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Abstract

We consider the stochastic heat equation with multiplicative noise ut =
1

2
∆u + u ⋄ Ẇ in R+ × R

d, where ⋄ denotes the Wick product, and the

solution is interpreted in the mild sense. The noise Ẇ is fractional in
time (with Hurst index H ≥ 1/2), and colored in space (with spatial
covariance kernel f). We prove that if f is the Riesz kernel of order α,
or the Bessel kernel of order α < d, then the sufficient condition for the
existence of the solution is d ≤ 2 + α (if H > 1/2), respectively d < 2 + α
(if H = 1/2), whereas if f is the heat kernel or the Poisson kernel, then
the equation has a solution for any d. We give a representation of the
k-th order moment of the solution, in terms of an exponential moment
of the “convoluted weighted” intersection local time of k independent d-
dimensional Brownian motions.

MSC 2000 subject classification: Primary 60H15; secondary 60H05
Key words and phrases: stochastic heat equation, Gaussian noise, multiple

stochastic integrals, chaos expansion, Skorohod integral, fractional Brownian
motion, local time

∗Research supported by a grant from the Natural Sciences and Engineering Research Coun-

cil of Canada.

1



1 Introduction

The study of stochastic partial differential equations (s.p.d.e’s) driven by a Gaus-
sian noise which is white in time and has a non-trivial correlation structure in
space (called “color”), constitutes now a classical line of research. These equa-
tions represent an alternative to the standard s.p.d.e.’s driven by a space-time
white noise. A first step in this direction has been made in [7], where the authors
identify the necessary and sufficient condition for the existence of the solution of
the stochastic wave equation (in spatial dimension d = 2), in the space of real-
valued stochastic processes. The fundamental reference in this area is Dalang’s
seminal article [6], in which the author gives the necessary and sufficient con-
ditions under which various s.p.d.e ’s with a white-colored noise (e.g. the wave
equation, the damped heat equation, the heat equation) have a process solu-
tion, in arbitrary spatial dimension. The methods used in this article exploit
the temporal martingale structure of the noise, and cannot be applied when the
noise is “colored” in time. Other related references are: [31], [19], [28], [8] and
[9].

Recently, there has been a growing interest in studying s.p.d.e.’s driven by
a Gaussian noise which has the covariance structure of the fractional Browniam
motion (fBm) in time, combined with a white (or colored) spatial covariance
structure. (Recall that an fBm is a centered Gaussian process (Bt)t≥0 with
covariance E(BtBs) = RH(t, s) := (t2H + s2H − |t − s|2H)/2, with H ∈ (0, 1).
The Brownian motion is an fBm of index H = 1/2. We refer the reader to the
expository article [23], for a comprehensive account on the fBm.) This interest
comes from the large number of applications of the fBm in practice. To list only
a few examples of the appearance of fractional noises in practical situations,
we mention [16] for biophysics, [3] for financial time series, [10] for electrical
engineering, and [5] for physics.

In the present article, we consider the stochastic heat equation with a multi-
plicative Gaussian noise, which is fractional (or white) in time with Hurst index
H > 1/2 (respectively H = 1/2), and has a non-trivial spatial covariance struc-
ture given by a kernel f . As in [6], we assume that f is the Fourier transform of
a tempered measure µ. (Note that the particular case of a spatially white noise
arises when f = δ0.) More precisely, we consider the following Cauchy problem:

∂u

∂t
=

1

2
∆u+ u ⋄ Ẇ , t > 0, x ∈ R

d (1)

u0,x = u0(x), x ∈ R
d,

where u0 ∈ Cb(R
d) is non-random, ⋄ denotes the Wick product, and Ẇ is a

formal writing for the noiseW = {W (h);h ∈ HP} (to be introduced rigourously
in Section 2).

Before discussing the multiplicative case, we recall briefly the known results
related to the existence of the solution of the stochastic heat equation with
additive noise:

∂u

∂t
=

1

2
∆u+ Ẇ , t > 0, x ∈ R

d (2)
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u0,x = 0, x ∈ R
d,

When H = 1/2 and f = δ0, equation (2) admits a solution in the space of
real-valued processes, if and only if d = 1. This phenomenon is called in [15]
the “curse of dimensionality” and can be explained intuitively by saying that,
while the Laplacian smooths, the white noise roughens. If the spatial dimension
d is larger than 2, then the roughness effect of the white noise overcomes the
smoothness influence of the Laplacian.

What happens when the space-time white noise is replaced by a noise which
is fractional in time, but continues to be white in space? This situation has been
studied in several papers such as [11], [20], [25], [29] and recently in [2]. In this
case, a necessary and sufficient condition for the existence of the solution of (2)
is d < 4H , which allows us to consider the cases d = 1, 2 or 3, for suitable values
of H . This can be interpreting by saying that for H > 1/2, the noise roughens
a little bit less, and the smoothness influence of the Laplacian overcomes the
roughness of the noise. If the noise is colored in space, the conditions for the
existence of the solution of (2) depend on the noise regularity in space. For
example, if f the Riesz kernel of order α, or the Bessel kernel of order α, the
necessary and sufficient condition for the existence of the solution of (2) is
d < 4H + α, whereas if f is the heat kernel or the Poisson kernel, the solution
exists for any d ≥ 1 and H > 1/2 (see [2], as well as Appendix B for a correction
of the result of [2]).

Another explanation of this curse of dimensionality is given in [15], and it is
related to the local time of the stochastic processes associated with the differen-
tial operator of the s.p.d.e. In the particular case of the stochastic heat equation
driven by a space-time white noise, the solution exists only in dimension d = 1
because this is the only case when the d-dimensional Brownian motion has a
local time.

We now return to the discussion of equation (1). This equation has been
studied recently in [14], when the noise is fractional in time, and white in space.
In this article, it is proved that a sufficient condition for the existence of the
solution (in the space of square-integrable processes) is d ≤ 2: if d = 1, then
equation (1) has a solution in any time interval [0, T ], but if d = 2, this equation
has a solution only up to a critical point T0 (i.e. it has a solution in any interval
[0, T ], with T < T0). It is not known if this condition is necessary as well.
There still is a connection with the local time, in the sense that the second-order
moment of the solution is equal to the exponential moment of the “weighted”
intersection local time Lt of two independent d-dimensional Brownian motion
B1 and B2, written formally as:

Lt := H(2H − 1)

∫ t

0

∫ t

0

|r − s|2H−2δ0(B
1
r −B2

s )drds.

In the present article, we consider equation (1) driven by the Gaussian noise
introduced in [2]. This noise is fractional in time with Hurst index H ≥ 1/2, and
colored in space, with covariance kernel f chosen among the following: the Riesz
kernel, the Bessel kernel, the heat kernel, or the Poisson kernel (see Examples
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2.1-2.4). The case of the fractional kernel f(x) =
∏d

i=1Hi(2Hi − 1)|xi|2Hi−2

with 1/2 < Hi < 1 has been examined in [13], using methods that rely on the
product form of f . These methods cannot be used in the present article, since
in our case (except the heat kernel), f is not of product type. For the fractional
kernel, it was proved in [13] that the sufficient condition for the existence of the

solution is d < 2/(2H − 1) +
∑d

i=1Hi.
As in the case of equation (2) with additive noise, we find that the existence

of the solution depends on the roughness of the noise. If H > 1/2, and f is the
Riesz kernel of order α, or the Bessel kernel of order α < d (which are “rough”
kernels), then a sufficient condition for the existence of the solution is d ≤ 2+α:
if d < 2 + α the solution exists in any time interval [0, T ], whereas if d = 2 + α,
the solution exists only up to a critical point T0. If f is the heat or the Poisson
kernel (which are “smooth” kernels), the solution exists in any time interval, for
any d ≥ 1 and H ≥ 1/2. If f is one of the “rough” kernels mentioned above, we
prove that if the solution exists, then d < 4H+α. This shows that for H = 1/2,
the necessary and sufficient condition for the existence of solution is d < 2 + α.
It remains an open problem to identify the necessary and sufficient condition
for the existence of the solution, in the case of H > 1/2.

The existence of the solution is connected to the “convoluted weighted”
intersection local time Lt, written formally as:

Lt = H(2H − 1)

∫ t

0

∫ t

0

∫

Rd

|r − s|2H−2δ0(B
1
r −B2

s − y)f(y)dydrds.

More precisely, the second-order moment of the solution can be expressed as:

E[u2
t,x] = E

[

u0(x+B1
t )u0(x+B2

t ) exp(Lt)
]

.

As in [14], this expression can be extended to the moments of order k ≥ 2, using
k independent d-dimensional Brownian motions.

This article is organized as follows. Section 2 contains some preliminaries
related to the Wick product and the Skorohod integral. In Sections 3, we discuss
the existence of the solution. In Section 4, we examine the relationship with the
“convoluted weighted” intersection local time. Appendix A contains a technical
lemma. Appendix B contains a correction to Theorem 3.13 of [2] (which does
not concern the case of the Riesz kernel).

2 Preliminaries

We begin by describing the kernel which gives the spatial covariance of the noise.
As in [6], let f be the Fourier transform of a tempered distribution µ on R

d, i.e.

f(x) =

∫

Rd

e−iξ·xµ(dξ), ∀x ∈ R
d,

where ξ · x denotes the scalar product in R
d. Let P(Rd) be the completion of

{1A;A ∈ Bb(R
d)}, where Bb(R

d) denotes the class of bounded Borel sets in R
d,
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with respect to the inner product

〈1A, 1B〉P(Rd) =

∫

A

∫

B

f(x− y)dydx.

We consider some examples of kernel functions f . In what follows, |x| denotes
the Euclidian norm of x ∈ R

d.

Example 2.1 If µ(dξ) = |ξ|−αdξ for some 0 < α < d, then f is the Riesz kernel
of order α:

f(x) = γα,d|x|−d+α,

where γα,d = Γ((d − α)/2)2−απ−d/2/Γ(α/2).

Example 2.2 If µ(dξ) = (1 + |ξ|2)−α/2dξ for some α > 0, then f is the Bessel
kernel of order α:

f(x) = γ′α

∫ ∞

0

w(α−d)/2−1e−we−|x|2/(4w)dw,

where γ′α = (4π)α/2Γ(α/2). In this case, P(Rd) coincides with H−α/2(Rd), the
fractional Sobolev space of order −α/2; see e.g. p.191, [12].

Example 2.3 If µ(dξ) = e−π2α|ξ|2/2dξ for some α > 0, then f is the heat kernel
of order α:

f(x) = (2πα)−d/2e−|x|2/(2α).

Example 2.4 If µ(dξ) = e−4π2α|ξ|dξ for some α > 0, then f is the Poisson
kernel of order α:

f(x) = Cdα(|x|2 + α2)−(d+1)/2,

where Cd = π−(d+1)/2Γ((d+ 1)/2).

As in [2] (see also []), if H > 1/2, we let HP be the Hilbert space defined as
the completion of {1[0,t]×A; t ≥ 0, A ∈ Bb(R

d)} with respect to the inner product

〈1[0,t]×A, 1[0,s]×B〉HP = αH

∫ t

0

∫ s

0

∫

A

∫

B

|u− v|2H−2f(x− y)dydxdvdu,

where αH = H(2H − 1). The space HP is isomorphic to H⊗ P(Rd), where H
is the completion of {1[0,t]; t ≥ 0} with respect to the inner product

〈1[0,t], 1[0,s]〉H = αH

∫ t

0

∫ s

0

|u− v|2H−2dvdu.

If H = 1/2, we let HP be the completion of {1[0,t]×A; t ≥ 0, A ∈ Bb(R
d)}

with respect to the inner product

〈1[0,t]×A, 1[0,s]×B〉HP = (t ∧ s)
∫

A

∫

B

f(x− y)dydx.
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In this case, the space HP is isomorphic to L2(R+) ⊗ P(Rd).
We note that in both cases, the space HP may contain distributions.

Let W = {W (h);h ∈ HP} be a zero-mean Gaussian process, defined on a
probability space (Ω,F , P ), with covariance

E(W (h)W (g)) = 〈h, g〉HP .

The process W introduce formally the noise perturbing the stochastic heat
equation. This noise is considered to be “colored” in space, with the color given
by the kernel f . If H > 1/2, the noise is fractional in time, whereas if H = 1/2
the noise is white in time.

We now introduce the basic elements of Malliavin calculus with respect to
W , which are needed in the sequel. For a comprehensive account on this subject,
we refer the reader to [22] and [24].

We begin with a brief description of the multiple Wiener (or Wiener-Itô)
integral with respect to W . Let FW be the σ-field generated by {W (h);h ∈
HP}, Hn(x) be the n-th order Hermite polynomial, and HPn be the closed
linear span of {Hn(W (h));h ∈ HP} in L2(Ω,FW , P ). The space HPn is called
the n-th Wiener chaos of W .

It is known that L2(Ω,FW , P ) = ⊕∞
n=0HPn, and hence every F ∈ L2(Ω,FW , P )

admits the following Wiener chaos expansion:

F =

∞
∑

n=0

Jn(F ), (3)

where Jn : L2(Ω,FW , P ) → HPn is the orthogonal projection. By convention,
HP0 = R and J0(F ) = E(F ).

For each n ≥ 1, and for each h ∈ HP with ‖h‖HP = 1, we define

In(h⊗n) = n! Hn(W (h)).

By polarization, we extend In to elements of the form h1⊗ . . .⊗hn (see p. 230 of
[13]; e.g. h1 ⊗ h2 = [(h1 + h2)

⊗2 − (h1 − h2)
⊗2]/4). By linearity and continuity,

we extend the definition of In to the space HP⊗n. (Note that if {ei; i ≥ 1} is
a CONS in HP , then {ei1 ⊗ . . . ⊗ ein

; ij ≥ 1} is a CONS in HP⊗n.) For any
h ∈ HP⊗n, we say that

In(h) :=

∫

(R+×Rd)n

h(t1, x1, . . . , tn, xn)dWt1,x1 . . . dWtn,xn

is the multiple Wiener integral of h with respect to W . We have

E(In(h)In(g)) = n! 〈h̃, g̃〉HP⊗n , ∀h, g ∈ HP⊗n,

where h̃(t1, x1, . . . , tn, xn) = (n!)−1
∑

σ∈Sn
h(tσ(1), xσ(1), . . . , tσ(n), xσ(n)) is the

symmetrization of h with respect to the n variables (t1, x1), . . . , (tn, xn), and Sn

is the set of all permutations of {1, . . . , n}. By convention, we set I0(x) = x.
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The map In : HP⊗n → HPn is surjective. Moreover, for any Fn ∈ HPn,
there exists a unique fn ∈ HP⊗n symmetric, such that In(fn) = Fn. Using (3),
we conclude that any F ∈ L2(Ω,FW , P ) can be written as:

F =
∞
∑

n=0

In(fn), (4)

where f0 = E(F ) and fn ∈ HP⊗n is symmetric and uniquely determined by F .
We have:

E|F |2 =

∞
∑

n=1

E|In(fn)|2 =

∞
∑

n=0

n! ‖fn‖2
HP⊗n .

We now introduce the Skorohod integral with respect to W . Let u =
{ut,x; (t, x) ∈ R+ × R

d} be an FW -measurable square-integrable process. By
(4), for any (t, x) ∈ R+ × R

d, we have

ut,x = E(ut,x) +

∞
∑

n=1

In(fn(·, t, x)), (5)

where fn(·, t, x) ∈ HP⊗n is symmetric and uniquely determined by ut,x. For

each n ≥ 1, let f̃n be the symmetrization of fn with respect to all n+1 variables.
Let f̃0 = E(u). We say that u is Skorohod integrable (with respect to W )
if f̃n ∈ HP⊗(n+1) for every n ≥ 0, and

∑∞
n=0 In+1(f̃n) converges in L2(Ω). In

this case, we have:

δ(u) :=

∞
∑

n=0

In+1(f̃n) and E|δ(u)|2 =

∞
∑

n=0

(n+ 1)! ‖f̃n‖2
HP⊗(n+1) .

3 Existence of the solution

In this section, we give conditions for the existence of the solution of equation
(1).

Let pt(x) be the heat kernel on R
d, i.e.

pt(x) =
1

(2πt)d/2
exp

(

−|x|2
2t

)

, t > 0, x ∈ R
d.

For any bounded Borel function ϕ : R
d → R, let ptϕ(x) =

∫

Rd pt(x− y)ϕ(y)dy.

For each t > 0, let Ft be the σ-field generated by {W (1[0,s]×A); s ∈ [0, t], A ∈
Bb(R

d)}.
The solution of equation (1) is interpreted in the mild sense using the Skoro-

hod integral with respect to W . More precisely, we have the following definition.
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Definition 3.1 An (Ft)t-adapted square-integrable process u = {ut,x; (t, x) ∈
R+×R

d} is a solution to (1) if for any (t, x) ∈ R+×R
d, the process {pt−s(x−

y)us,y1[0,t](s); (s, y) ∈ R+ × R
d} is Skorohod integrable, and

ut,x = ptu0(x) +

∫ ∞

0

∫

Rd

pt−s(x− y)us,y1[0,t](s)δWs,y.

As in [14] (see also [4], [17], [21], [26], [27], [30]), one can find a closed
formula for the kernels fn(·, t, x) appearing in the Wiener chaos expansion (5)
of a solution u = {ut,x; (t, x) ∈ R+ ×R

d}. More precisely, we have the following
result.

Proposition 3.2 In order that equation (1) possesses a solution it is necessary
and sufficient that for any (t, x) ∈ R+ × R

d, we have

∞
∑

n=0

n! ‖fn(·, t, x)‖2
HP⊗n <∞, (6)

where

fn(t1, x1, . . . , tn, xn, t, x) =
1

n!

n
∏

j=1

ptρ(j+1)−tρ(j)
(xρ(j+1) − xρ(j))ptρ(1)

u0(xρ(1)),

ρ denotes the permutation of {1, 2, . . . , n} such that tρ(1) < tρ(2) < . . . < tρ(n),
tρ(n+1) = t and xρ(n+1) = x. In this case, the solution u is unique, admits the
Wiener chaos decomposition (5), and

E|ut,x|2 =

∞
∑

n=0

n! ‖fn(·, t, x)‖2
HP⊗n . (7)

We begin to examine condition (6). Note that

αn(t, x) := (n!)2 ‖fn(·, t, x)‖2
HP⊗n ≤ ‖u0‖2

∞αn(t), (8)

with equality if u0 = 1, and hence

E|ut,x|2 =

∞
∑

n=0

1

n!
αn(t, x) ≤ ‖u0‖2

∞

∞
∑

n=0

1

n!
αn(t),

where

αn(t) =











αn
H

∫

[0,t]2n

∏n
j=1 |sj − tj |2H−2ψ∗(n)(s, t)dsdt if H > 1/2

∫

[0,t]n
ψ∗(n)(s, s)ds if H = 1/2

(9)

and

ψ∗(n)(s, t) :=

∫

R2nd

n
∏

j=1

f(xj − yj)
n
∏

j=1

ptρ(j+1)−tρ(j)
(xρ(j+1) − xρ(j))

n
∏

j=1

psσ(j+1)−sσ(j)
(yσ(j+1) − yσ(j))dxdy. (10)

8



In the above integrals, we denoted s = (s1, . . . , sn), t = (t1, . . . , tn),x = (x1, . . . , xn),
y = (y1, . . . , yn), and we chose the permutations ρ and σ of {1, . . . , n} such that

0 < tρ(1) < tρ(2) < . . . < tρ(n) and 0 < sσ(1) < sσ(2) < . . . < sσ(n), (11)

with tρ(n+1) = sσ(n+1) = t and xρ(n+1) = yσ(n+1) = x.
Note that

ψ∗(n)(s, t) = 〈g(n)
s
, g

(n)
t

〉P(Rd)⊗n , ∀t, s ∈ [0, t]n,

where

g
(n)
t

(x1, . . . xn) =

n
∏

j=1

ptρ(j+1)−tρ(j)(xρ(j+1) − xρ(j))

g(n)
s

(y1, . . . yn) =

n
∏

j=1

psσ(j+1)−sσ(j)(yσ(j+1) − yσ(j)),

and the permutations ρ and σ are chosen such that (11) holds.

As in [2], for any y, z ∈ R
d and u, v > 0, we denote

Jf (u, v, y, z) :=

∫

Rd

∫

Rd

pu(x − y)pv(x
′ − z)f(x− x′)dxdx′.

Lemma 3.3 (i) If f is the Riesz kernel of order α, or the Bessel kernel of order
α < d, then

Jf (u, v, y, z) ≤ Dα,d(u+ v)−(d−α)/2, ∀y, z ∈ R
d,

where Dα,d is a positive constant depending on α and d.
(ii) If f is the heat kernel of order α, or the Poisson kernel of order α, then

Jf (u, v, y, z) ≤ Cα,d, ∀y, z ∈ R
d,

where Cα,d is a positive constant depending on α and d.

Proof: Note that Jf (u, v, y, z) = E[f(y − z +
√
uY − √

vZ)], where Y and Z
are independent d-dimensional standard normal random vectors. We use the
following inequality: (see (3.24) of [2])

E[e−|y−z+
√

2uY −
√

2vZ|2/(4w)] ≤
(

1 +
u+ v

w

)−d/2

. (12)

(i) In the case of the Riesz kernel, this inequality has been shown in the
proof of Theorem 3.13 of [2]. Suppose now that f is the Bessel kernel of order
α < d. Using (12),

Jf(u, v, y, z) = γ′α

∫ ∞

0

w(α−d)/2−1e−wE[e−|y−z+
√

uY −√
vZ|2/(4w)]dw

9



≤ γ′α

∫ ∞

0

w(α−d)/2−1e−w

(

1 +
u+ v

2w

)−d/2

dw

= γ′α

∫ ∞

0

wα/2−1e−w

(

w +
u+ v

2

)−d/2

dw = γ′αIα,d

(

u+ v

2

)

where Iα,d(x) :=
∫∞
0
wα/2−1e−w(w + x)−d/2dw. The result follows, since

Iα,d(x) ≤ x−d/2

∫ x

0

wα/2−1e−wdw +

∫ ∞

x

wα/2−1e−w(w + x)−d/2dw

= x−d/2xα/2

∫ 1

0

yα/2−1e−xydy + x−(d−α)/2

∫ ∞

1

yα/2−1e−xy(y + 1)−d/2dy

≤ x−(d−α)/2

∫ 1

0

yα/2−1dy + x−(d−α)/2

∫ ∞

1

y−(d−α)/2−1dy = Kα,dx
−(d−α)/2,

where Kα,d = 2/α+2/(d−α) = 2d/[α(d−α)], and we used the fact that α < d.
(ii) If f is the heat kernel, using (12), we obtain:

Jf (u, v, y, z) = (2πα)−d/2E[e−|y−z+
√

uY −√
vZ|2/(2α)]

≤ (2πα)−d/2

(

1 +
u+ v

α

)−d/2

= (2π)−d/2(α + u+ v)−d/2 ≤ (2πα)−d/2.

If f is the Poisson kernel, we have:

Jf (u, v, y, z) = CdαE[(|y − z +
√
uY −

√
vZ|2 + α2)−(d+1)/2]

≤ Cdα(α2)−(d+1)/2 = Cdα
−d.

�

Lemma 3.4 (i) If f is the Riesz kernel of order α, or the Bessel kernel of order
α < d, then for any s, t ∈ [0, t]n,

ψ∗(n)(s, t) ≤
(

Dα,d2
−(d−α)/2

)n

[β(s)β(t)]−(d−α)/4,

where β(s) :=
∏n

j=1(sσ(j+1) − sσ(j)), β(t) :=
∏n

j=1(tρ(j+1) − tρ(j)), and the
permutations ρ and σ are chosen such that (11) holds.

(ii) If f is the heat kernel of order α, or the Poisson kernel of order α, then
for any s, t ∈ [0, t]n,

ψ∗(n)(s, t) ≤ Cn
α,d,

where Cα,d is a constant depending on α and d.

Proof: By the Cauchy-Schwartz inequality,

ψ∗(n)(s, t) ≤ ψ∗(n)(s, s)1/2ψ∗(n)(t, t)1/2.
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To find an upper bound for ψ∗(n)(s, s), we use Lemma 3.3 to estimate the
following integrals:

Ij :=

∫

Rd

∫

Rd

puj
(xσ(j+1) − xσ(j))puj

(yσ(j+1) − yσ(j))f(xσ(j) − yσ(j))dxσ(j)dyσ(j)

= Jf (uj , uj, xσ(j+1), yσ(j+1)), with uj = sσ(j+1) − sσ(j), j = 1, . . . , n.

(i) In this case, Ij ≤ Dα,d[2(sσ(j+1) − sσ(j))]
−(d−α)/2 and

ψ∗(n)(s, s) ≤ Dn
α,d2

−n(d−α)/2





n
∏

j=1

(sσ(j+1) − sσ(j))





−(d−α)/2

.

(ii) In this case, Ij ≤ Cα,d and ψ∗(n)(s, s) ≤ Cn
α,d. �

If H > 1/2, it was proved in [18] that there exists βH > 0 such that

αH

∫ ∞

0

∫ ∞

0

ϕ(s)ϕ(t)|t − s|2H−2dsdt ≤ β2
H

(∫ ∞

0

|ϕ(t)|1/Hdt

)2H

,

for any ϕ ∈ L1/H(R+). Hence,

αn
H

∫

R
2n
+

ϕ(s)ϕ(t)

n
∏

j=1

|tj − sj |2H−2dsdt ≤ β2n
H

(

∫

R
n
+

|ϕ(t)|1/Hdt

)2H

, (13)

for any ϕ ∈ L1/H(Rn
+). If H = 1/2, we let βH = 1.

Using Lemma 3.4 and (13), we obtain the following estimate for αn(t).

Proposition 3.5 Suppose that H ≥ 1/2 and let αn(t) be given by (9).
(i) If f is the Riesz kernel of order α, or the Bessel kernel of order α < d,

and

H >
d− α

4
, (14)

then there exists a constant CH,d,α > 0 depending on H, d and α, such that

αn(t) ≤ CH,d,α

{

Dα,d2
−(d−α)/2β2

H Γ

(

1 − d− α

4H

)2H

t2H−(d−α)/2

}n

(n!)(d−α)/2,

for any t > 0 and n ≥ 1.
(ii) If f is the heat kernel of order α, or the Poisson kernel of order α, then

αn(t) ≤
{

Cα,dt
2H
}n
, for any t > 0 and n ≥ 1.

Remark 3.6 Condition (14) is necessary and sufficient for the existence of the
solution of the stochastic heat equation with additive noise ut = 1

2∆u+ Ẇ ; see
Appendix B for a corrected version of Theorem 3.13 of [2].
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Proof: We only give the proof in the case H > 1/2, the case H = 1/2 being
similar. We use the definition (9) of αn(t).

(i) By Lemma 3.4.(i) and (13), we obtain:

αn(t) ≤
(

Dα,d2
−(d−α)/2

)n

αn
H

∫

([0,t]2)n

n
∏

j=1

|tj − sj |2H−2[β(s)β(t)]−(d−α)/4dsdt

≤
(

Dα,d2
−(d−αf )/2

)n

β2n
H

(

∫

[0,t]n
β(s)−(d−α)/(4H)ds

)2H

=
(

Dα,d2
−(d−α)/2β2

H

)n

(n!)2HIn(t, h)2H , with h := −d− α

4H
,

where

In(t, h) :=

∫

Tn

[(t− sn)(sn − sn−1) . . . (s2 − s1)]
hds,

and Tn = {s = (s1, . . . , sn); 0 < s1 < s2 < . . . < sn < t}.
Using Lemma A.1 (Appendix A), and letting CH,d,α := Γ(1 + h)2H , we obtain:

αn(t) ≤ CH,d,α

(

Dα,d2
−(d−α)/2 β2

H

)n

(n!)2H

{

Γ(1 + h)n

Γ(n(1 + h) + 1)
tn(1+h)

}2H

= CH,d,α

{

Bf2−(d−α)/2 β2
HΓ (1 + h)

2H
t2Hn(1+h)

}n
(

n!

Γ(n(1 + h) + 1)

)2H

.

The result follows since Γ(na+ 1) ∼ (n!)a for a ∈ (0, 1).
(ii) By Lemma 3.4.(ii),

αn(t) ≤ Cn
α,dα

n
H

∫

[0,t]2n

n
∏

j=1

|sj − tj |2H−2dsdt = Cn
α,d t

2Hn.

�

Using Proposition 3.5, we examine the existence of the solution of equation
(1). The next result is an extension of Proposition 4.3 of [14] to the case of a
colored noise W .

Proposition 3.7 (i) Let f be the Riesz kernel of order α, or the Bessel kernel
of order α < d. Suppose that either

H > 1/2 and d ≤ 2 + α, (15)

or
H = 1/2 and d < 2 + α. (16)

Then (1) has a unique solution in [0, T ]× R
d, provided that T < T0 where

T0 =

{

{

Dα,d2
−1β2

HΓ
(

1 − 1
2H

)2H
}−1/(2H−1)

if d = 2 + α

∞ if d < 2 + α
(17)
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(ii) Let H ≥ 1/2, and f be the heat kernel of order α, or the Poisson kernel
of order α. Then (1) has a unique solution in R+ × R

d.

Remark 3.8 Either one of conditions (15) or (16) is stronger that (14).

Remark 3.9 Proposition 3.7 shows that in the case H = 1/2, there is no
“critical” dimension d, i.e. there is a strict inequality in (16).

Proof: We apply Proposition 3.2, using Proposition 3.5.
(i) Let

Kα,d(t) := Dα,d2
−(d−α)/2β2

HΓ

(

1 − d− α

4H

)2H

t2H−(d−α)/2.

We have:

∞
∑

n=0

n! ‖fn(·, t, x)‖2
HP⊗n ≤ ‖u0‖2

∞

∞
∑

n=0

1

n!
αn(t) ≤ ‖u0‖2

∞CH,f,d

∞
∑

n=0

[Kα,d(t)]
n

(n!)1−(d−α)/2
.

If d − α = 2, then the last sum is finite if K(t) < 1, which is equivalent to
saying that t < T0. If d − α < 2, then the last sum is finite for any t > 0, by
Stirling’s formula and D’Alembert criterion.

(ii) Let Kα,d(t) = Cα,dt
2H . We have:

∞
∑

n=0

n! ‖fn(·, t, x)‖2
HP⊗n ≤ ‖u0‖2

∞

∞
∑

n=0

1

n!
αn(t) ≤ ‖u0‖2

∞

∞
∑

n=0

[Kα,d(t)]
n

n!
<∞.

�

The next result shows that (14) is a necessary condition for the existence of
the solution.

Proposition 3.10 Suppose that H ≥ 1/2 and f is either the Riesz kernel or
order α, or the Bessel kernel of order α. If equation (1) with u0 = 1 has a
solution in R+ × R

d, then (14) holds.

Proof: Note that E |ut,x|2 =
∑∞

n=0 αn(t)/n! < ∞ implies that α1(t) < ∞,
which in turn implies (14) (see Appendix B). �

Remark 3.11 Proposition 3.7 and Proposition 3.10 show that, if H = 1/2 and
f is the Riesz kernel of order α, or the Bessel kernel of order α < d, then the
condition d < α+ 2 is necessary and sufficient for the existence of the solution
of (1). It remains an open problem to see if this condition is necessary, when
H > 1/2.

Remark 3.12 If H = 1/2 and f is an arbitrary kernel, it was proved in [6]
(using different methods) that the sufficient condition for the existence of the
solution in R+ × R

d of (1) with vanishing initial conditions (i.e. u0 = 0), is:
∫

Rd

µ(dξ)

1 + |ξ|2 <∞. (18)
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(see Remark 14 of [6]). When f is the Riesz kernel of order α, or the Bessel
kernel of order α, (18) holds if and only if d < α + 2. Combining this with
Remark 3.11, we conclude that, in the case of the two kernels, condition (18)
is also necessary for the existence of the solution. For an arbitrary kernel f ,
it is not known if (18) remains a necessary condition for the existence of the
solution.

4 Relationship with the Local Time

In this section, we identify a random variable Lt, defined formally as a “convo-
luted intersection local time” of two independent d-dimensional standard Brow-
nian motions, such that

αn(t) = E(Ln
t ), ∀n ≥ 1. (19)

An immediate consequence of (7), (8) and (19) is that the second moment
of ut,x is bounded by the exponential moment of Lt:

E|ut,x|2 ≤ ‖u0‖2
∞

∞
∑

n=0

1

n!
αn(t) = ‖u0‖2

∞

∞
∑

n=0

1

n!
E(Ln

t ) = ‖u0‖2
∞E(eLt),

with equality if u0 = 1.
To show (19), we approximate αn(t) by {αn,ε(t)}ε>0, when ε → 0, where

the constants αn,ε(t) are chosen such that:

αn,ε(t) = E(Ln
t,ε), ∀n ≥ 1,

for a certain random variable Lt,ε.
To identify the approximation constants αn,ε(t), we recall the definition (9),

which says that αn(t) is the weighted integral of the function ψ∗(n)(s, t). The
next lemma gives the exact calculation for the integrand ψ∗(n)(s, t).

Lemma 4.1 We have:

ψ∗(n)(s, t) = (2π)−nd

∫

(Rd)n

exp







−1

2

n
∑

j,k=1

σ∗
jkξj · ξk







µ(dξ1) . . . µ(dξn),

where σ∗
jk := (t− sj) ∧ (t− sk) + (t− tj) ∧ (t− tk).

Remark 4.2 Lemma 4.1 gives a generalization -and a minor correction- to
Lemma 4.2 of [14]. The correction refers to the fact that the result of [14] is
stated incorrectly with the constant σjk = sj ∧ sk + tj ∧ tk, instead of σ∗

jk.
However, a trivial change of variables s′j := t− sj , t

′
j := t − tj in the definition

(9) of αn(t) shows that this minor error does not affect the calculation of αn(t).
We have indeed:

αn(t) =











αn
H

∫

[0,t]2n

∏n
j=1 |sj − tj |2H−2ψ(n)(s, t)dsdt if H > 1/2

∫

[0,t]n ψ
(n)(s, s)ds if H = 1/2

(20)
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with

ψ(n)(s, t) = (2π)−nd

∫

(Rd)n

exp







−1

2

n
∑

j,k=1

σjkξj · ξk







µ(dξ1) . . . µ(dξn)

= ψ∗(n)(t1− s, t1− t), where 1 = (1, . . . , 1) ∈ R
n.

Proof of Lemma 4.1: Note that

〈ϕ, ψ〉P(Rd)⊗n = (2π)−nd

∫

(Rd)n

Fϕ(ξ1, . . . , ξn)Fψ(ξ1, . . . , ξn)µ(dξ1) . . . µ(dξn),

where F denotes the Fourier transform. Hence,

ψ∗(n)(s, t) = 〈g(n)
s
, g

(n)
t

〉P(Rd)⊗n

= (2π)−nd

∫

(Rd)n

Fg(n)
s

(ξ1, . . . , ξn)Fg(n)
t

(ξ1, . . . , ξn)µ(dξ1) . . . µ(dξn).

It was shown in the proof of Lemma 4.2 of [14] that:

Fgs(ξ1, . . . , ξn) = E





n
∏

j=1

e
−iξj ·[x−(B1

t−B1
sj

)]





Fgt(ξ1, . . . , ξn) = E





n
∏

j=1

e
−iξj ·[x−(B2

t−B2
tj

)]



 ,

where B1 = (B1
t )t≥0 and B2 = (B2

t )t≥0 are independent d-dimensional standard
Brownian motions. Hence,

ψ∗(n)(s, t) = (2π)−nd

∫

(Rd)n

E





n
∏

j=1

e
−iξj ·[(B1

sj
−B1

t )−(B2
tj

−B2
t )]



µ(dξ1) . . . µ(dξn)

We begin to evaluate the integrand of the above integral. We denote ξj =
(ξj,1, . . . , ξj,d), B

1
t = (B1

t,1, . . . , B
1
t,d) and B2

t = (B2
t,1, . . . , B

2
t,d). We observe that

for any j = 1, . . . , n fixed, the random variables

(B1
sj ,l −B1

t,l) − (B2
tj ,l −B2

t,l), l = 1, . . . , d, are i.i.d.,

with the same distribution as (b1sj
− b1t ) − (b2tj

− b2t ), where b1 = (b1t )t≥0 and

b2 = (b2t )t≥0 are independent 1-dimensional standard Brownian motions. Hence,

E





n
∏

j=1

e
−iξj ·[(B1

sj
−B1

t )−(B2
tj
−B2

t )]



 =

d
∏

l=1

E





n
∏

j=1

e
−iξj,l[(B

1
sj,l−B1

t,l)−(B2
tj ,l−B2

t,l)]
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=

d
∏

l=1

E





n
∏

j=1

e
−iξj,l[(b

1
sj

−b1t )−(b2tj
−b2t )]



 =

d
∏

l=1

exp







−1

2

n
∑

j,k=1

σ∗
jkξj,lξk,l







= exp







−1

2

n
∑

j,k=1

σ∗
jkξj · ξk







,

where for the second last equality we used the fact that the vector

((b1s1
− b1t ) − (b2t1 − b2t ), . . . , (b

1
sn

− b1t ) − (b2tn
− b2t ))

has a normal distribution with mean zero and covariance matrix (σ∗
jk)1≤j,k≤n.

This concludes the proof of the lemma. �

In what follows, we use the alternative definition (20) of αn(t), given in
Remark 4.2. The idea is to find a suitable approximation for the integrand
ψ(n)(s, t), by replacing the Dirac function δ0(x) with the heat kernel pε(x).
This approximation turns out to be:

ψ(n)
ε (s, t) := E

[

∫

(Rd)n

pε(B
1
s1

−B2
t1 − y1) . . . pε(B

1
sn

−B2
tn

− yn)f(y1) . . . f(yn)dy

]

,

where B1 = (B1
t )t≥0 and B2 = (B2

t )t≥0 are independent d-dimensional standard
Brownian motions, and we denote y = (y1, . . . , yn).

More precisely, we have the following result.

Lemma 4.3 Suppose that µ(dξ) = g(ξ)dξ, i.e. f = Fg. Then

ψ(n)
ε (s, t) = (2π)−nd

∫

(Rd)n

exp







−1

2

n
∑

j,k=1

σjkξj · ξk − ε

2

n
∑

j=1

|ξj |2






µ(dξ1) . . . µ(dξn).

Proof: We first calculate the inverse Fourier transform of pε ∗ f :

F−1(pε ∗ f)(ξ) = F−1pε(ξ) F−1f(ξ) = (2π)−de−ε|ξ|2/2g(ξ).

This shows that (pε ∗ f)(x) = (2π)−dF [e−ε|ξ|2/2g(ξ)](x), i.e.

∫

Rd

1

(2πε)d/2
e−|x−y|2/(2ε)f(y)dy = (2π)−d

∫

Rd

e−iξ·xe−ε|ξ|2/2g(ξ)dξ. (21)

Using (21) with x = B1
sj

−B2
tj

, we obtain:

∫

Rd

1

(2πε)d/2
e
−|B1

sj
−B2

tj
−yj|2/(2ε)

f(yj)dyj = (2π)−d

∫

Rd

e
−iξj ·(B1

sj
−B2

tj
)
e−ε|ξj |2/2g(ξj)dξj .
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Therefore,

ψ(n)
ε (s, t) = E





n
∏

j=1

∫

Rd

1

(2πε)d/2
e
−|B1

sj
−B2

tj
−yj|2/(2ε)

f(yj)dyj





= (2π)−ndE





n
∏

j=1

∫

Rd

e
−iξj ·(B1

sj
−B2

tj
)
e−ε|ξj |2/2g(ξj)dξj





= (2π)−nd

∫

(Rd)n

E





n
∏

j=1

e
−iξj ·(B1

sj
−B2

tj
)



 e−ε
∑n

j=1 |ξj |2/2µ(dξ1) . . . µ(dξn)

= (2π)−nd

∫

(Rd)n

e−
∑n

j,k=1 σjkξj ·ξk/2e−ε
∑n

j=1 |ξj |2/2µ(dξ1) . . . µ(dξn).

�

We are now ready to define the approximation constants αn,ε(t):

αn,ε(t) =











αn
H

∫

[0,t]2n

∏n
j=1 |tj − sj |2H−2ψ

(n)
ε (s, t)dsdt if H > 1/2

∫

[0,t]n ψ
(n)
ε (s, s)ds if H = 1/2

.

Note that αn,ε(t) = E(Ln
t,ε), where

Lt,ε :=















αH

∫ t

0

∫ t

0

∫

Rd |r − s|2H−2pε(B
1
r −B2

s − y)f(y)dydrds if H > 1/2

∫ t

0

∫

Rd pε(B
1
s −B2

s − y)f(y)dyds if H = 1/2

The random variable Lt,ε is an approximation of the “convoluted intersection
local time” Lt, written formally as:

Lt =







αH

∫ t

0

∫ t

0

∫

Rd |r − s|2H−2δ0(B
1
r −B2

s − y)f(y)dydrds if H > 1/2

∫ t

0

∫

Rd δ0(B
1
s −B2

s − y)f(y)dyds if H = 1/2

More generally (and for the sake of a result encountered later in the sequel),
if η : [0, t]2 → R+ is an arbitrary function such that η(r, s) = η(t − r, t − s) for
all r, s ∈ [0, t], we define

Lt,ε(η) :=

∫ t

0

∫ t

0

∫

Rd

η(r, s)pε(B
1
r −B2

s − y)f(y)dydrds.

Then αn,ε(t, η) = E(Lt,ε(η)
n), where αn,ε(t, η) :=

∫

[0,t]2n

∏n
j=1 η(sj , tj)ψ

(n)
ε (s, t)dsdt.

Let

αn(t, η) :=

∫

[0,t]2n

n
∏

j=1

η(sj , tj)ψ
(n)(s, t)dsdt, (22)

and note that αn,ε(t, η) ≤ αn(t, η) for all ε > 0.
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Lemma 4.4 Let t > 0 be arbitrary. a) If α2(t, η) <∞, then

lim
ε,δ↓0

E(Lt,ε(η)Lt,δ(η)) = α2(t, η), (23)

and there exists a random variable Lt(η) := limε↓0 Lt,ε(η) in L2(Ω). We denote

Lt(η) =

∫ t

0

∫ t

0

∫

Rd

η(r, s)δ0(B
1
r −B2

s − y)f(y)dydrds.

b) If αn(t, η) <∞ for all n ≥ 1, then

lim
ε↓0

E|Lt,ε(η) − Lt(η)|p = 0, for all p ≥ 2.

In particular, E(Lt(η)
n) = limε↓0E(Lt,ε(η)

n) = αn(t, η) for all n ≥ 1.

Proof: As in [14], the proof follows by classical methods. We include it for the
sake of completeness.

a) Note that E(Lt,ε(η)Lt,δ(η)) =
∫

[0,t]4 η(s1, t1)η(s2, t2)ψ
(2)
ε,δ (s, t)dsdt, where

ψ
(2)
ε,δ (s, t) := E

[

∫

(Rd)2
pε(B

1
s1

−B2
t1 − y1)pε(B

1
s2

−B2
t2 − y2)f(y1)f(y2)dy1dy2

]

= (2π)−2d

∫

(Rd)2
exp







−1

2

2
∑

j,k=1

σjkξj · ξk − ε

2
|ξ1|2 −

δ

2
|ξ2|2







µ(dξ1)µ(dξ2).

Then limε,δ↓0 ψ
(2)
ε,δ (s, t) = ψ(2)(s, t). Relation (23) follows by the Dominated

Convergence Theorem, since ψ
(2)
ε,δ (s, t) ≤ ψ(2)(s, t) for all ε, δ > 0, and

∫

[0,t]4
η(s1, t1)η(s2, t2)ψ

(2)(s, t) = α2(t) <∞.

Hence, limε,δ↓0E|Lt,ε(η) − Lt,δ(η)|2 = 0, i.e. (Lt,ε(η))ε>0 is Cauchy in L2(Ω).
b) Note that limε↓0 Lt,ε(η) = Lt(η) a.s. (along a subsequence), and (Lt,ε(η))ε>0

is uniformly integrable, since

sup
ε>0

E(Lt,ε(η)
n) = sup

ε>0
αn,ε(t, η) ≤ αn(t, η) <∞, for n ≥ 2.

Therefore, limε↓0 E|Lt,ε(η) − Lt(η)|p = 0 for any p ≥ 2. �

The next two results are the analogues of Propositions 3.1 and 3.2 of [14] in
the case of a colored noise.

Proposition 4.5 Suppose that η : [0, t]2 → R+ satisfies the following condition:
for all t > 0

‖η‖1,t := max

(

sup
s∈[0,t]

∫ t

0

η(r, s)dr, sup
r∈[0,t]

∫ t

0

η(r, s)ds

)

<∞. (24)
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If either one of the following two conditions holds:
(i) f is the Riesz kernel of order α, or the Bessel kernel of order α < d, and

d < 2 + α;
(ii) f is the heat kernel of order α, or the Poisson kernel of order α,

then limε↓0 Lt,ε(η) = Lt(η) exists in Lp(Ω), for all p ≥ 2, and

E [exp (λLt,ε(η))] <∞, for all λ > 0, ε > 0.

Proof: We use the definition (22) of αn(t, η), and Lemma 3.4 for the estimation
of ψ∗(n)(s, t).

(i) Using the Cauchy-Schwartz inequality, condition (24), and Lemma A.1
(Appendix A), we get:

αn(t, η) ≤
(

Dα,d2
−(d−α)/2

)n
∫

[0,t]2n

n
∏

j=1

η(sj , tj)[β(s)β(t)]−(d−α)/4dsdt

≤
(

Dα,d2
−(d−α)/2

)n
∫

[0,t]2n

n
∏

j=1

η(sj , tj)[β(s)]−(d−α)/2dsdt

≤
(

Dα,d2
−(d−α)/2

)n

‖η‖n
1,t

∫

[0,t]n
[β(s)]−(d−α)/2ds

=
(

Dα,d2
−(d−α)/2‖η‖1,t

)n

n! In(t, h) with h = −d− α

2

≤ CH,d,αC(t)n(n!)(d−α)/2,

where CH,d,α = Γ(1+h) and C(t) = Dα,d2
−(d−α)/2‖η‖1,tΓ(1+h)t1+h. The first

statement follows by Lemma 4.4. The second statement follows since,

E[eλLt,ε(η)] =
∞
∑

n=0

λn

n!
αn,ε(t, η) ≤

∞
∑

n=0

λn

n!
αn(t, η) ≤ CH,d,α

∞
∑

n=0

[λC(t)]n

(n!)1−(d−α)/2
,

and the last sum is finite for all λ > 0, since d− α < 2.
(ii) In this case,

αn(t, η) ≤ Cn
α,d

∫

[0,t]2n

∏n
j=1 η(sj , tj)dsdt ≤ Cn

α,d‖η‖n
1,tt

n,

and the conclusion follows. �

Proposition 4.6 Suppose that η : [0, t]2 → R+ satisfies the following condition:
there exist γ > 0 and 1/2 < H < 1, such that

η(r, s) ≤ γ|r − s|2H−2, ∀r, s ∈ [0, t]. (25)

(i) If f is the Riesz kernel of order α, or f is the Bessel kernel of order
α < d, and d ≤ 2+α, then limε↓0 Lt,ε(η) = Lt(η) exists in Lp(Ω), for all p ≥ 2,
and

sup
ε>0

E [exp (λLt,ε(η))] <∞, for all 0 < λ < λ0(t),
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where

λ0(t) =

{

D−1
α,d2αHγ

−1β−2
H Γ

(

1 − 1
2H

)−2H
t1−2H if d = 2 + α

∞ if d < 2 + α

(ii) If f is the heat kernel of order α or the Poisson kernel of order α, then
the same conclusion as in part (i) holds, with λ0(t) = ∞.

Proof: The proof is similarly to Proposition 3.5. We use the definition (22) of
αn(t, η), Lemma 3.4 and condition (25).

(i) We have:

αn(t, η) ≤ CH,d,fC(t)n (n!)(d−α)/2 <∞,

where

C(t) := Dα,d2
−(d−α)/2 γ

αH
β2

HΓ

(

1 − d− α

4H

)2H

t2H−(d−α)/2.

The first statement follows by Lemma 4.4. The other statement follows, since

E[eλLt,ε(η)] =
∞
∑

n=0

λn

n!
αn,ε(t, η) ≤

∞
∑

n=0

λn

n!
αn(t, η) ≤ CH,d,f

∞
∑

n=0

[C(t)λ]n

(n!)1−(d−α)/2
.

If d − α = 2, then the last sum is finite for all 0 < λ < λ0(t) := 1/C(t). If
d− α < 2, then then last sum is finite for all λ > 0.

(ii) The result follows, since:

αn(t, η) ≤ Cn
α,d

∫

[0,t]2n

n
∏

j=1

η(sj , tj)dsdt ≤ Cn
α,dγ

n

∫

[0,t]2n

n
∏

j=1

|sj − tj |2H−2dsdt

=

(

Cα,d
γ

αH
t2H

)n

.

�

Using the approximation technique of [14], for any ε, δ > 0, we set:

Ẇ ε,δ
t,x =

∫ t

0

∫

Rd

ϕδ(t− s)pε(x− y)dWs,y,

where ϕδ(t) = δ−11[0,δ](t). We consider the following equation:

∂uε,δ

∂t
=

1

2
∆uε,δ + uε,δ ⋄ Ẇ ε,δ, t > 0, x ∈ R

d (26)

uε,δ
0,x = u0(x), x ∈ R

d.

Using the Feynman-Kac formula, one can prove that the process uε,δ = {uε,δ
t,x; (t, x) ∈

R+ × R
d} defined by:

uε,δ
t,x := EB

[

u0(x+Bt) exp

(∫ t

0

∫

Rd

Aε,δ,B
r,y dWr,y − 1

2
‖Aε,δ,B‖2

HP

)]

(27)
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is a solution of (26), where Aε,δ,B
r,y =

∫ t

0
ϕδ(t− s− r)pε(x+Bs − y)ds.

Let Bi = (Bi
t)t∈[0,T ], i ≥ 1 be independent d-dimensional standard Brownian

motions, independent of W . Suppose that either (15) or (16) hold. For any pair
(i, j) with i 6= j, let

LBi,Bj

t =







αH

∫ t

0

∫ t

0

∫

Rd |r − s|2H−2δ0(B
i
r −Bj

s − y)f(y)dydrds if H > 1/2

∫ t

0

∫

Rd δ0(B
i
s −Bj

s − y)f(y)dyds if H = 1/2

be the random variable defined in Lemma 4.4, with η(r, s) = αH |r − s|2H−2

if H > 1/2, respectively η(r, s) = 1{r=s} if H = 1/2. (By Proposition 3.5,

αn(t) <∞ for all n ≥ 1, and hence the random variable LBi,Bj

t is well-defined.)

The following result is the analogue of Theorem 5.3 of [14] in the case of the
colored noise.

Theorem 4.7 (i) Suppose that f is the Riesz kernel of order α or the Bessel
kernel of order α < d, and either (15) or (16) holds. Then, for any integer
k ≥ 2, we have:

sup
ε,δ>0

E[(uε,δ
t,x)k] <∞, for all 0 < t < t0(k), (28)

where

t0(k) =

{

[

k(k − 1)Dα,d2
−2Hβ2

HΓ
(

1 − 1
2H

)2H
]−1/(2H−1)

if d = 2 + α

∞ if d < 2 + α

For any 0 < t < t0(2) and x ∈ R
d, the limit ut,x := limε↓0 limδ↓0 u

ε,δ
t,x exists

in L2(Ω), the process u = {ut,x; (t, x) ∈ [0, t0(2))×R
d} is a solution of (1), and

E[u2
t,x] = E

[

u0(x+B1
t )u0(x+B2

t ) exp
(

LB1,B2

t

)]

:= γ2(t, x).

If t < t0(M) for some M ≥ 3, then limε↓0 limδ↓0 E|uε,δ
t,x − ut,x|p = 0 for all

2 ≤ p < M , and for any integer 2 ≤ k ≤M − 1,

E[uk
t,x] = E





k
∏

j=1

u0(x+Bi
t) exp





∑

1≤i<j≤k

LBi,Bj

t







 := γk(t, x). (29)

(ii) Suppose that f is the heat kernel of order α, or the Poisson kernel of
order α. Then the conclusion same as in part (i) holds, with t0(k) = ∞ for all
k ≥ 2.

Proof: Let k ≥ 2 be a fixed integer. Using (27), one can show that:

E[(uε,δ
t,x)k] = E





k
∏

k=1

u0(x +Bj
t ) exp





∑

i<j

〈Aε,δ,Bi

, Aε,δ,Bj 〉HP







 . (30)
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Using the fact that

∫

Rd

∫

Rd

pε(x+B
i
s1
−y1)pε(x+B

j
s2
−y2)f(y1−y2)dy2dy1 =

∫

Rd

p2ε(B
i
s1
−Bj

s2
−y)f(y)dy,

it follows that

〈Aε,δ,Bi

, Aε,δ,Bj 〉HP =

∫ t

0

∫ t

0

∫

Rd

ηδ(s1 − s2)p2ε(B
i
s1

−Bj
s2

− y)f(y)dyds1ds2

= LBi,Bj

t,2ε (ηδ), (31)

where

ηδ(s1, s2) =







αH

∫ t

0

∫ t

0
ϕδ(t− s1 − r1)ϕδ(t− s2 − r2)|r1 − r2|2H−2dr1dr2 if H > 1/2

∫ t

0
ϕδ(t− s1 − r)ϕδ(t− s2 − r)dr if H = 1/2

.

Note that, for any continuous function g : [0, t]2 → R,

lim
δ↓0

∫ t

0

∫ t

0

ηδ(s1, s2)g(s1, s2)ds1ds2 =

{

αH

∫ t

0

∫ t

0 |s1 − s2|2H−2g(s1, s2)ds1ds2 if H > 1/2
∫ t

0 g(s, s)ds if H = 1/2

Taking g(s1, s2) =
∫

Rd p2ε(B
i
s1
−Bj

s2
−y)f(y)dy, we get: limδ↓0〈Aε,δ,Bi

, Aε,δ,Bj 〉HP =

LBi,Bj

t,2ε . Using Lemma 4.4, we obtain:

lim
ε↓0

lim
δ↓0

〈Aε,δ,Bi

, Aε,δ,Bj 〉HP = lim
ε↓0

LBi,Bj

t,2ε = LBi,Bj

t a.s. (32)

If H = 1/2, then ηδ satisfies condition (24), whereas if H > 1/2, then ηδ satisfies
condition (25) with γ = αH22−2H (see p.28 of [14]). By applying Proposition
4.5 (if H = 1/2), or Proposition 4.6 (if H > 1/2), and using (31), it follows
that:

sup
δ,ε>0

E
[

exp
(

λ〈Aε,δ,Bi

, Aε,δ,Bj 〉HP
)]

<∞, for all 0 < λ < λ0(t). (33)

where λ0(t) = ∞ if H = 1/2, and λ0(t) is defined in Proposition 4.6, if H > 1/2.
Since

sup
ε,δ>0

E[(uε,δ
t,x)k] ≤ ‖u0‖k

∞ sup
ε,δ>0

E

[

exp

(

k(k − 1)

2
〈Aε,δ,Bi

, Aε,δ,Bj 〉HP

)]

,

and
k(k − 1)

2
< λ0(t) if and only if t < t0(k),

relation (28) follows. From (33), we also infer that, if 1 < λ0(t) (i.e. t < t0(2)),
then

{exp(〈Aε,δ,Bi

, Aε,δ,Bj 〉HP)}ε,δ>0 is uniformly integrable, (34)
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Using (30), (32) and (34), we obtain:

lim
ε↓0

lim
δ↓0

E[(uε,δ
t,x)k] = γk(t, x), if t < t0(2). (35)

Using a similar argument, one can prove that limε,ε′↓0 limδ,δ′↓0E[uε,δ
t,xu

ε′,δ′

t,x ] =
γ2(t, x), if t < t0(2). To see this, note that

E[uε,δ
t,xu

ε′,δ′

t,x ] = E[u0(x+B1
t )u0(x+B2

t ) exp(〈Aε,δ,B1

, Aε′,δ′,B2〉HP)],

and limε,ε′↓0 limδ,δ′↓0〈Aε,δ,B1

, Aε′,δ′,B2〉HP = limε,ε′↓0 L
B1,B2

t,ε+ε′ = LB1,B2

t .

It follows that, for any t < t0(2) and x ∈ R
d, {uε,δ

t,x}ε,δ>0 is Cauchy in

L2(Ω), and there exists ut,x := limε↓0 limδ↓0 u
ε,δ
t,x in L2(Ω). The fact that u =

{ut,x; (t, x) ∈ [0, t0(2)) × R
d} is a solution of (1) follows as in [14], by checking

that ut,x = ptu0(x) + δ(pt−·(x− ·)u1[0,t]), i.e.

E(Fut,x) = E(F )ptu0(x) + E(〈pt−· (x− · )u1[0,t], DF 〉HP ), ∀F ∈ D
1,2.

If t < t0(M) for some M ≥ 3, then supε,δ>0E[(uε,δ
t,x)M ] < ∞, and hence,

{(uε,δ
t,x)p}ε,δ>0 is uniformly integrable, for any 2 ≤ p < M . Since uε,δ

t,x − ut,x → 0

a.s. (along a subsequence), we conclude that E|uε,δ
t,x − ut,x|p → 0. In particular,

limε↓0 limδ↓0E[(uε,δ
t,x)k] = E[uk

t,x] for any 2 ≤ k < M , and (29) follows by (35).
�

A The calculation of In(t, h)

Lemma A.1 Let

In(t, h) :=

∫

Tn

[(t− sn)(sn − sn−1) . . . (s2 − s1)]
hds,

where Tn = {s = (s1, . . . , sn); 0 < s1 < s2 < . . . < sn < t}. Then In(t, h) < ∞
if and only if 1 + h > 0. In this case,

In(t, h) =
Γ(1 + h)n

Γ(n(1 + h) + 1)
tn(1+h).

Proof: First note that
∫ s2

0 (s2 − s1)
hds1 = sh+1

2 /(h+ 1), and then

∫ s3

0

(s3 − s2)
hsh+1

2 ds2 = s2h+2
3 β (h+ 2, h+ 1)

= s
2(h+1)
3 β ((h+ 1) + 1, h+ 1))

where β(a, b) =
∫ 1

0 x
a−1(1 − x)b−1dx is the beta function, and we used the

change of variables s2/s3 = z. In this way, the integral In(t, h) becomes

In(t, h) =
1

h+ 1
β ((h+ 1) + 1, h+ 1) . . . β ((n− 2)(h+ 1) + 1, h+ 1)
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∫ t

0

s(n−1)(h+1)
n (t− sn)hdsn

= tn(h+1)β ((h+ 1) + 1, h+ 1) . . . β ((n− 1)(h+ 1) + 1, h+ 1) .

Using the fact that β(a, b) = Γ(a)Γ(b)/Γ(a+b) for a, b > 0 and Γ(z+1) = zΓ(z)
for any z > 0, we obtain the desired conclusion. �

B Correction to Theorem 3.13 of [2]

Theorem 3.13 of [2] gives the necessary and sufficient condition for the exis-
tence of the solution of the equation: ut = 1

2∆u + Ẇ in (0, T ) × R
d, with

u(0, ·) = 0. This condition is equivalent to saying that ‖gtx‖HP < ∞, where
gtx(s, y) = [2π(t−s)]−d/2 exp{−|x−y|2/[2(t−s)]} = pt−s(x−y). The condition
is incorrectly stated in the case of the Bessel kernel, the heat kernel, and the
Poisson kernel.

We give below a correction of Theorem 3.13 of [2].

Theorem B.1 (i) If f is the Riesz kernel of order α, or the Bessel kernel of
order α, then ‖gtx‖HP <∞ if and only if H > (d− α)/4.

(ii) If f is the heat kernel of order α, or the Poisson kernel of order α, then
‖gtx‖HP <∞ for any H > 1/2 and d ≥ 1.

Proof: Note that ‖gtx‖2
HP = αH

∫ t

0

∫ t

0
|r−s|2H−2I(r, s)drds = α1(t), where

I(r, s) :=

∫

Rd

∫

Rd

f(x1 − y1)pt−s(x − x1)pt−r(x− y1)dx1dy1 = ψ∗(1)(r, s).

(i) In the case of the Riesz kernel, the result has been correctly proved in
[2]. Suppose that f is the Bessel kernel of order α. Then

I(r, s) = γ′α

∫ ∞

0

wα/2−1e−w(w + 2t− r − s)−d/2dw,

and

‖gtx‖2
HP

= αHγ
′
α

∫ t

0

∫ t

0

|r − s|2H−2

∫ ∞

0

wα/2−1e−w(w + r + s)−d/2dwdrds

≥ αHγ
′
α2−d/2

∫ t

0

∫ t

0

|r − s|2H−2(r + s)−d/2

(∫ r+s

0

wα/2−1e−wdw

)

drds

= αHγ
′
α2−d/2+1

∫ t

0

∫ r

0

(r − s)2H−2(r + s)−d/2

(∫ r+s

0

wα/2−1e−wdw

)

dsdr

= αHγ
′
α2−d/2+1

∫ t

0

r2H−1−d/2

∫ 1

0

(1 − x)2H−2(1 + x)−d/2

(

∫ r(1+x)

0

wα/2−1e−wdw

)

dxdr
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≥ 2αHγ
′
α

∫ t

0

r2H−1−d/2

∫ 1

0

(1 − x)2H−2

(∫ r

0

wα/2−1e−wdw

)

dxdr

= 2Hγ′α

∫ t

0

r2H−1−d/2γ(α/2, r)dr,

where

γ(a, x) =

∫ x

0

wa−1e−wdw, a > 0, x > 0

is the imcomplete Gamma function. It is known that: (see [1], Section 6.5, pages
260-263)

lim
x→0

γ(a, x)

xa
= 1. (36)

From (36) it follows that the function γ(α/2, r) behaves as rα/2, for r close

to zero. The fact that the integral
∫ t

0 r
2H−1−d/2γ(α/2, r)dr is finite forces the

condition d < 4H + α.
Suppose now that H > (d− α)/4. We prove that ‖gtx‖HP <∞. We have:

‖gtx‖2
HP

= 2αHγ
′
α

∫ ∞

0

wα/2−1e−w

∫ t

0

∫ t

s

(r − s)2H−2(w + r + s)−d/2drdsdw

= 2αHγ
′
α

∫ ∞

0

wα/2−1e−w

∫ 2t

0

∫ t

0

u2H−2(w + v)−d/21{u≤v}1{u≤2t−v}dudvdw

= 2Hγ′α

∫ ∞

0

wα/2−1e−w

[∫ t

0

v2H−1(w + v)−d/2dv +

∫ t

0

v2H−1(w + 2t− v)−d/2dv

]

dw

:= 2Hγ′α

∫ ∞

0

wα/2−1e−w[I1(w) + I2(w)]dw,

and

I1(w) ≤
∫ t

0

(w + v)2H−1−d/2dv =

∫ w+t

w

v2H−1−d/2dv

I2(w) ≤
∫ t

0

(w + 2t− v)2H−1−d/2dv =

∫ w+2t

w+t

v2H−1−d/2dv.

If H > d/4, then I1(w)+I2(w) ≤ [(w+t)2H−d/2+(w+2t)2H−d/2]/(2H−d/2)
and

‖gtx‖2
HP ≤ 2Hγ′α

2H − d/2

∫ ∞

0

wα/2−1e−w[(w + t)2H−d/2 + (w + 2t)2H−d/2]dw <∞.

If (d−α)/ < H < d/4, then I1(w)+I2(w) ≤ [w2H−d/2+(w+t)2H−d/2]/(d/2−
2H) and

‖gtx‖2
HP ≤ 2Hγ′α

d/2 − 2H

∫ ∞

0

wα/2−1e−w[w2H−d/2 + (w + t)2H−d/2]dw <∞.
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If H = d/4, then I1(w) + I2(w) ≤ ln(w + 2t) − lnw and

‖gtx‖2
HP ≤ C

∫ ∞

0

wα/2−1e−w[ln(w + 2t) − lnw]dw <∞

(ii) If f is the heat kernel of order α, then I(r, s) = (2π)−d/2(α+2t−r−s)−d/2

and

‖gtx‖2
HP = (2π)−d/2αH

∫ t

0

∫ t

0

|r − s|2H−2(α + r + s)−d/2drds

≤ (2πα)−d/2αH

∫ t

0

∫ t

0

|r − s|2H−2drds = (2πα)−d/2t2H <∞.

If f is the Poisson kernel of order α, then:

I(r, s) = Cd

∫ ∞

0

wd/2−1e−w/2[2(2t− r − s) + α2]−(d+1)/2dw

and

‖gtx‖2
HP = CdαH

∫ ∞

0

wd/2−1e−w/2

∫ t

0

∫ t

0

|r − s|2H−2[2(r + s) + α2]−(d+1)/2drdsdw

≤ CdαHα
−(d+1)

∫ ∞

0

wd/2−1e−w/2

∫ t

0

∫ t

0

|r − s|2H−2drdsdw <∞.
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