzanno, Raskin and Van Be-
gin [30] and the tool brain by Voronkov and Rybina [64].
These approaches are more specific than the one of Fast:
computation is backward only1, properties are reduced
to upward-closed sets and systems are monotonic. For
example case-studies of section 9 and section 10 could
not have been handled with these tools.

Reachability set approximation. Finally, some approaches
relax the exactness of computation to ensure computa-
tion termination or at least simpler computational steps.
However the superset obtained in the end may not be
tight enough to decide the property. We can cite the
classic tool Hytech [1], as well as the abstract-check
and refine technique of Raskin et al. [44] to compute
iteratively covering trees of monotonic Petri nets.

1.4 Contribution

This paper provides both an overview of the main re-
sults obtained on Fast and on acceleration of counter
systems [4,5,7,9,10,29,37,56,57] as well as some origi-
nal contributions: an up-to-date description of Fast, an

1 Fast can also be used for backward reachability computations.

in-depth experimental comparison with similar tools, the
verification of the TTP protocol (a short description of
this work was proposed in [4]) and the verification of the
Capacity Exchange Signaling protocol.

1.5 Outline

The sequel of the paper is structured as follows. Each
point of the Fast framework is presented in sections 2
to 5: counter systems (section 2), symbolic representa-
tion (section 3), acceleration (section 4) and selection
heuristic (section 5). After this overview of the theoret-
ical foundations, section 6 presents the tool Fast. Ex-
periments are presented in section 7, comparisons with
tools Alv, Lash and TReX can be found in section 8
and two case-studies are developed in sections 9 and 10.

2 Presburger Arithmetic And Counter Systems

2.1 Sets

Given two sets E and F , we denote by E∪F , E∩F , E\F
and E×F , the union, the intersection, the difference and
the Cartesian product of E and F . The set Ei, i > 0, is
defined by E1 = E and En+1 = E×En. We write E ⊆ F

if E is a subset of F . The empty set is denoted ∅. Given
two sets E, X such that E ⊆ X , the complement of E

(in X) is denoted by Ē and is defined as Ē = X\E. The
cardinal of a finite set X is written |X |.

2.2 Relations

A relation R between E and F is a subset R ⊆ E ×
F . We write xR x′ whenever (x, x′) ∈ R. The inverse
relation of R, written R−1 ⊆ F×E, is defined by x′R−1x

if and only if xRx′. The image of x ∈ E by R is the
set R(x) ⊆ F defined by R(x) = {x′ ∈ F |xRx′}. The
definition is extended to a set X ⊆ E by R(X) = {x′ ∈
F |∃x ∈ X.xRx′}. Given two relations R1 ⊆ E × F and
R2 ⊆ F × G, the composition of R1 and R2, written
R1 • R2 ⊆ E × G, is defined by: x(R1 • R2)x

′′ if xR1x
′

and x′R2x
′′ for some x′ ∈ F .

A binary relation R on E is a relation between E and
itself. The identity relation on E is the binary relation
IdE = {(x, x)| x ∈ E}. For R on E, we denote by Ri

the relation defined inductively by: R0 is the identity
relation on E and Rn+1 = R • Rn. The reflexive and
transitive closure of R, denoted R∗, is then defined by
R∗ =

⋃

n≥0 Rn.

2.3 Numbers and matrices of numbers

Let Z (resp. N) denote the set of integers (resp. non-
negative integers). We denote by Mn(Z) (resp. Mn(N))

4 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

q1 q2

x′ = x + 1 ∧ y′ = y /∗ a1 ∗/

x 6= y ∧ y′ = y + x ∧ x′ = x /∗ a2 ∗/

y′ = y + 2∧
x′ = x− 1
/∗ a3 ∗/

Fig. 1: A simple counter system

the set of square matrices of size n over Z (resp. N). The
identity matrix of size n is denoted 1n. The max-norm
of a matrix (resp. vector), written ||·||∞, is the maximal
absolute value appearing in the matrix (resp. vector).

2.4 Presburger arithmetic

Presburger arithmetic [63] is the first order additive the-
ory over the integers 〈Z,≤, +〉. Satisfiability and valid-
ity of Presburger arithmetic are both decidable. A Pres-
burger formula is denoted by φ(−→x) where −→x is a n-
dim vector of free variables (−→x [i] is the i-th component
of −→x). The set of vectors defined by such a formula
φ(−→x), i.e, the set of vectors satisfying φ, is denoted byq
φ(−→x)

y
⊆ Z

n. A set X ⊆ Z
n is said to be Presburger-

definable if there exists a Presburger formula φ(−→x) such
that X =

q
φ(−→x)

y
.

2.5 Counter systems

A counter system is a finite control structure (automa-
ton2) extended with m integer variables whose values
can be modified by actions denoted by a Presburger for-
mula. Fig. 1 gives an example of a counter system.

Definition 1 (Counter system). Let m be a non-
negative integer. A m-dim counter system S is a tuple
S = (Q, T, m), where Q is a finite non empty set of loca-
tions, and T is a finite set of transitions (q, φ, q′) where
q, q′ ∈ Q and φ(−→x ,−→x ′) is a Presburger formula over 2m

variables.

Given a transition t = (q, φ, q′) ∈ T , we define the
functions α, β and l by α(t) = q, β(t) = q′ and l(t) = φ.

Semantics. As previously mentioned, the semantics of a

counter system is given by a transition system (CS ,
T
−→).

The set of configurations CS of a counter system S is

Q×Z
m. The transition relation

T
−→ is defined as follows.

The semantics of a transition t ∈ T is given by the re-

lation
t

−→ over CS defined by: (q,−→x)
t

−→ (q′,−→x ′) if q =
α(t), q′ = β(t) and (−→x ,−→x ′) ∈ Jl(t)K. This definition can
be extended to the set T ∗ of sequences of transitions. Let

us denote by ε the empty word. Then
ε

−→
def
= IdCS

and
t·π
−→

def
=

t
−→ •

π
−→. We also extend −→ to any language

2 In case of multi-component systems, we consider the synchro-
nized product automaton.

L ⊆ T ∗ by
L

−→
def
=

⋃

π∈L

π
−→. The definition of

T
−→ fol-

lows directly. The relation
T∗

−→ is called the reachability
relation.

Remark 1. The analysis of a counter system with |Q|
locations and m counters can always be reduced to the
analysis of a system S′ = ({q′}, T ′, m+1) with only one
location and m + 1 variables, by encoding the control
structure in a new counter xQ.

Notation. Whenever S is implicitly known, it is omitted
in the notation.

2.6 Reachability problems

For any X ⊆ C and any L ⊆ T ∗, the set post(L, X) of
configurations reachable from X following sequences of

transitions in L is defined by post(L, X) = (
L
−→)(X) =

{x′ ∈ C| ∃x ∈ X ; (x, x′) ∈
L

−→}. We focus on two partic-
ular sets: the set post(T, X) of all configurations reach-
able in one step from X , also denoted by post(X); and
the set post(T ∗, X) of all configurations reachable from
X (the reachability set of X), also denoted by post∗(X).

Given an initial set of configurations X0, checking a
safety property P can be done by: (1) computing post∗(X0),
(2) deciding whether post∗(X0) ⊆ P holds or not. We
focus here on the reachability set computation, which is
the central issue. Since counter systems generalize Min-
sky machines (counters with increment, decrement and
test-to-zero), their reachability sets are not recursive in
general. Then the best we can hope for are correct proce-
dures, with no theoretical guarantee of termination but
efficient on large subclasses and practical case-studies.

A symmetrical approach is to compute in a backward

manner the co-reachability set pre∗(P̄) = (
L
−→)−1(P̄) and

check that X0∩pre∗(P̄) is empty. In the following we al-
ways consider forward computation, but our results can
be straightforwardly adapted to backward computation.

3 Automata-Based Symbolic Representation

The symbolic model checking approach was first devel-
oped to verify large but still finite-state systems. The
key idea is to manipulate sets of states directly through
a concise symbolic representation (such as BDDs) rather
than manipulate enumerations of concrete states. The
approach naturally extends to infinite state verification
using more complex symbolic representations, such as
automata.

In the case of counter systems, the class of Presburger-
definable sets is naturally used as the symbolic represen-
tation, since: (1) the union of two Presburger-definable
sets is effectively Presburger-definable, (2) assuming the

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 5

set X is Presburger-definable and S is a counter system,
then postS(X) is Presburger-definable, (3) we can check
if X ⊆ X ′ for any two Presburger-definable sets X and
X ′.

3.1 Number Decision Diagrams (ndd)

The efficiency of the algorithms based on Presburger de-
finable sets depends strongly on the symbolic represen-
tation used for manipulating these sets. Different tech-
niques [43] and tools have been developed for manipulat-
ing Presburger-definable sets : by working directly on the
Presburger formulas [52] (implemented in Omega [62]),
by using semi-linear sets [45] (implemented in Brain

[64]), or by using Number Decision Diagrams [23,65]
(ndd, implemented in Fast [5], Lash [55] and Mona

[53]).

The ndd representation is obtained by remarking that
given a basis r ≥ 2 of decomposition, an integer, or more
generally an integer vector in N

m, can be decomposed
into a word over the alphabet Σr,m = {0 . . . r − 1}m.
Then a “regular” set of integer vectors can be decom-
posed into a regular language L ⊆ Σ∗

r,m, and it can
be naturally represented by an automaton over Σr,m.
Such an automaton is called a ndd [23,65]. An example
is presented in figure 2. For more detailed information
on ndd and automata-theoretic representations of Pres-
burger sets, the reader is referred to [23,65,67].

(1,1,0)

(0,0,1)

(1,1,1)
(0,1,0) (0,0,0)

(1,0,1)
(1,1,0)
(0,1,1)

(0,0,1)
(1,0,0)

(0,1,0)(1,0,0)(0,1,1)(1,0,1)(0,0,0) (1,1,1)

CARRY

BAD

Fig. 2: An automaton to represent {(x, y, z)|x + y = z}
(least digit first)

This approach is very fruitful since set-theoretical
operations correspond to well-known operations on au-
tomata (intersection for conjunction, complementation
for negation, projection for quantification and so on).
Presburger-definable sets and Presburger-definable rela-
tions (on 2m variables (−→x ,−→x ′)) are canonically repre-
sented (uniqueness of the minimal form w.r.t. the num-
ber of nodes of the ndd). The post- and pre-operations for
arbitrary ndd-definable relations are also quite straight-
forward, since ndd-definable sets are closed by image of
such relations.

Automata representations are well-suited for appli-
cations that require a lot of boolean manipulations such
as model-checking. For these applications, ndd have two
crucial advantages over Presburger formula and semi-
linear sets. First, a minimization procedure for automata
provides a canonical representation for ndd-definable sets
(a set represented by a ndd). This means that the ndd

representing a given set only depends on this set and
not on the way it is computed. On the other hand, Pres-
burger formulas and semi-linear sets lack canonicity. As
a direct consequence, a set that possesses a simple rep-
resentation could unfortunately be represented in an un-
duly complicated way. Second, deciding if a given vector
of integers is in a given set can be performed in linear
time with ndd, while it is at least NP-hard [15,45] with
Presburger formula and semi-linear sets.

Remark 2. In practice, in order to decrease the number
of output transitions in the ndd, the basis r is set to 2
(binary decomposition) and the alphabet {0, 1}m is re-
duced to {0, 1} thanks to a serialization [67]. This can be
done without any loss of expressivity since Presburger-
definable sets are exactly the sets that can be represented
by ndd in any basis r of decomposition. People interested
in the expressive power of ndd should consult [24].

4 Reachability Computation For Flat Counter
Systems

Procedure 1 only terminates on bounded systems [7]: any
configuration x ∈ post∗(X) must be reachable from a

configuration x0 ∈ X by a path x0
π
−→ x where |π| is

bounded independently of x and x0. In practice systems
are rarely bounded. For example any linear counter sys-
tem (S, X0) such that post∗(X0) is infinite while X0 is fi-
nite (e.g. a system with a circuit adding one to a counter)
is not bounded. A notable exception is the class of mono-
tonic Petri nets, considering backward computation from
upward-closed sets of configurations.

Procedure 1 can be improved by using an algorithm
post star that computes from a symbolic representa-
tion of X and a regular language L ⊆ T ∗, a symbolic rep-
resentation of post(L, X). We are interested in infinite
regular languages L, simple enough so that post(L, X)
can be effectively computed from any set X . Indeed, if
L is finite, then post(L, X) can be computed by proce-
dure 1 and post star does not add any power to pro-
cedure 1. On the other hand, post(L, X) cannot be com-
puted for an arbitrary L, since post(T ∗, X) is equal to
the reachability set which is not recursive. In the sequel,
we consider the special case L = σ∗ where σ ∈ T ∗.

It is easy to define a first syntactic restriction to
counter systems such that the reachability set can be
computed with an improved version of procedure 1 using
post(σ∗, X) for some cycles σ ∈ T ∗. We call flat counter

6 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

system [27,38,40] a counter system where, for each lo-
cation q, there exists at most one elementary circuit in
the control graph containing q (see figure 3). Intuitively
a flat system has no nested loop. For example, to com-
pute the reachability set of the flat counter system of
figure 3, we first iterate t1, then fire t3 and finally it-
erate t2. Note that such an algorithm (if it exists) goes
beyond the standard symbolic procedure because it can
discover the set of configurations that are not necessarily
reachable by paths of a bounded length.

t1: x ≥ 0 ∧ x
′ = x + 2 ∧ y

′ = y

t2: x
′ = x + 1 ∧ y

′ = y + 1

t3: x ≥ y ∧ x
′ = x ∧ y

′ = y

q1 q2

Fig. 3: A flat counter system

4.1 Presburger linear functions

The set post(σ∗, X) is not Presburger-definable in gen-
eral even if X is Presburger-definable. Indeed, this set
can be non-recursive since the one-step reachability rela-
tion R of a Minsky machine is Presburger-definable and
can be encoded by a single loop t such that Jl(t)K = R.
Nevertheless, we say that a Presburger-definable binary
relation R ⊆ Z

n × Z
n can be accelerated if the binary

relation R∗ is Presburger-definable. In this section, we
define a subclass of Presburger-definable binary relations
R, both encompassing most of the usually used binary
relations R = Jl(σ)K and supporting the effective com-
putation of a Presburger formula encoding R∗.

Definition 2 (Presburger linear function [37]). A
Presburger linear function is a function f : Z

n → Z
n

such that there exists a tuple f̄ = (ϕ, M,−→v), where
ϕ(−→x) is a Presburger formula over n variables, M ∈
Mn(Z) is a square matrix and −→v ∈ Z

n is a vector, such
that f is defined over JϕK by f(−→x) = M.−→x + −→v .

Such a tuple f̄ = (ϕ, M,−→v) is called a Presburger linear
presentation of f . The formula ϕ is the guard of f̄ .

Note that the binary relation x′ = f(x) where f is
the Presburger linear function defined by f(x) = 2x

for any x is not accelerable. In fact, the binary rela-
tion x′ ∈ f∗(x) is not Presburger-definable. We intro-
duce the class of Presburger linear presentations with
a finite monoid to enforce the accelerability property.
The monoid of a Presburger linear presentation f̄ =
(ϕ, M,−→v) is the multiplicative monoid M∗ of the ma-
trix M , i.e. M∗ = {1m, M, M2, . . . , Mn, . . .}.

Note that when M = Idm the Presburger presenta-
tion f̄ = (ϕ, M,−→v) has a finite monoid. In this case, the

binary relation
−→
x′ ∈ f∗(−→x) is encoded by the following

Presburger formula:

∃k ≥ 0,
−→
x′ = −→x + k−→v ∧ ∀0 ≤ l < k, ϕ(−→x + l−→v) (1)

In fact, the following theorem holds.

Theorem 1 ([20,37]). The binary relation f∗ is ef-
fectively Presburger-definable for any Presburger linear
presentation f̄ with a finite monoid.

Proof. (Sketch) We reduce the proof to the straightfor-
ward case M = Idm. As f̄ = (ϕ, M,−→v) has a finite
monoid, there exists an integer n ≥ 0 and an integer
p ≥ 1 such that Mn+p = Mn. For any integer k ≥ 0
we denote by (ϕk, Mk,−→v k) a presentation of fk. Let us
consider the Presburger linear function g defined by the
presentation ḡ = (fn(ϕn+p), Idm, (Mp − Idm)−→vn + −→vp).
We observe that fp+n = g◦fn and the following equality
provides the reduction:

f∗ =

n−1
⋃

r=0

f r

p−1
⋃

r=0

g∗ ◦ fn+r

⊓⊔

Remark 3. The finiteness of the monoid of a Presburger
linear presentation is decidable in polynomial time [19].

We have proved that for a Presburger linear presenta-
tion f̄ = (ϕ, M,−→v) with a finite monoid, the transition
relation f∗ can be expressed as a Presburger formula.
Then computing a ndd representing f∗ can be achieved.
An upper bound for the construction of this ndd is 3-
EXPTIME in the size of the ndd encoding ϕ (denoted
|A(ϕ)|), the values

∣

∣

∣

∣

−→v
∣

∣

∣

∣

∞
and ||M ||∞, and the number

of counters m. The algorithm is implemented in Fast

and the upper bound has never been reached on case-
studies, except for the TTP system (with two faults),
for which we have designed a special acceleration algo-
rithm that takes into account the particular form of the
functions f manipulated.

For some subclasses of Presburger linear functions
f with a finite monoid, a more efficient algorithm for
computing f∗ can be expected.

Definition 3 (Convex translation [4]). A convex trans-
lation f is a Presburger linear function f = (ϕ, 1m,−→v)
where 1m is the identity matrix and ϕ is a convex poly-
hedron.

Convex translations are a subclass of Presburger lin-
ear functions with finite monoid. The class encompasses
for example Petri nets and Minsky machines. Actually,
we can use geometrical properties of convex sets to alle-
viate the transitive closure construction. In fact, in this
case the Presburger formula (1) can be replaced by the
following one:

∃k ≥ 0,
−→
x′ = −→x +k−→v ∧ ϕ(−→x) ∧ (k = 0∨ϕ(

−→
x′−−→v)) (2)

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 7

parameter (magnitude) standard algo. convex algo.

|A(ϕ)| (105) 3-EXP quadratic

m (≤ 102) 3-EXP EXP
||v||∞ (≤ 10) 3-EXP poly. in m

||M||∞ (≤ 10) 3-EXP = 1

Table 1. Complexity of the acceleration algorithms (upper
bounds)

f taken from |A(f∗)| Time (sec.) Memory (MB)
protocol Standard/Convex Standard/Convex
Dekker, 22 var 1,536 0.7/0.8 4.6/4
Mesh32, 52 var 1,614 2.1/2.5 8/7.8
Mesh32, 52 var 16,766 10.3/7.4 31/13
TTP2, 19 var 26,409 5.6/2.3 17/18
Dekker, 22 var 41,950 18/10.2 52/30
TTP2, 19 var 190,986 50/9 400/140
TTP2, 19 var 380,332 ↑↑↑/34 ↑↑↑/534

Table 2. Practical comparison of acceleration algorithms

The relation f∗ is proved in [4] to be computable in
time bounded by: |A(f∗)| ≤ |A(ϕ)|2.4.(4.m.

∣

∣

∣

∣

−→v
∣

∣

∣

∣

∞
+

1)3.m. The main reason for this improvement w.r.t. the-
orem 1 is that formula (2) has less quantifiers than for-
mula (1), while each quantifier may introduce an expo-
nential blow-up in both time and space. We call convex
acceleration the algorithm described in [4] to compute
the transitive closure of convex translations.

Remark 4. Since the ndd representation is canonical, the
resulting ndd is the same as the one obtained with stan-
dard acceleration. The difference is in the intermediate
ndd reached during the computation.

The complexity of the convex acceleration is quadratic
in |A(ϕ)|, polynomial in

∣

∣

∣

∣

−→v
∣

∣

∣

∣

∞
and exponential in the

number of counters m. This is a major improvement
compared to the standard acceleration algorithm, es-
pecially when considering this parameter can take val-
ues greater than 105. Table 1 recalls the upper bounds
for each acceleration algorithm. These results are proved
in [4]. Table 1 also provides the typical orders of magni-
tude of each parameter, based on our experiments on a
set of some 40 counter systems taken from the literature.
See section 7 for more details about the experiments.

In practice, convex acceleration allows to compute
some f∗ that cannot be computed by the standard accel-
eration algorithm (see [4] and section 9). Table 2 shows
a comparison of both algorithms on different transitions.
The convex algorithm performs better (in both time and
space) than the standard algorithm as soon as the result-
ing automaton (of the computation) has approximately
10, 000 nodes. When |A(f∗)| ≥ 100, 000 nodes, the con-
vex algorithm is clearly more efficient, and it can be the
case that it succeeds in computing A(f∗) while the stan-
dard algorithm fails.

4.2 Linear counter systems with a finite monoid

Definition 4 (Linear counter system [37]). A m-
dim counter system S = (Q, T, m) is a m-dim linear
counter system if each transition t ∈ T is labeled by
a Presburger linear presentation f̄t = (ϕt, Mt,

−→vt) such
that Jl(t)K = {(−→x ,−→x ′) ∈ Z

2m; −→x ′ = ft(
−→x)}.

Notation. In the following, we do not distinguish any-
more a Presburger linear function f and its presentation
f̄ . There are many presentations for a single function,
however f̄ is unambiguously given by the linear counter
system to be analyzed.

A key notion for linear counter systems is the finite-
ness of the monoid of the system. We now define the
monoid of a linear counter system. We denote by M the
set M = {Mt|t ∈ T }.

Definition 5. The monoid M∗ of a linear counter sys-
tem S is the multiplicative monoid generated by the set
of matrices M, i.e. M∗ =

⋃

n≥0

⋃

M1,...,Mn∈M M1 . . .Mn.

Remark 5. The finiteness of the monoid of a linear sys-
tem is decidable in exponential time [59].

Many well-known subclasses of counter systems ap-
pear to be linear counter systems with finite monoid.
Minsky machines, Petri nets extended with reset/ in-
hibitor/ transfer arcs [32,39], Ibarra’s reversal-bounded
counter machines [47] and broadcast protocols of Emer-
son et Namjoshi [33,34] are linear counter systems with
finite monoids.

4.3 Flat linear counter systems with a finite monoid

Theorem 2 ([37]). The reachability binary relation of
a flat linear counter system with a finite monoid is ef-
fectively Presburger-definable.

Linear counter systems with finite monoid satisfy two
properties crucial for our approach. First, they encom-
pass most of the interesting subclasses of counter sys-
tems. As a consequence, verification techniques for lin-
ear counter systems are very generic and can be applied
to a large range of systems. Second, the reachability set
of flat linear counter systems with finite monoid is ef-
fectively computable. Compared for example to Minsky
machines, they have three specific advantages:

Transitions are stable under composition, which sim-
plifies the acceleration computation since a sequence
of transitions σ behaves as a single transition.

Transitions are more expressive than those of a Minsky
machine. Even if any linear counter system is equiv-
alent w.r.t. reachability to a Minsky machine, the
corresponding control structure is much more diffi-
cult to handle because of the nested loops induced
by the simulation.

8 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

The language of guards in transitions is closed by dis-
junction and this is a central requirement for the re-
duction by union described in section 5. This tech-
nique is intensively used in Fast and experiments
prove it is a key feature of the tool.

5 Application to Flattable Counter Systems

An efficient acceleration algorithm is not sufficient to
compute reachability sets. We need a way to select which
circuits must be used to achieve the computation. In [7],
we identify the cornerstone notions of flattable systems
and flattenings of systems. We then deduce a procedure
for reachability set computation, maximal in the sense
that it is complete relatively to flattable systems. This
procedure is generic and schematic. Generic, in the sense
that it does not depend of the particular data types
manipulated by the system; and schematic, since one
must implement two abstract sub-procedures (Choose

and Watchdog) to obtain an effective (and maximal) pro-
cedure. In this section we recall some results from [7]
and present the reachability set computation procedure.
We then discuss the implementations of the Choose and
Watchdog procedures in Fast, and introduce specific op-
timizations for circuit selection. Finally, we discuss some
questions about flattable systems.

5.1 Flattenings and flattable systems

Since most systems of interest are not flat, the issue is to
deal with non-flat systems. A way to do it is to consider
flattenings [7] of the system under study. A flattening S′

of a system S (see figure 4) is a flat system simulated by
S. Note that flattening is a generalization of unfolding,
where one elementary cycle (and only one) is allowed on
each location.

q1

q2

t1: x ≥ 0 ∧ x
′ = x + 2 ∧ y

′ = y

t2: x
′ = x + 1 ∧ y

′ = y

t3: x ≥ y ∧ x
′ = x ∧ y

′ = y
t4: x

′ = x − y ∧ y
′ = y

x
′ = x ∧ y

′ = y + 1

q1 q1

q2

t1

t3
q2

t4

t1

t2

q1q2

t3

t3 t4

t4

Fig. 4: A system (left) and one of its flattenings (right)

A flattening S′ of a system S defines a subreach-
ability set post∗S′(X ′) included in post∗S(X) (for some

X ′ derived from X , see [7]). A system S is flattable [7]
when at least one of its flattenings S′ is equivalent to S

w.r.t. reachability, i.e. post∗S′(X ′) = post∗S(X). Since S′

is flat, the set post∗S′(X ′) is computable. Then using enu-
meration of flattenings and circuit acceleration, the set
post∗(X0) can be computed if (S, X0) is flattable. Ac-
tually, the reverse implication also holds [7]. Flattable
systems appear to be a maximal class for reachability
set computation by circuit accelerations.

5.2 A complete procedure for flattable systems

The following procedure is complete (w.r.t flattable sys-
tems) for reachability set computation of (S, X0): enu-
merate a flattening S′ of S, compute post∗S′(X ′

0), test if
it is a fixpoint of S: if so, return, otherwise iterate.

However, such a procedure will surely consume too
many resources in practice. We proposed in [7] an ap-
proach which proves to be efficient in practice. A re-
stricted regular linear expression (rlre) over an alphabet
σ is a regular expression of the form w∗

1 . . . w∗
n where

wi ∈ Σ∗. The fixpoint computation for flattable systems
reduces to exploring the set of rlre over T . This can be
achieved by building iteratively an increasing sequence
of rlre such that each w ∈ T ∗ is present infinitely often
in the sequence.

The key issue is to select the w ∈ T ∗ to be added
to the sequence at each step, such that the fixpoint
is reached quickly. Procedure 2 presents our complete
heuristic. Instead of considering all sequences in T ∗, we
consider only sequences of length less than or equal to
some bound k. This set of sequences is denoted T≤k, and
a circuit selection where length of circuits is limited to k

is said to be k-flattable. If the search fails, it is eventu-
ally stopped, k is incremented and the k-flattable macro
is launched again. Procedure Watchdog decides when k-

flattable should be aborted, and procedure Choose se-
lects at each step a sequence w ∈ T≤k.

The procedure is schematic: Choose and Watchdog

are abstract. Assuming their implementations respect
the fairness conditions listed in procedure 2, the proce-
dure obtained is correct and complete for flattable linear
counter systems with finite monoid [7].

5.3 Implementation of procedure reach2

We describe the implementations of Choose and Watch-

dog in Fast. We believe that these solutions are generic
enough to be used with other data types than counters.

Procedure Choose. There is no monotonic relationship
between the size of a region and the size of its concretiza-
tion (w.r.t. ⊆). Then regions reached during intermedi-
ate steps of computation may have a size much larger
than the one of the final region representing the fixpoint.

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 9

procedure reach2(x0)
input: a ndd x0

1: x← x0 ; k← 0
2: k ← k + 1
3: start

4: while post(x) 6⊆ x do /* k-flattable */
5: Choose fairly w ∈ T≤k

6: x← post star(w, x)
7: end while /* end k-flattable */
8: with

9: when Watchdog stops goto 2
10: return x

Fairness: we assume that along an infinite execution path of
reach2, procedure Watchdog is called infinitely often. More-
over, between two calls to Watchdog, each w ∈ T≤k is selected
at least once.

Procedure 2: Procedure reach2

Such large intermediate regions must be avoided as much
as possible. Choose selects the next w ∈ T≤k, such that
|post star(w, x)| ≤ |x|. If there is no such w, then the
next one is selected.

Procedure Watchdog. On the one hand, the procedure
should detect as early as possible that the length of cir-
cuits is not sufficient to compute the reachability set,
in order to avoid useless computations. On the other
hand it should keep the length of circuits tight enough
to prevent |T≤k| from becoming intractable. Let us de-
note by depth the number of iterations of line 4 of Proce-
dure 2 (macro k-flattable, depth is reset to 0 when exiting
the macro). Our stop criterion for Watchdog is a maxi-
mal limit on depth. In practice, with a value of k large
enough, the fixpoint is computed within a few iterations.

Completeness? These implementations of Choose and
Watchdog do not fully respect the fairness conditions
defined in procedure 2, thus termination is no longer
guaranteed in theory. However, in practice, Fast termi-
nates on many examples, as reported in section 7.

5.4 Reduction of the number of cycles

A remaining issue in procedure reach2 is the cardinal
of T≤k exponential in k. We use reduction techniques [7,
37] to decrease dramatically the number of useful se-
quences, so that the enumeration becomes tractable in
practice. The idea underlying reduction is that all se-
quences are not needed to compute the reachability set,
and moreover in some cases some finite sets of sequences
can safely be replaced by a single transition keeping the
same reachability set.

We mainly use two reduction techniques: reduction
by union [37] and reduction by commutation [7].

Reduction by union consists in merging two transitions
with same Presburger linear functions and different

system |T | k |C≤k| U C U+C
csm 13 1 14 14 14 14

2 183 103 57 35

consistency 8 1 9 9 9 9
2 68 45 44 30
3 484 172 299 98

swimming pool 6 1 7 7 7 7
2 43 21 24 16
3 259 56 114 28
4 1555 126 614 47

5 9331 252 3591 86

|C≤k| : number of valid circuits of length ≤ k
U: number of valid circuits after the reduction by union
C: number of valid circuits after the reduction by commutation
U+C: number of valid circuits after the reduction by union and
commutation

Table 3. Effect of circuit reductions on case-studies

guards f1 = (ϕ1, M,−→v) and f2 = (ϕ2, M,−→v) into a
unique affine function f1 + f2 = (ϕ1 ∨ ϕ2, M,−→v).

Reduction by commutation consists in removing tran-
sitions g · f and f · g, where f, g ∈ T≤k for some k,

whenever f and g satisfy
f ·g
−−→=

g·f
−−→. This is sound

w.r.t. reachability since (
f ·g
−−→)∗ and (

g·f
−−→)∗ are then

equal to (
f
−→)∗ • (

g
−→)∗.

In [37], it is proven that reduction by union reduces
the number of cycles of length ≤ k of linear counter
systems with finite monoid to a polynomial number in
k. Table 3 shows the effect of these reductions on a few
examples. The bold value of k indicates the length of
circuits used by Fast to compute the fixpoint.

Both reduction techniques appear to perform well in
practice, and their combination leads to impressive cut-
offs: |C≤k| is divided by 5 in the first two examples,
and by 30 in the last one. Reductions are definitely a
key feature in Fast performances, allowing the tool to
consider circuits of length 4 or 5 in some examples.

Beyond flat acceleration. The reduction by union al-
lows to compute some particular kinds of nested loops.
Actually, when considering linear counter systems with
guards defined over the full binary automata logic, the
union reduction allows to compute the reachability set of
non-flattable counter systems. The question is still open
for standard linear counter systems.

5.5 Flattable systems almost everywhere!

The question “Given a linear counter system with fi-
nite monoid S, is S flattable?” is undecidable, since the
reachability problem reduces to this question [7]. How-
ever many interesting subclasses of counter systems have
been shown to be flattable. It is the case for 2-dim VASS
[56], k-reversal counter machines, lossy VASS, Cyclic
VASS and other subclasses [57].

This is interesting for at least two reasons. From a
practical point of view, procedure 2 provides a unified

10 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

and efficient algorithm to decide reachability on all these
subclasses of counter systems. This is an important step,
since even though most of these subclasses were known
to be decidable, their algorithms were totally different
and very difficult to extend. From a theoretical point of
view, it is interesting to note that some of the previous
proofs of reachability used specific cases of circuit accel-
eration and flattening. These proofs are easier to write
once these concepts are clearly identified.

6 FAST: Tool description

Fast [5,9] is a tool for checking safety properties of linear
counter systems. The tool is designed according to the
flat acceleration framework.

6.1 Computational framework

Fast is organized through a client-server architecture.
The server is the computation engine as described in
section 6.1. It contains a Presburger library, the accel-
eration algorithm and the search heuristics. The client
is a front-end which allows the user to interact with the
server through a graphical user interface (GUI, figure 5).
The server can also be used as a standalone tool. The
server is written in C++ (7, 400 lines) while the client is
written in Java. The Mona library [53,61] provides basis
for automata manipulations.

6.1.1 Software architecture

Fast engine is structured according to the flat acceler-
ation framework. The program is organized around four
main classes: Presburger-affine functions, ndd, accelera-
tion algorithms and a flattening heuristic.

ndd are encoded in basis 2, least-digit first. The class
provides standard set operations like union, intersection,
complementation and projection, as well as the synthesis
of a ndd from a Presburger formula. This implementation
is built on the Mona package. Note that for efficiency
purposes, Mona restricts automata to 224 nodes.

Standard acceleration and convex acceleration algo-
rithms are implemented, which can be used for both
forward and backward computation.

The flattening heuristic follows procedure 2. Reduction
by commutation and reduction by union are both avail-
able.

6.1.2 Technical issues

Procedure reach2, data structures and algorithms pre-
sented in sections 3 and 4 provide the backbone of Fast.
However, several practical problems are not covered by

these results. For example, locations can be encoded ex-
plicitly or by counters, circuits can be computed stati-
cally or on-the-fly. Here, we describe some implementa-
tion choices made in Fast. Currently there is no known
best solution for each of the problems mentioned here-
after.

Variables in N. All the results of sections 3 and 4 hold
for variables ranging over Z. However in Fast counters
range over N. First, the corresponding ndd are smaller
thanks to a simpler encoding, which leads to better per-
formance. Second, this is not a strict restriction since we
did not find any example where negative counters were
required and moreover a variable x ∈ Z can always be
encoded by two positive variables x+, x− ∈ N such that
x = x+ − x− and (x+ = 0 ∨ x− = 0).

Location encoding. A stated in remark 1 (page 4), boun-
ded variables (control, boolean, bounded integer vari-
ables) are encoded as counter variables. On the one hand
it allows for a better sharing of the reachability set struc-
ture and avoids an explicit product of control structures
for systems composed of many components. On the other
hand, we do not take any advantage of the boundedness
of these variables. A solution may be to extend ndd with
a bdd-like structure for bounded variables, following the
work done in [11].

Static computation of circuits. We compute statically
circuits of length k. Practical case studies show that this
approach is tractable thanks to reductions. However dis-
covering circuits on-the-fly, or at least a dynamic slicing
of potential circuits, would probably be useful.

6.2 Input/Output

Fast takes as input a description of the system to be an-
alyzed and a strategy specifying what to compute. Out-
puts are textual messages stating if the system is safe or
not. Finally, a graphical user interface is also available.

6.2.1 The input system

The linear counter system can be described directly in
the Fast formalism. However since many of Fast’s case
studies were extended Petri nets, we developed a tool [10]
to transform a Petri net in pnml format into a Fast

model. The language pnml [16] describes various exten-
sions of Petri nets and is being standardized (ISO/IEC
15909-2).

6.2.2 The strategy

The strategy is a script specifying the sequence of com-
putations to perform in order to prove the correctness of
the system. This script language manipulates sets of con-
figurations (region), sets of transitions (transition)

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 11

and booleans. All basic set-operations are available. The
user can define finite sets of transitions T ′ ⊆ T ∗ and
primitives to compute post∗(T ′, X0) and pre∗(T ′, X0) are
provided. A standard forward analysis is specified us-
ing only four instructions: declare the initial region X0,
compute the reachability set post∗(T ′, X0), declare the
region P describing the property to check and finally test
whether post∗(T ′, X0) ⊆ P .

The language also allows the user to guide the tool
more precisely. For example a system can be analyzed
in an incremental way, dividing the whole system into
smaller parts (cf. section 9); the user can indicate circuits
to be used; choose the acceleration algorithm; or set up
parameters of the heuristics.

The script language gives the user control over the se-
quence of computations performed. This can prove use-
ful when the fully automatic approach fails. Thus, Fast

stands between a fully automatic approach, justified when
termination is guaranteed but restrictive otherwise, and
computer-aided verification.

6.2.3 User Interface

A graphical user interface [6] is available (see figure 5). It
provides aided editing of systems and strategies, pretty
printing, and predefined strategies. Once the computa-
tion starts, the interface supplies the user with feedback
on a number of parameters (memory consumption, time
elapsed, etc.).

6.3 FAST Extended Release

An extended version of Fast has been presented in [9].
This new release offers mainly an open architecture al-
lowing to plug easily any Presburger package to the tool.

Open architecture. The architecture has been slightly
redesigned and is now divided into two parts: on the
one side, a counter system analysis engine built upon a
generic Presburger API (instead of a ndd package); on
the other side, various implementations of this API. The
generic Presburger programming interface (Genepi) re-
quires only basic set-theoretic operations on Presburger-
definable sets. We provide three implementations of the
API based on standard packages Lash [55], Mona [61]
and Omega [62]. The first two packages are automata-
based while Omega is formula-based. The Mona imple-
mentation corresponds to the original version of Fast.
All experiments carried out in this paper use the Mona

implementation.

The shared automata package. An implementation of
the API using shared automata introduced by Couvreur
in [28] has been developped by Jérôme Leroux and Gérald
Point. These automata share their strongly connected

Fig. 5: Fast graphical user interface

components in a bdd-like manner, allowing to implement
important features for intensive computation, such as
cache computation and constant-time equality testing.
The library is functional, but the computation cache
is not sufficiently optimized yet. The shared automata
package is called PresTaf.

Experimental comparisons performed in [9] demonstrate
that the three automata-based implementations of the
generic Presburger API largely outperform the formula-
based implementation. Indeed Omega appears to com-
pute unduly complicated Presburger formulas (even with
the simplification method provided by the package), while
Lash, Mona and PresTaf benefit from canonical rep-
resentations of automata.

7 Experiments

This section reports some experiments made with Fast.

7.1 About tests

We use a large pool of counter systems and case studies
analyzed by tools Alv, Babylon3, Brain, Lash and
TReX to evaluate Fast. These 37 systems are available
on Fast web pages [35].

3 http://www.ulb.ac.be/di/ssd/lvanbegin/CST

http://www.ulb.ac.be/di/ssd/lvanbegin/CST

12 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

Symbol Meaning
m number of counters
T set of transitions
k length of circuits used by Fast

C≤k set of circuits of length ≤ k
|A| number of nodes of the ndd

|ρ| length of the rlre built by reach2
↑↑↑ memory exceeded
≥ c time elapsed (memory consumed)

greater than c seconds (Mb)
? unknown value
- computation does not apply

Table 4. Symbols used in test reports

These systems range from tricky academic puzzles like
the swimming pool protocol [42] to industrial case stud-
ies like the cache coherence protocol for the Futurebus+.
We distinguish three categories of systems: counter sys-
tems with a finite reachability set, monotonic counter
systems with an infinite reachability set and linear counter
systems with an infinite reachability set.

All experiments have been performed on an Intel Pen-
tium III 933Mhz equipped with 512 Mbytes of memory.
Time is in seconds and memory in Mbytes. Fast is used
with the following settings: standard acceleration, basic
strategy (no human guidance), Mona-based implemen-
tation of the Presburger API.

7.2 Results

Table 5 reports Fast behavior on the examples, us-
ing forward computation. The number of cycles |C≤k| is
given after reductions (union and commutation).

Fast computes successfully the reachability set of 78%
of the systems considered. This ratio is 74% when con-
sidering only unbounded systems. We show in section 8
that Fast performs better than similar tools.

These good results validate the design of Fast. First,
all examples are expressed straightforwardly by means
of counter systems. Second, the monoid is always finite.
At least 78% of the systems are flattable and have a
Presburger-definable reachability set. Finally in 19% of
the tests, the length of circuits used is strictly greater
than 1. This number increases to 22% when considering
only unbounded counter systems. This proves that con-
sidering circuits and not only loops is a major feature.

Fast limitations are likely to be more practical (mem-
ory consumption, time elapsed) than theoretical. Crucial
points are not only the number of variables, but also
(and mainly!) the structure of the reachability set and
the length k of the circuits used. Indeed, when k is too
large, the static computation of circuits consumes too
many resources.

8 Comparison with other tools

In this section, we compare Fast with other tools, namely
Alv, Lash and TReX, to evaluate their performance on
exact forward reachability set computation. Let us pin-
point that the goal here is not to find out which tool is
the best for counter system validation. Actually, it would
be unfair for TReX which is mostly designed for timed
automata extended with integer variables, and for Alv

which offers full CTL model checking, backward compu-
tation, over-approximation and different symbolic repre-
sentations. These experiments are rather used to evalu-
ate the contribution of each particular feature of Fast.

8.1 The tools

First, we present the tools Alv, Lash and TReX, and
compare them with Fast through the flat acceleration
framework.

Alv [25,68] is designed to check any CTL formula on
full counter systems. Alv also offers different sym-
bolic representations for integer vectors (automata
or Presburger formula) and a wide range of options,
like backward computation, over-approximation [12]
for the automata-based representation and accelera-
tion [50] for the formula-based representation. This
acceleration algorithm is designed for the following
class of operations: there is no guard and actions
are mostly relations of the form x′

i#xi + c where
∈ {≤, =,≥} and x′

i is the value of variable xi after
the transition occurs. Typically Alv uses approxi-
mate forward fixpoint computation to prune the state
space during the backward fixpoint computations.
In the rest of the paper, we use the following config-
uration: automata-based representation (then no ac-
celeration), forward computation, no over-approximation.
In this configuration, the main differences with Fast

are that no acceleration algorithm is available, the
heuristic is similar to reach1 and bounded variables
are encoded by bdd [11].

Lash [55] works on linear counter systems. Regions
are encoded by automata and standard acceleration
is implemented for functions with a finite monoid.
Without user guidance, Lash is restricted to loop
acceleration (i.e. the heuristic considers only words
w ∈ T instead of sequences in T ∗) because no circuit
search is supplied.

TReX [3] manipulates counter systems restricted to
timed automata-like operations4: guards are conjunc-
tions of constraints xi −xj ≤ c and actions are of the
form x′

i = xj +c where xi is a variable, c is a constant
and xj is a variable or the constant 0. Regions are en-
coded by pdbm, an extension of dbm with additional

4 Actually TReX is designed to check systems with clocks and
counters. We consider here the restriction to counter systems.

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 13

System m |T | sec Mb |ρ| k |C≤k|
Bounded counter systems

Producer/Consumer 5 3 0,41 2,37 3 1 3
RTP 9 12 2,24 2,76 8 1 12
Lamport ME 11 9 2,70 2,88 11 1 9
Reader/Writer 13 9 9,68 23,14 23 1 9
Peterson ME 14 12 4,97 3,78 12 1 12
Dekker ME 22 22 21,72 5,48 36 1 22

Monotonic unbounded counter systems

Manufacturing 7 6 ≥ 1800 ? ? ? ?
swimming pool 9 6 111 29,06 9 4 47
CSM 13 13 45,57 6,31 32 2 35
Kanban 16 16 10,43 6,54 2 1 16
Multipoll 17 20 22,96 5,13 13 1 20
FMS 22 20 157,48 8,02 23 2 46
extended ReaderWriter 24 22 ≥ 1800 ? ? ? ?
pncsa 31 38 ≥ 1800 ? ? ? ?
Mesh2x2 32 32 ≥ 1800 ? ? ? ?
Mesh3x2 52 54 ≥ 1800 ? ? ? ?

Unbounded counter systems

Synapse Cache Coherence 3 3 0,30 2,23 2 1 3
Berkeley Cache Coherence 4 3 0,49 2,75 2 1 3
M.E.S.I. Cache Coherence 4 4 0,42 2,44 3 1 4
M.O.E.S.I. Cache Coherence 4 5 0,56 2,49 3 1 5
lift controller - N 4 5 4,56 2,90 4 3 20
Illinois Cache Coherence 4 6 0,97 2,64 4 1 6
Firefly Cache Coherence 4 8 0,86 2,59 3 1 8
Dragon Cache Coherence 5 8 1,42 2,72 5 1 8
Esparza-Finkel-Mayr 6 5 0,79 2,55 2 1 5
ticket 2i 6 6 0,88 2,54 5 1 6
ticket 3i 8 9 3,77 3,08 10 1 9
barber m4 8 12 1,92 2,68 8 1 12
bakery 8 20 ≥ 1800 ? ? ? ?
Futurebus+ Cache Coherence 9 10 2,19 3,38 8 1 10
Consistency 12 8 200 7,35 9 3 98
Central Server 13 8 20,82 6,83 11 2 25
Last-in First-served 17 10 1,89 2,74 12 1 10
Producer/Consumer Java - 2 18 14 13,27 3,81 53 1 14
Producer/Consumer Java - N 18 14 401,5 12,46 86 2 75
Inc/Dec 32 28 ≥ 1800 ? ? ? ?
2-Producer/2-Consumer Java 44 38 ≥ 1800 ? ? ? ?

Table 5. Fast in practice

parameters constrained by an arithmetic formula. An
acceleration procedure is implemented, which allows
at least all accelerations of Fast and Lash. However
this procedure produces unrestricted arithmetic for-
mulas and then inclusion becomes undecidable. The
heuristic is restricted to C≤k, for a value of k stat-
ically defined by the user. Finally, TReX does not
compute circuits statically but discovers them on-
the-fly. A more in-depth comparison of Fast and
TReX is presented in [29].

Table 6 compares the different tools through the flat
acceleration framework. Column “termination” indicates
the class of systems for which the tool terminates (F:
flattable, k-F: k-flattable, Unif-b: uniformly bounded).

8.2 Comparison on forward computation

We now compare the capabilities of Alv, Lash, Fast

and TReX in exact forward computation of reachability
sets. The counter systems chosen for tests all have an
infinite reachability set, except systems RTP, Lamport
and Dekker. Results are summarized in table 7.

sy
st

e
m

sy
m

b
.
re

p
.

a
c
c
e
le

ra
ti

o
n

te
rm

in
a
ti

o
n

Alv full ndd no Unif-b
Fast linear ndd flat F
Lash linear ndd loop 1-F
TReX restricted pdbm interpolation k-F (∗)

(∗) Termination modulo an oracle to decide inclusion.

Table 6. Different tools for the verification of counter systems.

Experimental results show a drop in performance of
Alv and Lash when k increases. Fast completely sup-
ports the flat acceleration framework and obtains the
best results. On the other side, Alv does not supply any
acceleration mechanism and the tool does not succeed in
computing these complex reachability sets. Between Alv

and Fast, the tool Lash is restricted to loop accelera-
tion and it terminates only on simple examples (k ≤ 1).
Note that when Lash is provided with the circuits to
use, its performance is similar to that of Fast. The dif-
ference between Fast and Lash is primarily the length
of circuits, not the ndd implementation. Finally, TReX

performance is less correlated with k, since the tool ter-

14 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

System Alv(∗) Lash Fast k TReX

RTP (bounded) T T T 1 T
Lamport (bounded) T T T 1 T

Dekker (bounded) T T T 1 T

ticket 2 T T T 1 T

kanban ↑ T T 1 T
multipoll ↑ T T 1 ↑
prod/cons java (2) ↑ T T 1 -
prod/cons java (N) ↑ ↑ T 2 -
lift control, N ↑ ↑ T 2 T
train ↑ ↑ T 2 T
csm, N ↑ ↑ T 2 ↑
consistency ↑ ↑ T 3 -
swimming pool ↑ ↑ T 4 ↑
pncsa ↑ ↑ ↑ ? ↑
incdec ↑ ↑ ↑ ? ↑
bigjava ↑ ↑ ↑ ? ↑

T: computation of the reachability set in less than 20 minutes
↑: no termination in less than 20 minutes
- : the systems cannot be modeled in TReX

(∗) These results are consistent with those reported by Bultan and
Bartzis in [12].

Table 7. Comparison of different tools

minates for the lift system (k = 2) and fails on multipoll
(k = 1).

These results demonstrate a strong correlation between
the flat acceleration framework and practical termina-
tion. Comparison between Alv and Lash shows the ben-
efits of acceleration, while comparison between Lash and
Fast highlights the necessity of selecting circuits and not
only loops.

TReX results show that pdbm is not a good symbolic
framework for counter systems, since many systems can-
not be modeled this way and moreover, despite acceler-
ation, termination occurs less frequently. Again, recall
that TReX is primarily designed to handle parametric
timed systems.

8.3 Comments

Fast appears to be a very efficient tool for the forward
computation of reachability sets of counter systems. In
experiments, Fast performance is clearly superior to
that of similar tools Alv, Lash and TReX.

Again, recall that it does not necessarily imply that
Fast is better then the other tools for counter systems
validation since we restricted the experiments to exact
forward computation while other approaches exist. More-
over, recall that we use restrictions of Alv and TReX

which are primarily designed to handle different systems
(TReX) or richer properties (Alv). Yet, we believe that
the computation of the exact reachability set of a linear
counter system is an important issue and in this setting,
technologies implemented in Fast are clearly superior.

9 The TTP protocol

This section describes the verification of the TTP pro-
tocol with the tool Fast. In prior work the protocol
was verified correct by hand (for an arbitrary number
of faults) or in a computer-aided manner (for one fault)
with Lash and Alv. These tools could not verify cor-
rectness for two faults. Fast checks automatically the
correctness of the protocol for one fault, and correctness
is proved for two faults, using abstractions.

9.1 Protocol description

The TTP protocol [54] is supported by the transport
industry (Airbus, Audi, EADS, PSA and others) and
aims at managing embedded microprocessors. We focus
here on the group membership algorithm of the TTP. It
is a fault-tolerant algorithm, preventing the partitioning
of valid microprocessors (stations) after a failure.

A clique is a subset of stations communicating only
with stations of the same clique. In normal behavior,
there is only one clique containing all the valid stations.
The protocol ensures that when a fault occurs and cre-
ates different cliques among the stations, after a while
valid stations belong to a unique clique.

Description. Time5 is divided into rounds. Each round
is divided into as many slots as stations. The protocol
behaves as follows (a more complete description can be
found in [54,22]):

1. Each station si keeps the following information: a
list li of boolean values stating, for each station sj ,
whether si considers sj as valid or not; two counters
Ci

Ack and Ci
Fail.

2. During a slot, only one station broadcasts a message
and the others receive it. The message is the list li.

3. When a station sj receives a message from a station
si: if li 6= lj , or if no message is received, then sj

considers si as faulty; lj is updated and C
j
Fail is in-

cremented. Otherwise C
j
Ack is incremented.

4. When a station si is about to broadcast a message:
if Ci

Ack ≤ Ci
Fail then si considers itself as invalid and

becomes inactive (no emission). Otherwise Ci
Ack and

Ci
Fail are reset to 0, and li is broadcasted to all other

stations.

9.2 Modeling

We use the modeling proposed by Merceron and Boua-
jjani in [22]. This modeling is based on counter systems.
It captures an arbitrary number N of stations but only

5 Clocks are synchronized by other mechanisms of the TTP pro-
tocol.

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 15

a fixed number of faults. Merceron and Bouajjani actu-
ally provide an infinite family of counter systems, each
modeling the behavior of the protocol for some number
f of faults.

The counter system for f = 1 is given in figure 6. Vari-
able Cw (resp. CF) denotes the number of active stations
(resp. inactive stations). Variable Cp counts the number
of slots elapsed during the round. Since a round is di-
vided into N slots, when Cp = N , variable Cp is reset
to 0 and a new round begins. Location normal models
the normal behavior of the protocol. When a fault oc-
curs, the protocol enters abnormal behavior. Location
Round1 is the first round following the error. Location
later represents the other rounds. A fault divides ar-
bitrarily active stations into two cliques C1 and C0. We
denote by C1 and C0 the number of stations of cliques
C1 and C0. Variable d (resp. d0, d1, dF) counts the num-
ber of active stations (resp. from C0, from C1, inactive)
which have emitted during the round.

/ CF=0,CW=N,Cp=0
d=0,dF=0

/ C1>=0, C0>=0,
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1

later

round1normalinit

d=0,dF=0

Cp=N /
CW=C1+C0,Cp=0,

Cp=0,d=0,dF=0
Cp=N /

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

d<CW / d++,Cp++

dF<CF / dF++,Cp++

Cp=N / d1=0,d0=0,dF=0,Cp=0

Fig. 6: Model for the TTP, 1 fault

The safety property to check is that, at most two rounds
after the fault occurs, there is only one clique left. It
is expressed in this model by the following property
(P1) : location = later ∧ Cp = N ⇒ (C1 = 0 ∨ C0 = 0).

Remark 6. This specification is actually incomplete, and
we should check: For all paths, if a fault occurs then lo-
cation later is reached and property P1 holds. However
this property is not a safety property. Model checking
tools for infinite state systems such as Alv can han-
dle these type of properties which cannot be handled by
reachability tools such as Fast.

Interests of this case study. The number of counters is
not large (9), and actions are standard. However guards
are complex linear inequalities involving many variables.

The counter system is not an extended VASS nor a re-
stricted counter system manipulated by TReX. More-
over, because of the strong connection between variables,
the reachability set has a very complex structure. How-
ever, it is Presburger-definable.

9.3 Automatic verification for 1 fault

The counter system of figure 6 is not linear because of
the non-deterministic assignment of the transition be-
tween location normal and location Round1. Hopefully,
since the transition between later and normal models
returning back to the normal mode, property P1 is only
concerned with what happens in later, and variables af-
fected non deterministically are not used in normal, we
can remove this transition. Then the non deterministic
assignment can be encoded into the initial region.

The resulting linear counter system is presented in fig-
ure 7. This system has a finite monoid.

later

round1normalinit

Cp=0,d=0,dF=0
Cp=N /

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

/ C1>=0, C0>=0,
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1
CF=0,CW=N,Cp=0
d=0,dF=0

d<CW / d++,Cp++

Cp=N / d1=0,d0=0,dF=0,Cp=0

dF<CF / dF++,Cp++

Fig. 7: Linear counter system for the TTP, 1 fault

Results. Fast checks automatically that property P1 is
satisfied. The computation of the reachability set re-
quires only cycles of length 1, and the minimal ndd com-
puted has 27, 932 nodes. Computation takes 1, 880 sec-
onds and 73 Mb of memory.

Incremental analysis. The computation time can be re-
duced via a better script strategy. Indeed, Fast heuristic
does not take into account the particular aspect of the
control graph of the protocol. Since there is no return-
ing back in the graph, we can first compute the set of
all configurations reachable on location normal, then fire
the transition to reach location Round1, and iterate the
process. This decomposition is made explicit in figure 8.

16 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

With this method, computation time drops to 203 sec-
onds for a memory consumption of 55 Mb 6.

later

round1normalinit

Fig. 8: Modular decomposition of the TTP

9.4 Verification for 2 faults

The linear counter system for two faults is presented
in figure 9. The normal behavior is not described in the
figure. The system is much larger than the one for one
fault, with 18 variables and guards involving up to 14
variables. There are now three different cliques. The ab-
sence of clique is expressed here by:

(P2) : location = later ∧ Cp2 = N ⇒ (C11 6= 0 ∧
C10 = C00 = 0) ∨ (C10 6= 0 ∧ C11 = C00 = 0) ∧ (C00 6=
0 ∧ C10 = C11 = 0)

Need for convex acceleration. When computing the tran-
sitive closure of transitions, the size of the automata
computed becomes too large and exceeds Fast limita-
tion of 224 nodes, causing the program to crash. Luckily
all transitions are convex translations, except t26 which
does not need to be accelerated since it does not be-
long to any circuit. Hence the convex acceleration can
be used, and transitive closures of transitions have all
been computed.

Fixed number of stations. For a small fixed number of
stations, the reachability set is computed. For N = 5,
the reachability set is computed and P2 is checked to be
true. Computation requires 900 seconds and 588 Mb(!)
of memory. The final ndd has 5, 684 nodes. Computa-
tion succeeds with N = 10, but fails for N = 15 (the
automata are too large).

6 The resulting minimal ndd is the same than the one previously
computed, but intermediate computations are less expensive.

later

round1

Pred1 :

Pred2 :

Pred3 :

d1+d11−dA11−dF11−dA10−dF10−d0−d10−d00+dA00+dF00>0

d1+d10−dA10−dF10−dA11−dF11−d0−d11−d00+dA00+dF00>0

d0+d00−dA00−dF00−d1−d11−d10+dA11+dA10+dF11+dF10>0

t2

t3

t4 t6
t7

t8

t18

t19

t21t22
t23

t25

t27

t26

 dF++, dF00++,Cp1++,Cp2++,C00−−

 d11++,Cp1++,Cp2++
t3: Cp1<N & d10<C10−d1 & CW −2d0 −2d00 −2d11>0/
 d10++,Cp1++,Cp2++
t4 : Cp1<N & d00<C00−d0 & CW−2d1−2d10−2d11>0/
 d00++,Cp1++,Cp2++

 dF++,Cp1++,Cp2++,C11−−
t7 : Cp1<N & d10<C10 & CW−2d0−2d00−2d11<=0/

 dF++,Cp1++,Cp2++,C10−−
t8 : Cp1<N &d00<C00−d0 & CW−2d1−2d10−2d11<=0/

 dF++,Cp1++,Cp2++,C00−−

t19 : Cp1>=N & Cp2<N & Pred2/

 dF++,dF11++,Cp1++,Cp2++,C11−−
 dF++,dF10++,Cp1++,Cp2++,C10−−

t34

t33

t32

t31
t30

t28

d00=0 & d11=0 & d10=0 &
dA00=0 & dA11=0 & dA10=0 &
dF00=0 & dF11=0 & dF10=0 &
dF=0 & Cp2=1 & Cp1=d0+d1+1 &
N>=0 & CW=N & C11>=1 &
C00>=1 & C10>=1 & d1<=C10 &
d0<=C00 & C11+C00+C10=CW

t2 : Cp1<N & d11<C11 & CW−2d0−2d00−2d10>0/

t6 : Cp1<N & d11<C11−d1 & CW−2d0−2d00−2d10<=0/

t18 : Cp1>=N & Cp2<N & Pred1/ d11++,Cp1++,Cp2++,dA11++
 d10++,Cp1++,Cp2++,dA10++
 d00++,Cp1++,Cp2++,dA00++t21 : Cp1>=N & Cp2<N & Pred3/

t22 : Cp1>=N & Cp2<N & !Pred1/
t23 : Cp1>=N & Cp2<N & !Pred2/
t25 : Cp1>=N & Cp2<N & !Pred3/

t26 : Cp2=N / dF=0,d11=0,d10=0,d00=0,Cp2=0

t27 : Cp2<N & d11<C11 & C11−C10−C00>0 / d11++,Cp2++
 d10++,Cp2++
 d00++, Cp2++

t28 : Cp2<N & d10<C10 & C10−C11−C00>0 /
t30 : Cp2<N & d00<C00 & C00−C10−C11>0 /
t31 : Cp2<N & d11<C11 & C11−C10−C00<=0 /

 C11−−,Cp2++,dF++,CF++
t32 : Cp2<N & d10<C10 & C10−C11−C00<=0 /
 C10−−,Cp2++,CF++,dF++

 C00−−,Cp2++,CF++,dF++
t34 : Cp2<N & dF<CF / Cp2++,dF++

t33 : Cp2<N & d00<C00 & C00−C10−C11<=0 /

Fig. 9: Counter system for the TTP, 2 faults

Arbitrary number of stations. Since automata encoun-
tered during the computation are too large, we compute
an over-approximation of the reachability set by relaxing
some constraints and removing some variables. We hope
this approximation has a simpler structure and is still
precise enough to conclude. We use the following tricks:

Reduction of the number of variables, by using straight-
forward invariants like CW = C11 + C10 + C00.

Over-Approximation of the behavior, by removing some
complex terms in the guards. Moreover some vari-
ables are removed in this process.

Modular computation, as described for one fault, to
speed up computation.

The abstraction of the system is presented in fig-
ure 10. Fast checks that P2 holds on this system, which
proves the correctness of the TTP for 2 faults.

9.5 Results

Results are summarized in table 8. Convex acceleration
always performs better than standard acceleration, in
both time and space.

9.6 Verification with Alv, Lash and TReX

Here we report the tests we carried out to verify the
TTP with the tools Alv, Lash and TReX.

With Alv7, the reachability set computation does not
terminate for one fault and an arbitrary number of sta-

7 The settings are those considered in section 8.

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 17

round1
d00=0 & d11=0 & d10=0 &
Cp2=1 & N>=0 & C11>=1 &
C00>=1 & C10>=1 &
C00+C11+C10=N

later

t2−t18 : Cp2<N & d11<C11 /
 d11++,Cp2++

t7−t23 : Cp2<N & d10<C10 /
 Cp2++,C10−−

 Cp2++,C00−−

t6−t22 : Cp2<N & d11<C11 /
 Cp2++,C11−−

t4−t21 : Cp2<N & d00<C00 /
 d00++,Cp2++

t3−t19: Cp2<N & d10<C10 /
 d10++,Cp2++

t8−t25 : Cp2<N &d00<C00 /

 Compute reachable states R1

 reachable states R1

t34 : Cp2<N & dF<CF / Cp2++,dF++ t27 : Cp2<N & d11<C11 & C11−C10−C00>0 /
 d11++,Cp2++

t28 : Cp2<N & d10<C10 & C10−C11−C00>0 /
 d10++,Cp2++

t30 : Cp2<N & d00<C00 & C00−C10−C11>0 /
 d00++, Cp2++

t31 : Cp2<N & d11<C11 & C11−C10−C00<=0 /
 C11−−,Cp2++,dF++,CF++

t32 : Cp2<N & d10<C10 & C10−C11−C00<=0 /
 C10−−,Cp2++,dF++,CF++

t33 : Cp2<N & d00<C00 & C00−C10−C11<=0 /
 C00−−,Cp2++,CF++,dF++

Check Property P2 :
Cp2=N => C11=0&C10=0&C00>0
 || C11=0&C10>0&C00=0
 || C11>0&C10=0&C00=0

Fig. 10: Abstraction for the TTP, 2 faults

standard acc. convex acc.
faults - stations time mem. time mem. n. of

sec. Mb sec. Mb nodes
1 - N 1,880 73 1,200 63 27,932
2 - 5 ↑↑↑ (∗) ↑↑↑ (∗) 892 588 5,684
2 - 10 ↑↑↑ (∗) ↑↑↑ (∗) 24,365 588 273,427
2 - 15 ↑↑↑ (∗) ↑↑↑ (∗) ↑↑↑ ↑↑↑ ↑↑↑
2 - N ↑↑↑ (∗) ↑↑↑ (∗) ↑↑↑ ↑↑↑ ↑↑↑
2 - N 420 200 350 200 11,036
(abstraction)

(∗) The memory is saturated by acceleration computation; the
verification process does not go further.

Table 8. Benchmark for the TTP (Fast)

tions. The verification reported in [22] is not fully au-
tomatic: Alv is used to check an intermediate invariant
guessed by the authors on location round1. This invari-
ant is then used to compute an over-approximation of the
set of reachable states in location later. This is sufficient
here to ensure the correctness, but the exact reachability
set is never computed and the approach needs to guess
the appropriate invariant.

Lash successfully computes the reachability set for one
fault and an arbitrary number of stations, since only loop
acceleration is required. However for two faults, the ac-
celeration algorithm saturates the memory and the ver-
ification fails.

Finally, the TTP cannot be modeled in the (restricted)
counter systems manipulated by TReX.

10 The CES service

In this section, we describe the verification of the service
expected from the Capability Exchange Signaling Proto-
col (CES). In [58] Billington and Liu prove by hand the
structure of the reachability graph. Fast automatically
checks the results from [58] describing the nodes in the
reachability graph.

10.1 Service description

The protocol aims at one peer informing the other of its
multimedia capabilities. The length of communication
channels (buffers) intervenes here as a parameter.

Figure 11 presents a colored Petri net modeling the
CES service. This net is derived from [58]. Colored Petri
nets (CPN) [48] are an extension of Petri nets where
tokens are arbitrary typed data values (coloring). Col-
ored tokens consumed and produced by transitions are
defined by terms on the arcs. Functions and types are
expressed in the ML language.

Places OutControl and InControl always contain only
one token having two possible values. Place forTransfer
contains a queue with a unique kind of message. Place
revTransfer contains a queue with two kinds of messages:
transRes and rejReq. Finally, place dSymbol uses three
tokens, each containing a list of symbols. The transition
forLOST models the loss of messages.

Remark 7. The length of queue forTransfer is bounded
by l in this system, where l is a parameter of the CPN.
When analyzing the CPN, the value of this parameter
must be fixed. We want to remove this limitation in our
counter system to enable a parametric verification of the
protocol.

Billington and Liu [58] study the structure of the reach-
ability graph of the CES service. In particular, they
prove that the reachability set contains exactly 12 config-
urations for a queue of length 1, and for each increment
of the queue length, 4 new configurations are added to
the reachability set. These additional configurations are
completely characterized [58, table 2, page 287].

Interest. The CES is naturally a queue system. Since
Fast manipulates counters and not queues, it was not
the best suited tool at first sight. We show how to model
on this specific case the queues by counters, and how to
check with Fast that the translation is sound. Such an
approach is further detailed in [18,17].

10.2 A counter system for the CES

The first step is to transform the CPN into a counter
system. Queues are modeled explicitly in the CPN, but

18 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

inControl
states

1‘idleINF
outControl

states

1‘idleINF

TRANSFERcnf

TRANSFERreq

[length(rq)<l]

REJECTindP

REJECTindU TRANSFERresREJECTreq

TRANSFERindREJECTind

revTransfer

response

1‘[]

forTransfer
request

1‘[]

dSymbol1‘dO([])++1‘d1([])
++1‘d2([])

dsymbol

forLOST

color states = with idleINF | awaitingINF;
color req = with transReq;
color request = list req;
color res = with transRes | rejReq;
color response = list res;
color dsym = with d;
color dsymb = list dsym;
color dsymbol = union dO: dsymb + d1: dsymb + d2: dsymb;

var rq: request;
var rs: response;
var dsO,ds1,ds2: dsymb;
var st: states;

fun f1(dsO,ds1,st) = if dsO=[] orelse (st=awaitingINF andalso length(dsO)=1)
 then 1‘dO(dsO)++1‘d1(ds1^^[d])
 else 1‘dO(tl(dsO))++1‘d1(ds1);
fun f2(dsO,ds2) = if dsO=[]
 then 1‘dO(dsO)++1‘d2(ds2^^[d])
 else 1‘dO(tl(dsO))++1‘d2(ds2);
fun f3(dsO) = if dsO=[]
 then 1‘dO(dsO)
 else 1‘dO(tl(dsO));
fun f(dsO,[],[],[])=1‘dO(dsO^^[d])++1‘d1([])++1‘d2([])
 | f(dsO,[],[],d::ds2)=1‘dO(dsO)++1‘d1([])++1‘d2(ds2)
 | f(dsO,[],d::ds1,[])=1‘dO(dsO)++1‘d1(ds1)++1‘d2([])
 | f(dsO,r::rs,[],[])=1‘dO(dsO)++1‘d1([])++1‘d2([])
 | f(_,_,_,_) = empty;

awaitingINF

idleINF

transReq::rq

 awaitingINF

 idleINF

idleINF

awaitingINF

awaitingINF idleINF

 awaitingINF
idleINF

 awaitingINF

idleINF

awaitingINF awaitingINF

 idleINF

 idleINF

 rejReq::rs

 transRes::rs

rq^^[transReq]

if dsO=[] then rs^^[rejReq] else rs

if dsO=[] then rs^^[transRes] else rs

rq

rq

rs
rs

rs
rs

rs

if rs=[] then 1‘[] else 1‘tl(rs)

transReq::rq
rq

st

f1(dsO,ds1,st)

1‘dO(dsO)
++1‘d1(ds1)

f2(dsO,ds2)

1‘dO(dsO)
++1‘d2(ds2)

dO(dsO)

f3(dsO)

dO(dsO)

f3(dsO)

1‘dO(dsO)
++1‘d1(ds1)++1‘d2(ds2)

f(dsO,rs,ds1,ds2)

Fig. 11: CPN modeling the CES service specification, derived from [58]

must be represented by a set of integer variables in the
counter system. Since the queue forTransfer has only
one kind of message, it is straightforwardly replaced by
a counter stating the number of messages in the queue.
The second queue revTransfer is more complex to deal
with, since it has two kinds of messages transRes and
rejReq. Following [58], we make the assumption that the
two kinds of messages never coexist in the queue. Then
the queue is modeled by two counters, one for each kind
of message. The validity of this assumption is checked in
section 10.3.

The counter system derived from the CPN model is
presented in figure 12 (only typical parts are included).
Variable buflg represents the maximal size of the queue
forTransfer (it corresponds to parameter l in the CPN).
The system has a single location marking. Place dsym-
bol in the CPN always contains three tokens, which are

queues containing a single type of element. Therefore, in
the counter system, it is represented by three different
variables d0, d1, d2. Since some transitions have complex
firing modes, due to the functions on arcs and in guards,
they need to be split into different transitions of the
counter system (e.g. REJECTreq).

10.3 Model correctness

We check the modeling hypothesis about queues. To
ensure that two kinds of messages never coexist in the
queue forTransfer, we show that all reachable configura-
tions satisfy: either revTrans has a null value, or rejTrans
has a null value. This is expressed by the following re-
gion:

Region bad := {(!(revTrans)=0) && (!(rejTrans)=0)};

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 19

model CES {
var outControl, inControl, forTrans, revTrans, rejTrans,

d0, d1, d2, buflg;
states marking;

transition TRANSFERreq := {
from := marking;

to := marking;
guard := outControl=0 && forTrans<buflg;
action := outControl’=1, forTrans’=forTrans+1;

};
...

transition REJECTreq1 := {
from := marking;

to := marking;
guard := inControl=1 && d0=0;
action := inControl’=0, rejTrans’=rejTrans+1;

};

transition REJECTreq2 := {
from := marking;
to := marking;

guard := inControl=1 && !d0=0;
action := inControl’=0, d0’=d0-1;

};
}

Fig. 12: Description in Fast of the CES service

Region bad is then intersected with the reachability
set. The resulting region is empty, thus the modeling
hypothesis is correct. Note that no value is needed for
buflg. This means that the result is valid for any value
of buflg.

10.4 Verification with Fast

We automatically prove with Fast the characterization
of nodes in the reachability graph obtained by Liu and
Billington in [58]. To do so, a region is declared for each
of the 12 configurations of the system when the buffer
length l is 1 (mark1 to mark12). Additional configura-
tions are defined according to the formula in [58, table 2,
page 287] (mark1n to mark4n). The reachability set is
supposed to be equal to the union of all these regions
(region fullOG). The script in figure 13 performs the
automatic verification of this result.

The reachability set is computed with cycles of length
2. The result is positive, i.e. the reachability set is as
the expected. Since variable buflg is never set, the prop-
erty is automatically proved for any queue length. Fast

terminates in less than 30 seconds.

10.5 Results

Fast has been used with success to verify the character-
ization of configurations for a parametric lossy channel
system. A major issue is the modeling of the queues by
counters, which requires some assumptions on the con-
tents of the queue. Fast proves the correctness of the
assumptions, and also the expected property.

strategy forward {
Transitions t := {TRANSFERreq, TRANSFERcnf, REJECTindU,

TRANSFERind, ...};

Region mark1 := {outControl=0 && inControl=0 && forTrans=0 &&

revTrans=0 && rejTrans=0 && d0=0 && d1=0 &&
d2=0 && state=marking};

...
Region mark12 := {outControl=1 && inControl=1 && forTrans=0 &&

revTrans=0 && rejTrans=0 && d0=1 && d1=1 &&

d2=0 && state=marking};

Region marks1n := {forTrans<=buflg && d0=forTrans-1 &&
outControl=1 && inControl=0 && revTrans=0 &&

rejTrans=0 && d1=0 && d2=0 && state=marking};
...
Region marks4n := {forTrans<=buflg && d0=forTrans+1 &&

outControl=0 && inControl=1 && revTrans=0 &&
rejTrans=0 && d1=0 && d2=0 && state=marking};

Region fullOG := mark1 || ... || mark12 ||
marks1n || ... || marks4n;

Region reach := post*(mark1 && {buflg>0}, t, 2);

if (eqSet(fullOG && {buflg>0},reach)) then

print("fullOG OK");
endif
}

Fig. 13: The reachability set

10.6 Verification with Alv and Lash

We report our verification of the CES with Alv and
Lash. The tool Alv (same settings as in section 8)
does not terminate in less than 20 minutes. The tool
Lash also does not terminate with only loop acceler-
ation. When specifying cycles of length 2 to be accel-
erated (these are deduced from the feedback of Fast

computation), then Lash terminates quickly. We have
not experimented with TReX on this example.

11 Conclusion

In this paper, we have presented Fast, a tool for check-
ing safety properties on counter systems. Fast is an im-
plementation of the flat acceleration framework instan-
tiated to counter systems. The tool implements state-of-
the-art technologies such as automata-based representa-
tion of Presburger-definable sets, acceleration of linear
functions and automatic selection of interesting circuits
through dedicated heuristics and reductions. It follows
a clear design and each step is justified as rigorously as
possible, considering the whole problem is undecidable.

We sketched in the paper all the theoretical founda-
tions of Fast, and described the architecture of the tool.
We then described lengthy experiments carried out, and
we have compared Fast with other tools having similar
goals. The main points of the tool are a very expres-
sive input model allowing many systems to be expressed
directly, a powerful engine able to compute the reacha-
bility set in most cases, the possibility to guide the tool
for complex examples and a clear design.

20 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

Many experiments have been successfully carried out.
Despite the fact that reachability sets of counter systems
are not computable, Fast terminates in about 75% of
our experiments. Fast has been the first tool to auto-
matically verify the TTP, a complex fault-tolerant pro-
tocol. Fast has also been used to check a parametric
property of a lossy channel system, the CES service.
These performances are far better than those of simi-
lar tools. Actually, comparison with tools like Alv and
Lash proves that each mechanism of Fast is of impor-
tance. Comparison with Alv demonstrates clearly that
circuit acceleration enhances greatly the termination of
the reachability set computation, while comparison with
Lash shows that considering circuits of arbitrary length
(not restricted to loops) is of major importance for many
systems. Experiments made with Fast demonstrate that
the flat acceleration framework is sound for the verifica-
tion of counter systems.

Perspectives. Fast has proved to be efficient for counter
systems with approximately 20 unbounded variables. The
next step is to scale up the techniques to wider systems.
We are currently looking towards three directions: (1)
improve the ndd representation, for example using cache
systems; (2) improve the circuit selection with new re-
ductions and dynamic discovery; (3) relax the exact com-
putation and mix widening and abstraction with acceler-
ation. Another interesting issue is to investigate how to
decide richer properties on counter systems, for example
liveness. First results have been obtained for LTL [31].

Acknowledgements. We thank Jonathan Billington, Guy Gal-
lasch and Philippe Schnoebelen for their comments on ear-
lier versions of the paper. We are also grateful to Jonathan
Billington and Lin Liu for having provided us with the CPN
model of the CES service, to Jean-Michel Couvreur for giving
us advice for the implementation of shared automata, and to
Ales Smrcka for adapting the Omega source code to recent
compilers.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

2. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic
techniques for parametric reasoning about counter and
clock systems. In Proc. 12th Int. Conf. Computer Aided
Verification (CAV’2000), Chicago, IL, USA, July 2000,
volume 1855 of Lecture Notes in Computer Science, pages
419–434. Springer, 2000.

3. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX:
A tool for reachability analysis of complex systems.
In Proc. 13th Int. Conf. Computer Aided Verification
(CAV’2001), Paris, France, July 2001, volume 2102
of Lecture Notes in Computer Science, pages 368–372.
Springer, 2001.

4. S. Bardin, A. Finkel, and J. Leroux. FASTer accelera-
tion of counter automata. In Proc. 10th Int. Conf. Tools
and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’2004) Barcelona, Spain, Mar. 2004, vol-
ume 2988 of Lecture Notes in Computer Science, pages
576–590. Springer, 2004.

5. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci.
FAST: Fast Acceleration of Symbolic Transition systems.
In Proc. 15th Int. Conf. Computer Aided Verification
(CAV’2003), Boulder, CO, USA, July 2003, volume 2725
of Lecture Notes in Computer Science, pages 118–121.
Springer, 2003.

6. S. Bardin, A. Finkel, J. Leroux, L. Petrucci, and L. Woro-
bel. FAST user manual, 2003. 33 pages. Available at
www.lsv.ens-cachan.fr/fast/.

7. S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat
acceleration in symbolic model checking. In Proc. of the
3rd International Symposium on Automated Technology
for Verification and Analysis (ATVA’2005) , Taipei, Tai-
wan, October. 2005, volume 3707 of Lecture Notes in
Computer Science, pages 474–488. Springer, 2005.

8. S. Bardin, A. Finkel, É. Lozes, and A. Sangnier. From
pointer systems to counter systems using shape analy-
sis. In Proc. 5th Int. Workshop Automated Verification
of Infinite-State Systems (AVIS’2006), Vienna, Austria,
2006.

9. S. Bardin, J. Leroux, and G. Point. FAST Extended
Release. In Proc. 18th Int. Conf. Computer Aided Veri-
fication (CAV’2006), Seattle, Washington, USA, August
2006, volume 4144 of Lecture Notes in Computer Science,
pages 63–66. Springer, 2006.

10. S. Bardin and L. Petrucci. From pnml to counter sys-
tems for accelerating Petri nets with fast. In Proc. of
the Workshop on Interchange Formats for Petri Nets (at
ICATPN 2004), pages 26–40, June 2004.

11. C. Bartzis and T. Bultan. Efficient symbolic representa-
tions for arithmetic constraints in verification. Int. J. of
Foundations of Computer Science, 14(4):605–624, 2003.

12. C. Bartzis and T. Bultan. Widening arithmetic au-
tomata. In Proc. 16th Int. Conf. Computer Aided Ver-
ification (CAV 2004), , Boston, Massachussetts , July
2004, volume 3114 of Lecture Notes in Computer Sci-
ence, pages 321–333. Springer, 2004.

13. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Pe-
tit, L. Petrucci, and Ph. Schnoebelen. Systems and Soft-
ware Verification. Model-Checking Techniques and Tools.
Springer, 2001.

14. B. Bérard and L. Fribourg. Reachability analysis of
(timed) Petri nets using real arithmetic. In Proc.
10th Int. Conf. Concurrency Theory (CONCUR’99),
Eindhoven, The Netherlands, Aug. 1999, volume 1664
of Lecture Notes in Computer Science, pages 178–193.
Springer, 1999.

15. L. Berman. Precise bounds for Presburger arithmetic
and the reals with addition: Preliminary report. In
Proc. 18th IEEE Symp. Foundations of Computer Sci-
ence (FOCS’77), Providence, RI, USA, Oct.-Nov. 1977,
pages 95–99. IEEE, 1977.

16. J. Billington, S. Christensen, K. van Hee, E. Kindler,
O. Kummer, L. Petrucci, R. Post, C. Stehno, and M. We-
ber. The Petri Net Markup Language: Concepts, technol-
ogy and tools. In Proc. 24th Int. Conf. Application and

www.lsv.ens-cachan.fr/fast/

Sébastien Bardin et al.: FAST: Acceleration from theory to practice 21

Theory of Petri Nets (ICATPN’2003), Eindhoven, The
Netherlands, June 2003, volume 2679 of Lecture Notes in
Computer Science, pages 483–505. Springer, 2003.

17. J. Billington, G. E. Gallasch, and L. Petrucci. FAST ver-
ification of the class of stop-and-wait protocols modelled
by coloured Petri nets. Nordic Journal of Computing,
pages 37–55, 2005. To appear.

18. J. Billington, G. E. Gallasch, and L. Petrucci. Transform-
ing couloured Petri nets to counter systems for paramet-
ric verification: A stop-and-wait protocol case study. In
Proc. 2nd workshop on MOdel-based Methodologies for
Pervasive and Embedded Software (MOMPES’05, satel-
lite of ACSD’05), Rennes, France, volume 39, pages 37–
55. TUCS general publication, June 2005.

19. B. Boigelot. Symbolic Methods for Exploring Infinite
State Spaces. PhD thesis, Université de Liège, 1998.

20. B. Boigelot. On iterating linear transformations over rec-
ognizable sets of integers. Theoretical Computer Science,
309(2):413–468, 2003.

21. B. Boigelot and P. Wolper. Symbolic verification with
periodic sets. In Proc. 6th Int. Conf. Computer Aided
Verification (CAV’94), Stanford, CA, USA, June 1994,
volume 818 of Lecture Notes in Computer Science, pages
55–67. Springer, 1994.

22. A. Bouajjani and A. Merceron. Parametric verification of
a group membership algorithm. In Proc. 7th Int. Symp.
Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems (FTRTFT’2002), Oldenburg, Germany, Sep. 2002,
volume 2469 of Lecture Notes in Computer Science, pages
311–330. Springer, 2002.

23. A. Boudet and H. Comon. Diophantine equations, Pres-
burger arithmetic and finite automata. In Proc. 21st Int.
Coll. on Trees in Algebra and Programming (CAAP’96),
Linköping, Sweden, Apr. 1996, volume 1059 of Lecture
Notes in Computer Science, pages 30–43. Springer, 1996.

24. V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire.
Logic and p-recognizable sets of integers. Bull. Belg.
Math. Soc., 1(2):191–238, Mar. 1994.

25. T. Bultan and T. Yavuz-Kahveci. Action language veri-
fier. In Proc. 16th IEEE Int. Conf. Automated Software
Engineering (ASE 2001), 26-29 November 2001, Coron-
ado Island, San Diego, CA, USA, pages 382–386. IEEE
Computer Society, 2001.

26. E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

27. H. Comon and Y. Jurski. Multiple counters automata,
safety analysis, and Presburger arithmetic. In Proc.
10th Int. Conf. Computer Aided Verification (CAV’98),
Vancouver, BC, Canada, June-July 1998, volume 1427
of Lecture Notes in Computer Science, pages 268–279.
Springer, 1998.

28. J.-M. Couvreur. A bdd-like implementation of an au-
tomata package. In Proc. 9th Int. Conf. Implementation
and Application of Automata (CIAA’2004), Kingston,
Canada, July 2004, volume 3317 of Lecture Notes in
Computer Science, pages 310–311. Springer, 2004.

29. Ch. Darlot, A. Finkel, and L. Van Begin. About Fast
and TReX accelerations. In Proceedings of the 4th Inter-
national Workshop on Automated Verification of Critical
Systems (AVoCS’04), volume 128 of Electronic Notes in
Theoretical Computer Science, London, UK, Aug.-Sept.
2004. Elsevier Science Publishers.

30. G. Delzanno, J.-F. Raskin, and L. Van Begin. Covering
sharing trees: a compact data structure for parameter-
ized verification. Journal of Software Tools for Technol-
ogy Transfer, 5(2–3):268–297, 2004.

31. S. Demri, A. Finkel, V. Goranko, and G. van Drimme-
len. Towards a model-checker for counter systems. In
Proc. 4th Int. Symp. Automated Technology for Verifica-
tion and Analysis (ATVA’2006), volume 4218 of Lecture
Notes in Computer Science, pages 493–507. Springer,
2006.

32. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset
nets between decidability and undecidability. In Proc.
25th Int. Coll. Automata, Languages, and Programming
(ICALP’98), Aalborg, Denmark, July 1998, volume 1443
of Lecture Notes in Computer Science, pages 103–115.
Springer, 1998.

33. E. A. Emerson and K. S. Namjoshi. On model check-
ing for non-deterministic infinite-state systems. In Proc.
13th IEEE Symp. Logic in Computer Science (LICS’98),
Indianapolis, IN, USA, June 1998, pages 70–80. IEEE
Comp. Soc. Press, 1998.

34. J. Esparza, A. Finkel, and R. Mayr. On the verification of
broadcast protocols. In Proc. 14th IEEE Symp. Logic in
Computer Science (LICS’99), Trento, Italy, July 1999,
pages 352–359. IEEE Comp. Soc. Press, 1999.

35. Fast homepage. http://www.lsv.ens-cachan.fr/

fast/.

36. A. Finkel. A generalization of the procedure of karp and
miller to well structured transition systems. In Proc.
14th Int. Coll. Automata, Languages, and Programming
(ICALP’87), Karlsruhe, FRG, July 1987, volume 267
of Lecture Notes in Computer Science, pages 499–508.
Springer, 1987.

37. A. Finkel and J. Leroux. How to compose Presburger-
accelerations: Applications to broadcast protocols. In
Proc. 22nd Conf. Found. of Software Technology and
Theor. Comp. Sci. (FST&TCS’2002), Kanpur, India,
Dec. 2002, volume 2556 of Lecture Notes in Computer
Science, pages 145–156. Springer, 2002.

38. A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-
abstracted transition systems: Application to FIFO au-
tomata. Information and Computation, 181(1):1–31,
2003.

39. A. Finkel and G. Sutre. Decidability of reachability prob-
lems for classes of two counters automata. In Proc. 17th
Ann. Symp. Theoretical Aspects of Computer Science
(STACS’2000), Lille, France, Feb. 2000, volume 1770
of Lecture Notes in Computer Science, pages 346–357.
Springer, 2000.

40. L. Fribourg. Petri nets, flat languages and linear arith-
metic. Invited lecture. In M. Alpuente, editor, Proc. 9th
Int. Workshop. on Functional and Logic Programming
(WFLP’2000), Benicassim, Spain, Sept. 2000, pages
344–365, 2000. Proceedings published as Ref. 2000.2039,
Universidad Politécnica de Valencia, Spain.

41. L. Fribourg and H. Olsén. A decompositional approach
for computing least fixed-points of Datalog programs
with Z-counters. Constraints, 2(3/4):305–335, 1997.

42. L. Fribourg and H. Olsén. Proving safety properties
of infinite state systems by compilation into Presburger
arithmetic. In Proc. 8th Int. Conf. Concurrency The-
ory (CONCUR’97), Warsaw, Poland, Jul. 1997, volume

http://www.lsv.ens-cachan.fr/fast/
http://www.lsv.ens-cachan.fr/fast/

22 Sébastien Bardin et al.: FAST: Acceleration from theory to practice

1243 of Lecture Notes in Computer Science, pages 213–
227. Springer, 1997.

43. V. Ganesh, S. Berezin, and D. L. Dill. Deciding pres-
burger arithmetic by model checking and comparisons
with other methods. In Proc. 4th Int. Conf. Formal
Methods in Computer Aided Design (FMCAD’02), Port-
land, OR, USA, nov. 2002, volume 2517 of Lecture Notes
in Computer Science, pages 171–186. Springer, 2002.

44. G. Geeraerts, J.-F. Raskin, , and L. Van Begin. Ex-
pand, enlarge and check... made efficient. In S. K. Raj-
jamani and K. Etessami, editors, Proceedings of 17th In-
ternational Conference on Computer Aided Verification
– (CAV 2005), number 3576 in Lecture Notes in Com-
puter Science, pages 394–404. Springer, 2005.

45. S. Ginsburg and E. H. Spanier. Semigroups, Presburger
formulas and languages. Pacific J. Math., 16(2):285–296,
1966.

46. O. H. Ibarra. Reversal-bounded multicounter machines
and their decision problems. J. ACM, 25:116–133, 1978.

47. O. H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. A. Kem-
merer. Counter machines and verification problems. The-
oretical Computer Science, 289(1):165–189, 2002.

48. K. Jensen. Coloured Petri Nets: Basic concepts, analy-
sis methods and practical use. Volume 1: basic concepts.
Monographs in Theoretical Computer Science. Springer,
1992.

49. R. M. Karp and R. E. Miller. Parallel program schemata.
Journal of Computer and System Sciences, 3(2):147–195,
1969.

50. W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Tran-
sitive closure of infinite graphs and its applications. In
8th Int. Wor. Languages and Compilers for Parallel
Computing (LCPC’95), Columbus, Ohio, USA, August
10-12, 1995, volume 1033 of Lecture Notes in Computer
Science, pages 126–140. Springer, 1995.

51. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Sha-
har. Symbolic model checking with rich assertional lan-
guages. Theoretical Computer Science, 256(1–2):93–112,
2001.

52. F. Klaedtke. On the automata size for presburger arith-
metic. In Proc. 19th Annual IEEE Symposium on Logic
in Computer Science (LICS’04), Turku, Finland July
2004, pages 110–119. IEEE Comp. Soc. Press, 2004.

53. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA
implementation secrets. Int. J. of Foundations Computer
Science, 13(4):571–586, 2002.

54. H. Kopetz and G. Grünsteidl. A time trigerred protocol
for fault-tolerant real-time systems. In IEEE computer,
pages 14–23, 1999.

55. Lash homepage. http://www.montefiore.ulg.ac.be/

~boigelot/research/lash/.
56. J. Leroux and G. Sutre. On flatness for 2-dimensional

vector addition systems with states. In Proc. 15th Int.
Conf. Concurrency Theory (CONCUR’04), London, UK,
Aug.-Sep. 2004, volume 3170 of Lecture Notes in Com-
puter Science, pages 402–416. Springer, 2004.

57. J. Leroux and G. Sutre. Flat counter automata almost
everywhere! In Proc. of the 3rd International Symposium
on Automated Technology for Verification and Analysis
(ATVA’2005) , Taipei, Taiwan, October. 2005, volume
3707 of Lecture Notes in Computer Science, pages 489–
503. Springer, 2005.

58. L. Liu and J. Billington. Tackling the infinite state space
of a multimedia control protocol service specification. In
Proc. 23rd Int. Conf. Application and Theory of Petri
Nets (ICATPN’2002), Adelaide, Australia, June 2002,
volume 2360 of Lecture Notes in Computer Science, pages
273–293. Springer, 2002.

59. A. Mandel and I. Simon. On finite semigroups of ma-
trices. Theoretical Computer Science, 5(2):101–111, Oct.
1977.

60. E. W. Mayr. Persitence of Vector Replacement Systems
is decidable. Acta Informatica, 15:309–318, 1981.

61. Mona homepage. http://www.brics.dk/mona/index.

html.
62. Omega homepage. http://www.cs.umd.edu/projects/

omega/.
63. M. Presburger. Uber die volstandigkeit eines gewissen

systems der arithmetik ganzer zahlen, in welchem die
addition als einzige operation hervortritt. In C. R. 1er
congrès des Mathématiciens des pays slaves, Varsovie,
pages 92–101, 1929.

64. T. Rybina and A. Voronkov. Brain: Backward reach-
ability analysis with integers. In Proc. 9th Int.
Conf. Algebraic Methodology and Software Technology
(AMAST’2002), Saint-Gilles-les-Bains, Reunion Island,
France, Sep. 2002, volume 2422 of Lecture Notes in Com-
puter Science, pages 489–494. Springer, 2002.

65. P. Wolper and B. Boigelot. An automata-theoretic ap-
proach to Presburger arithmetic constraints. In Proc.
2nd Int. Symp. Static Analysis (SAS’95), Glasgow, UK,
Sep. 1995, volume 983 of Lecture Notes in Computer Sci-
ence, pages 21–32. Springer, 1995.

66. P. Wolper and B. Boigelot. Verifying systems with in-
finite but regular state spaces. In Proc. 10th Int. Conf.
Computer Aided Verification (CAV’98), Vancouver, BC,
Canada, June-July 1998, volume 1427 of Lecture Notes
in Computer Science, pages 88–97. Springer, 1998.

67. P. Wolper and B. Boigelot. On the construction of au-
tomata from linear arithmetic constraints. In Proc. 6th
Int. Conf. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’2000), Berlin, Germany,
Mar.-Apr. 2000, volume 1785 of Lecture Notes in Com-
puter Science, pages 1–19. Springer, 2000.

68. T. Yavuz-Kahveci, C. Bartzis, and T. Bultan. Action lan-
guage verifier, extended. In Proc. 17th Int. Conf. Com-
puter Aided Verification (CAV 2005), Edinburgh, Scot-
land, UK, July 6-10, 2005, volume 3576 of Lecture Notes
in Computer Science, pages 413–417. Springer, 2005.

http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.brics.dk/mona/index.html
http://www.brics.dk/mona/index.html
http://www.cs.umd.edu/projects/omega/
http://www.cs.umd.edu/projects/omega/

