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PHYLOGENETIC DISTANCES FOR NEIGHBOUR

DEPENDENT SUBSTITUTION PROCESSES

MIKAEL FALCONNET

Abstract. We consider models of nucleotidic substitution processes
where the rate of substitution at a given site depends on the state of
the neighbours of the site. We first estimate the time elapsed between
an ancestral sequence at stationarity and a present sequence. Second,
assuming that two sequences are issued from a common ancestral se-
quence at stationarity, we estimate the time since divergence. In the
simplest nontrivial case of a Jukes-Cantor model with CpG influence,
we provide and justify mathematically consistent estimators in these
two settings. We also provide asymptotic confidence intervals, valid for
nucleotidic sequences of finite length, and we compute explicit formulas
for the estimators and for their confidence intervals. In the general case
of an RN model with YpR influence, we extend these results under a
proviso, namely that the equation defining the estimator has a unique
solution.

Introduction

A crucial step in the computation of phylogenetic trees based on aligned
DNA sequences is the estimation of the evolutionary times between these
sequences. In most phylogenetic algorithms based on stochastic substitution
models, one assumes that each site evolves independently from the others
and, in general, according to a given Markovian kernel. This assumption
is mainly due to the difficulty to work without the assumption of indepen-
dence. To understand why, note that the distribution of the nucleotide at
site i at a given time depends a priori on the values at previous times of the
dinucleotides at sites i− 1 and i + 1, whose joint distributions, in turn, may
depend on the values of some trinucleotides, and so on. Hence, one is faced
with infinite-dimensional linear systems, which are generically hard to solve.
Besides, the magnitude of the effect of the neighbours on the substitution
rates can be large. Since some neighbour influences are well documented
in the literature, and caused by well known biological mechanisms, it seems
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2 MIKAEL FALCONNET

necessary to take into account the neighbour influences in substitution mod-
els. To wit, a class of mathematical models with neighbour influences was
recently introduced by biologists, see [4], and studied mathematically, see
[1].

The goal of the present paper is to show that one can compute consistent
estimators of the distances between DNA sequences whose evolution is ruled
by models with influence in a specific class of models.

We completely describe the construction in the simplest non trivial case, the
Jukes-Cantor model with (symmetric) CpG influence and we explain in the
appendix how to extend our construction to every model in the class.

In section 1, we describe the Jukes-Cantor model with CpG influence, the
simplest one of the class of manageable models introduced in [1], and its main
properties. In section 2, we summarize our main results on the estimation
of the elapsed time between an old DNA sequence and a present one, and on
the time since two present DNA sequences issued from the same ancestral
sequence diverged. The appendix contains the extension of the results of
section 2. In the other sections we prove our results. At the end of section 2
is a plan of the rest of the paper.

1. Models with influence

We first describe the Jukes-Cantor model with CpG influence which the
results of this paper apply. Then, we mention its main mathematical prop-
erties, already established in [1], and we introduce some notations.

Recall that DNA sequences are encoded by the alphabet A = {A,T,C,G},
where the letters stand for Adenine, Thymine, Cytosine and Guanine re-
spectively. Thus, bi-infinite DNA sequences are encoded as elements of A Z

where Z is the set of integers.

1.1. Jukes-Cantor model with CpG influence (JC+CpG). In most
models of DNA evolution, one assumes that each site evolves independently
from the others and follows a given Markovian kernel, see [9], [10], [3] and
[6] for instance. Even in codon evolution models, see [8], one often assumes
that different codons evolve independently, with however some exceptions
such as [7]. On the other hand, it is a well known experimental fact, see
[2] by example, that the nature of the close neighbours of a site can mod-
ify, notably in some cases, the substitution rates observed at this site. To
take account of these observations, we consider models, in continuous time,
where the sequence evolves under the combined effect of two superimposed
mechanisms.

The first mechanism is an independent evolution of the sites as in the usual
models. Hence it is characterized by a 4 × 4 matrix of substitution rates,
each rate being the mean number of substitutions per unit of time. The
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simplest case is the Jukes-Cantor model, where each substitution happens
at the same rate. Hence, the rate of the substitutions of x by y is set to 1,
for every nucleotides x and y in A .

A second mechanism is superimposed, which describes the substitutions
due to the influence of the neighborhood: the most noticeable case is based
on experimentally observed CpG-methylation-deamination processes, whose
biochemical causes are well known. Hence we assume that the substitution
rates of cytosine by thymine and of guanine by adenine in CpG dinucleotides
are both increased by an additional nonnegative rate r.

This means for example that any C site whose right neighbour is not oc-
cupied by a G, changes at global rate 3, hence after an exponentially dis-
tributed random time with mean 1/3, and when it does, it becomes an A,
a G or a T with probability 1/3 each. On the contrary, any C site whose
right neighbour is occupied by a G, changes at global rate s = 3 + r, hence
after an exponentially distributed random time with mean 1/s, and when it
does, it becomes an A, a G or a T with unequal probabilities 1/s, 1/s, and
(1 + r)/s respectively.

The case r = 0 corresponds to the usual Jukes-Cantor model. As soon as
r 6= 0, the evolution of a site is not independent of the rest of the sequence.
Hence the evolution of the complete sequence is Markovian (on a huge state
space), but not the evolution of a given site, nor of any given finite set of
sites.

Recall from [1] that the relevant class of models, called RN+YpR in this
paper, is in fact larger than just described.

As already mentioned, the results of this paper about Jukes-Cantor models
with CpG influence (hereafter denoted JC+CpG) are adapted to every RN
model with YpR influence (hereafter denoted RN+YpR) in the appendix.

1.2. Main properties. We work on the space A Z with the topology prod-
uct and the cylindric σ-algebra defined as the smallest σ-algebra such that
every projection on A Z is measurable.

We now recall some results of [1], valid for every RN+YpR model. First, for
every probability measure ν on A Z, there exists a unique Markov process
(X(t))t>0 on A Z, with initial distribution ν, associated to the transition
rates above. Thus, for every time t, X(t) describes the whole sequence and,
for every i in Z, the ith coordinate Xi(t) of X(t) is the random value of the
nucleotide at site i and time t. Under a non-degenaracy condition on the
rates of the model, the process (X(t))t>0 is ergodic, its unique stationary
distribution π on A Z is invariant and ergodic with respect to the translations
of Z, and π puts a positive mass on every finite word w = (wi)06i6ℓ written
in the alphabet A . The notation π(w) is abusive because π is a measure on
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A Z but it is a shorthand for π(Π−1
0,ℓ ({w})), where Π0,ℓ is such that for every

x ∈ A Z, Π0,ℓ(x) = (xi)06i6ℓ.

Furthermore, for every position i in Z, Pν(Xi:i+ℓ(t) = w) converges to π(w)
when t → +∞, where Pν stands for the probability under the initial mea-
sure ν. Here and later on, for every indices i and j in Z with i 6 j and
every symbol S, the shorthand Si:j denotes (Sk)i6k6j. Finally, if ξ in A Z

is distributed according to π, the empirical frequencies of any word w in
ξ, observed along any increasing sequence of intervals of Z, almost surely
converge to π(w).

All of the above properties stem from the following representation of the
distribution π. There exists an i.i.d. sequence (ξi)i∈Z of Poisson processes,
and a measurable map Ψ with values in A , such that if one sets

Ξi = Ψ(ξi−1, ξi, ξi+1)

for every site i in Z, then the distribution of (Ξi)i∈Z is π. In particular, any
collections (Ξi)i∈I and (Ξi)i∈J are independent as soon as the subsets I and
J of Z are such that |i− j| > 3 for every sites i in I and j in J . We call this
property 2-dependence.

1.3. Notations. Our estimators are based on various quantities provided
by the alignment of the two sequences.

Figure 1. Alignment of an ancestral sequence and a present one

For every ℓ > 0 and every word w of length ℓ+1 written in the alphabet A ,
say that site i is occupied at time t by w if Xi:i+ℓ(t) = w. For every triple of
subsets W , W ′ and W ′′ of words and every couple of times t and s, (W )(t)
denotes the frequency of sites occupied by any of the words in W at time t,
that is

(W )(t) = lim
N→∞

1

N

N∑

i=0

∑

w∈W

Hi(t, w), where Hi(t, w) = 1{Xi:i+ℓ(t) = w},

and (W,W ′)(t) the frequency of sites occupied by any of the words in W at
time 0 and any of the words in W ′ at time t, that is

(W,W ′)(t) = lim
N→∞

1

N

N∑

i=0

∑

w∈W

∑

w′∈W ′

Hi(0, w)Hi(t, w
′).
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The limits above exist thanks to the ergodicity of π with respect to transla-
tions.

When comparing two present sequences, we use the following notations. For
every sets W and W ′ of words and every time t, [W,W ′](t) denotes the
frequency of sites occupied by a word of W in the left sequence (denoted by
X1) and by a word of W ′ in the right sequence (denoted by X2).

We identify a word w and the set of words {w}. For every letter x in
the alphabet A , we use the shorthands ∗x = A × {x}, x∗ = {x} × A ,
x ∗ x = A × {x} × A and x̄ = A \ {x}.

2. Summary of main results

Our main result is theorem 2.4 below, which provides asymptotic confi-
dence intervals for an estimation procedure of the time elapsed between a
present sequence and an ancestral one and for the time since two present
sequences issued from the same ancestral sequence diverged, for the Jukes-
Cantor model with CpG influence (JC+CpG) of intensity r. These intervals
are based on two consistent estimators of the elapsed time and two consistent
estimators of the time of divergence.

Our first estimator is based on the evolution of the frequency (C,C)(t) when
the time t varies and the second one on the evolution of (A,A)(t). These
estimators match the classic ones used for the original Jukes-Cantor model
when r = 0. The symmetry of the roles played by A and T , or by C and G
in the JC+CpG model immediately gives the relations (A,A)(t) = (T, T )(t)
and (G,G)(t) = (C,C)(t).

Our estimators for the divergence time are based on the evolution of the
frequency [C,C](t) when the time t varies and on the evolution of [A,A](t).
Even if the results are given in the same theorem, there is a substantial
difference between [C,C] and [A,A]. Indeed, as we explain in sections 5
and 6:

Theorem 2.1. In the JC+CpG model, for every positive t,

[C,C](t) = (C,C)(2t), [A,A](t) 6= (A,A)(2t).

In the appendix, theorem B.1 provides an asymptotic confidence interval
for our estimation procedure of the time elapsed between a present sequence
and an ancestral one, for RN+YpR models, under the condition that the
estimator is well-defined in the general case.

The keystep for the creation of phylogenetic trees built by a distance-based
method is theorem 2.4 below. At the moment, a prior knowledge of the
parameter r is needed to apply the method. We hope in the future to perform
simulations and/or to find a mathematical method to estimate parameter r.
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We now introduce some notations needed to state theorem 2.4 and used in
the rest of the paper.

Definition 2.2. Let (x, x)obs and [x, x]obs denote for every x ∈ {A,C} the

observed value of (x, x) and [x, x] on two aligned sequences of length N , that

is,

(x, x)obs =
1

N

N∑

i=1

Kx
i (t), with Kx

i (t) = 1{Xi(0) = Xi(t) = x},

and

[x, x]obs =
1

N

N∑

i=1

K̃x
i (t), with K̃x

i (t) = 1{X1
i (t) = X2

i (t) = x}.

In figure 1 for instance, N = 7 and (C,C)obs = 2
7
.

Definition 2.3. Let Tx and T̃x denote the estimators of the elapsed time

and the divergence time respectively, defined for every x ∈ {A,C}, as the

solution in t of the equations

(x, x)(t) = (x, x)obs and [x, x](t) = [x, x]obs.

For x ∈ {A,C}, let κx
obs

, κ̃x
obs

, νx
obs

and ν̃x
obs

denote observed quantities,

defined as

κC
obs = 4(C,C)obs + r(C∗, CG)obs − (C)obs,

κA
obs = 4(A,A)obs − r(∗A,CG)obs − (A)obs,

νx
obs = (x, x)obs − 5(x, x)2obs + 2(xx, xx)obs + 2(x ∗ x, x ∗ x)obs,

and

κ̃x
obs = 2κx

obs, ν̃x
obs = νx

obs.

We note that κx
obs

, κ̃x
obs

, νx
obs

and ν̃x
obs

may be negative for some sequences
of observations and some lengths N . However, from lemma 4.1 in section 4,
κx

obs, κ̃x
obs, νx

obs and ν̃x
obs are almost surely positive when N is large.

As explained in sections 5 and 6, in the JC+CpG model, for every x ∈
{A,C}, the functions

t 7→ (x, x)(t), and t 7→ [x, x](t),

are decreasing functions of t > 0, from (x)∗ at t = 0 to (x)2∗ at t = +∞,

where (x)∗ denotes the frequency of x at stationarity. Thus, Tx and T̃x are
unique and well defined for any pair of aligned sequences such that

(x)2∗ < (x, x)obs < (x)∗.

Thanks to the ergodicity of the model, this condition is almost surely sat-
isfied when N is large enough because (x, x)obs → (x, x)(t) and [x, x]obs →
[x, x](t) almost surely when N → ∞.
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However, even if Tx and T̃x are unique and well defined, the formulas to
compute them are not straightforward since they involve inverting a func-
tion. Thus, to solve equation (x, x)(t) = (x, x)obs, for example, one has to
rely on numerical methods. Fortunately, explicit formulas for (x, x)(t) and
[x, x](t) in the JC+CpG model do exist.

We now state our main result.

Theorem 2.4. Assume that the ancestral sequence is at stationarity. Then,

in the JC+CpG model, for every x ∈ {A,C}, when N → +∞,

κx
obs

√
N/νx

obs
(Tx − t) and κ̃C

obs

√
N/ν̃C

obs
(T̃C − t)

both converge in distribution to the standard normal law. An asymptotic

confidence interval at level ε for the elapsed time is
[
Tx − z(ε)

κx
obs

√
νx
obs

N
,Tx +

z(ε)

κx
obs

√
νx
obs

N

]
.

An asymptotic confidence interval at level ε for the time of divergence is
[
T̃x − z(ε)

κ̃x
obs

√
ν̃x
obs

N
, T̃x +

z(ε)

κ̃x
obs

√
ν̃x
obs

N

]
.

In both formulas, z(ε) denotes the unique real number such that P(|Z| >

z(ε)) = ε with Z a standard normal random variable.

Theorem 2.4 implies that, for large N , the width of the confidence interval
scales as N−1/2 times a function of t, and that, for large t, this function scales
as e4t for the time elapsed and as e8t for the time of divergence, according
to formulas given in corollaries 5.2 and 6.2. Heuristically, this means that,
to estimate the time t up to a given factor, one must observe a part of the
sequence of length N at least of order e8t for the time elapsed and at least
of order e16t for the time of divergence.

The rest of the paper is organized as follows. In section 3, we state cen-
tral limit theorems for the time estimators for the Jukes-Cantor model with
CpG influence and for the general model under conjecture 3.4. In section 4,
we show that the central limit theorems established in section 3 imply the-
orem 2.4 of section 2. In section 5, and 6, we characterize the evolutions
of (C,C)(t) and [C,C](t), and in section 6 the evolutions of (A,A)(t)and
[A,A](t). We state some monotonicity properties in these two sections.

In appendix A, we give a short description of the general RN model with
YpR influence. In appendix B, we give an extension of theorem 2.4 to the
general model under conjecture 3.4, and in appendix C the justification of
this extension. In appendix D, we describe some simulations supporting our
conjecture 3.4.
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3. Central limit theorems for time estimators

We give here central limit theorems for the time estimators in the gen-
eral model. The strategy is the following. We first deal with (x, x)obs and
[x, x]obs. We compute exactly the variance of these quantities thanks to the
2-dependence. Then, we use a central limit theorem for mixing sequences.
To state central limit therorem for the time estimators, we use the delta
method, and to do that, we need to know that t 7→ (x, x)(t) and t 7→ [x, x](t)
are diffeomorphisms. This is still a conjecture for the general model whereas
we prove it for the JC+CpG model.

3.1. Variance computations. We detail the properties of (C,C)obs, (A,A)obs,
[C,C]obs and [A,A]obs. We assume that N > 2.

Lemma 3.1. In the general RN+YpR model, for x ∈ {C,A}, the mean

of (x, x)obs, respectively [x, x]obs, with respect to π is (x, x)(t), respectively

[x, x](t).

The variances of (x, x)obs and [x, x]obs with respect to π are both equal to

σ2
x(N, t), where

Nσ2
x(N, t) =(x, x)(t) − (x, x)(t)2 + 2(1 − 1/N)

(
(xx, xx)(t) − (x, x)(t)2

)
+

+ 2(1 − 2/N)
(
(x ∗ x, x ∗ x)(t) − (x, x)(t)2

)
.

Proof. The random variables (Kx
i (t))i∈Z, respectively (K̃x

i (t))i∈Z, are Bernoulli
random variables identically distributed with respect to π, their common
mean is (x, x)(t), respectively [x, x](t), and (x, x)obs, respectively [x, x]obs,

is the empirical mean of the N values Kx
i (t), respectively K̃x

i (t), for i from
1 to N . Thus, we obtain the value of E((x, x)obs), respectively E([x, x]obs),
as (x, x)(t), respectively [x, x](t). Furthermore,

N2σ2
x(N, t) =

N∑

i=1

var(Kx
i (t)) + 2

∑

16i<j6N

cov(Kx
i (t),Kx

j (t)).

The variance of each Kx
i (t) is var(Kx

1 (t)) = (x, x)(t) − (x, x)(t)2. The 3-
dependence, valid for any RN+YpR model, implies that each covariance for
|i−j| > 3 is zero. The invariance by translation of π, valid for any RN+YpR
model, shows that each of the (N − 1) covariances such that i = j − 1 is

cov(Kx
1 (t),Kx

2 (t)) = (xx, xx)(t) − (x, x)(t)2.

Finally, each of the (N − 2) covariances such that i = j − 2 is

cov(Kx
1 (t),Kx

3 (t)) = (x ∗ x, x ∗ x)(t) − (x, x)(t)2.

The same arguments hold for the variance of [x, x]obs. This concludes the
proof. �
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3.2. Central limit theorems for (x, x)obs and [x, x]obs. To prove the
convergence in distribution to the normal law, we use the following result.

Theorem 3.2 (Hall and Heyde [5]). Let (Vi)i∈Z denote a stationary, ergodic,

centered, square integrable sequence. Let F0 = σ(Vi ; i 6 0) denote the σ-

algebra generated by the random variables Vi for i 6 0. For every positive

integer n, introduce

Un =
1√
n

n∑

i=1

Vi.

Assume that

(i) for every positive n, the series
∑

k>1

E(VkE(Vn|F0)) converges,

(ii) the series
∑

k>K

|E(VkE(Vn|F0))| converges to zero when n → +∞,

uniformly with respect to K.

Then E(U2
n) converges to a real number σ2 > 0 when n → +∞. Further-

more, if σ2 > 0, then Un/
√

σ2 converges in distribution to the standard

normal distribution.

Proposition 3.3. In the general RN+YpR model, for x ∈ {C,A}, when

N → +∞,
√

N((x, x)obs − (x, x)(t)) and
√

N([x, x]obs − [x, x](t)) both con-

verge in distribution to the centered normal distribution with variance σ2
x(t),

where

σ2
x(t) = (x, x)(t) + 2(xx, xx)(t) + 2(x ∗ x, x ∗ x)(t) − 5(x, x)(t)2.

Proof. For any RN+YpR model, for x ∈ {C,A}, the sequence (Kx
i (t))i∈Z,

respectively (K̃x
i )i∈Z, is stationary and ergodic. Let V x

i = Kx
i (t)− (x, x)(t),

respectively Ṽ x
i = K̃x

i − [x, x](t). This defines a sequence (V x
i )i∈Z, respec-

tively (Ṽ x
i )i∈Z, such that the first hypothesis of theorem 3.2 holds. We

now check conditions (i) et (ii). The 3-dependence, valid for any RN+YpR
model, implies that, for every n > 3, E(V x

n |Fx
0 ) = E(V x

n ) = 0, respectively

E(Ṽ x
n |F̃x

0 ) = E(V x
n ) = 0. Hence we only have to check the cases n = 1 and

n = 2.

For every k > 3, V x
k , respectively Ṽ x

k , is independent of Fx
0 , respectively

F̃x
0 , and E(V x

n |Fx
0 ), respectively E(Ṽ x

n |F̃x
0 ), is Fx

0 -measurable, respectively

F̃x
0 -measurable, hence

E(V x
k E(V x

n |Fx
0 )) = E(V x

k )E(E(V x
n |Fx

0 )) = 0,

and

E(Ṽ x
k E(Ṽ x

n |F̃x
0 )) = E(Ṽ x

k )E(E(Ṽ x
n |F̃x

0 )) = 0.

This implies (i) and (ii), hence theorem 3.2 applies.
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To compute the asymptotic variance in the theorem, we note that the vari-
ances of

√
N((x, x)obs − (x, x)(t)) and

√
N([x, x]obs − [x, x](t)) are both

Nσ2
x(N, t), which converges to σ2

x(t) when N → +∞. �

3.3. Central limit theorems for Tx and T̃x. We describe explicitly the

behaviour of Tx − t and T̃x − t. To state our result, we use the central limit
theorems given in proposition 3.3, but we now need to treat separately the
JC+CpG model and the general RN+YpR model.

For x ∈ {C,A}, let µx, respectively µ̃x, denote the inverse function of t 7→
(x, x)(t), respectively t 7→ [x, x](t). That is,

t = µx((x, x)(t)) = µ̃x([x, x](t)),

and µx and µ̃x are both defined on the interval ((x)2∗, (x)∗].

From propositions 5.3, 6.3 and 6.4, the functions t 7→ (x, x)(t) and t 7→
[x, x](t) are diffeomorphisms in the JC+CpG model. In the general RN+YpR
model, this is only a conjecture, supported by simulations described in ap-
pendix D, showing that indeed, the function t 7→ (C,C)(t) is decreasing.

Conjecture 3.4. In the RN+YpR model, for x ∈ {C,A}, the functions t 7→
(x, x)(t) and t 7→ [x, x](t) are diffeomorphisms from [0,+∞) to ((x)2∗, (x)∗].

Then,
Tx = µx((x, x)obs) and t = µx((x, x)(t)),

and
T̃x = µ̃x([x, x]obs) and t = µ̃x([x, x](t)).

Besides, the derivatives of µx and µ̃x, with respect to t are

µ′
x((x, x)(t)) =

1

(x, x)′(t)
and µ̃′

x([x, x](t)) =
1

[x, x]′(t)
.

Using the delta method, see [11], one gets the following result.

Proposition 3.5. In the JC+CpG model, for x ∈ {C,A}, when N →
+∞,

√
N(Tx − t), respectively

√
N(T̃x − t), converges in distribution to

the centered normal distribution with variance σ2
x(t)/(x, x)′(t)2, respectively

σ2
x(t)/[x, x]′(t)2.

Under conjecture 3.4, the same results hold for the RN+YpR model.

4. Proofs of the results of section 2 for JC + CpG models

Proposition 3.5 yields the variation of Tx and T̃x around t for x ∈ {C,A}.
A priori, to build a confidence interval for t from this proposition requires
to know the value of (x, x)′(t), respectively [x, x]′(t), and of σ2

x(t), which all
depend on the quantity t to be estimated.

As is customary, Slutsky’s lemma (see [11]) allows to bypass this difficulty
through the observed quantities κx

obs and νx
obs, respectively κ̃x

obs and ν̃x
obs,
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defined in section 2. Indeed, Slutsky’s lemma states that if two sequences
of random variables (XN )N and (YN )N are such that (XN )N converges in
distribution to a random variable X and (YN )N converges in probability to
a constant c, then the sequence (XNYN )N converges in distribution to the
random variable cX.

Lemma 4.1. In the JC+CpG model, for x ∈ {C,A}, κx
obs

→ −(x, x)′(t),
κ̃x

obs → −[x, x]′(t) and νx
obs → σ2

x(t) almost surely when N → +∞.

Proof. The equalities

(C,C)′(t) = −4(C,C)(t) − r(C∗, CG)(t) + (C)∗,

(A,A)′(t) = −4(A,A)(t) + r(∗A,CG)(t) + (A)∗,

given in sections 5 and 6, and the almost sure convergence of the observed
quantities (C,C)obs, (C∗, CG)obs, (CC,CC)obs, (C ∗C,C ∗C)obs, (A,A)obs,
(∗A,CG)obs, (AA,AA)obs and (A∗A,A∗A)obs to the corresponding limiting
values, when N → +∞, imply the desired convergences. Likewise, the
equalities

[C,C]′(t) = −8[C,C](t) − 2r[C∗, CG](t) + 2(C)∗,

[A,A]′(t) = −8[A,A](t) + 2r[∗A,CG](t) + 2(A)∗,

imply the convergence of κ̃x
obs

. �

We apply Slutsky’s lemma to the sequence (XN ) = (
√

N(Tx − t)), respec-

tively (X̃N ) = (
√

N(T̃x− t)), which converges in distribution to the centered
normal law with variance σ2

x(t)/(x, x)′(t)2, respectively σ2
x(t)/[x, x]′(t)2, from

proposition 3.5, and the sequence (YN ) = (κx
obs

/
√

νx
obs

), respectively (ỸN ) =

(κ̃x
obs

/
√

ν̃x
obs

), which converges in probability to −(x, x)′(t)/σx(t), respec-
tively −[x, x]′(t)/σx(t), from lemma 4.1. This implies theorem 2.4.

5. Evolutions of (C,C)(t) and [C,C](t) in JC+CpG models

In the JC+CpG model, dinucleotides coded as {C, C̄} × {G, Ḡ} have au-
tonomous evolution with the following 4 × 4 rate matrix Q:




CG C̄G C̄Ḡ CḠ

CG −(6 + 2r) 3 + r 0 3 + r
C̄G 1 −4 3 0
C̄Ḡ 0 1 −2 1
CḠ 1 0 3 −4


.

The dynamics of the dinucleotides can be represented with the graph given
in figure 2.

The exponential of the corresponding matrix can be explicitly computed.
One can also compute explicitly the stationary frequencies of dinucleotides
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Figure 2. Dynamics of dinucleotides encoded as {C, C̄} × {G, Ḡ}

coded as {C, C̄} × {G, Ḡ} using the same matrix. That is

(CG)∗ =
1

16 + 5r
, (CḠ)∗ =

3 + r

16 + 5r
,

(C̄Ḡ)∗ =
9 + 3r

16 + 5r
, (C̄G)∗ =

3 + r

16 + 5r
.

These stationary frequencies have already been derived in [1] by Bérard,
Gouéré and Piau.

We observe that (C,C)(t) can be expressed as a linear combination of terms
of the form (XY,ZT )(t) where (X,Y ) and (Z, T ) belong to {C, C̄}×{G, Ḡ}.
It is then clear that an explicit expression for (C,C)(t) can be obtained, and
that an expression of (C,C)′(t) in terms of dinucleotide frequencies holds.

Proposition 5.1. The evolution of (C,C)(t) satisfies the linear differential

equation

(C,C)′(t) = −4(C,C)(t) − r(C∗, CG)(t) + (C)(0).

Proposition 5.1 is valid out of equilibrium. We use it at stationarity hence,
in particular, for the initial values

(C)(0) = (C)∗ =
4 + r

16 + 5r
, (CG)(0) = (CG)∗ =

1

16 + 5r
.

The equation in proposition 5.1 yields expressions of (C,C)(t). Consider
the positive real numbers u, u+ and u− defined as

u =
√

4 + 2r + r2, u+ = 6 + r + u, u− = 6 + r − u.

Corollary 5.2. In the stationary regime,

(C,C)(t) = c0e
−4t + c+e−u+t + c−e−u−t + (C)2∗,

with

c0 =
3 + r

2(16 + 5r)
and c± =

3 + r

4u(16 + 5r)2
(
u(16 + 3r) ∓ (32 + 14r + 3r2)

)
.
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As expected,

c+ + c− + c0 = (C)∗ − (C)2∗.

Furthermore, for every positive r,

4 < u− < 5 < 2r + 7 < u+ < 2r + 8.

Although the JC+CpG model is not reversible, the dynamics of dinucleotides
encoded as {C, C̄} × {G, Ḡ} with respect to this model is reversible. This
can easily be checked by looking at the cycles in figure 2.

Reversibility means that the dynamics will look the same whether time runs
forward or backward. As a result, given two sequences at stationarity, the
probability of data in a state is the same whether one sequence is ancestral to
the other or both are descendants of an ancestral sequence at stationarity.
Roughly speaking, for every (X,Y ) and (Z, T ) that belong to {C, C̄} ×
{G, Ḡ}, going from a XY at time t to 0 then back to a ZT at time t on
another branch, is equivalent to going from a XY to at time 0 to a ZT at
time 2t.

As a consequence, for every positive t, we have

[C,C](t) = (C,C)(2t).

For every positive r, the parameters c± and c0, are positive. This proves the
following proposition.

Proposition 5.3. In the JC+CpG model, the functions t 7→ (C,C)(t) and

t 7→ [C,C](t) are decreasing diffeomorphisms from [0,+∞) to ((C)2∗, (C)∗].

6. Evolutions of (A,A)(t) and [A,A](t) in JC+CpG models

Like we did to study (C,C), it is possible to encode dinucleotides such
that under the JC+CpG model, (A,A) is a linear combination of terms
involved in an autonomous evolution. It suffices to encode the dinucleotides
as {C, C̄}×{A,G, Y }, and the dynamics can be represented with the graph
given in figure 3.

However, we don’t use this encoding to compute (A,A)(t). Indeed, the
evolution matrix associated to this encoding is a 6 × 6 matrix whereas it is
possible to deal with the 4 × 4 matrix Q, defined in section 5, to state the
evolution of (A,A) as explained below.

We choose to present this encoding because it is a way to understand the
difference between the role of C and A in the Jukes Cantor model with CpG
effect. Indeed, the dynamics of dinucleotides encoded as {C, C̄}×{A,G, Y }
is not reversible. This can be checked by looking at the cycle CA → CY →
CG → CA in figure 3. As a consequence, even if the non-reversibility of
the dynamics does not strictly prove that the identity [A,A](t) = (A,A)(2t)
never holds when r > 0, the non reversibility of the dynamics can explain
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Figure 3. Dynamics of dinucleotides encoded as {C, C̄} × {A,G, Y }

why such an identity is unlikely to be true, and in fact, unlike [C,C], as
soon as r > 0 and t > 0,

[A,A](t) 6= (A,A)(2t).

We strictly explain this fact at the end of the current section. Now, we
describe a way to state the expression of (A,A)(t). Given that there are only
three distinct set of two-letter configurations leading to different transition
rates to ∗A, that is, ∗A, CG, and the complement of these two, the following
result is easy to derive.

Proposition 6.1. The evolution of (A,A)(t) satisfies the linear differential

equation

(A,A)′(t) = −4(A,A)(t) + r(∗A,CG)(t) + (A)(0).

Let U(t) denote the time dependent vector defined as



(∗A,CG)(t)
(∗A, C̄G)(t)
(∗A, C̄Ḡ)(t)
(∗A,CḠ)(t)


 ,

then we have, as a straightforward consequence of the encoding {C, C̄} ×
{G, Ḡ},

U ′(t) = tQU(t).

We can now compute (∗A,CG)(t), infer the value (A)∗ of (A)(0) at station-
arity and finally state the expression of (A,A)(t).

Corollary 6.2. In the stationary regime,

(A,A)(t) = a0e
−4t + a+e−u+t + a−e−u−t + (A)2∗,

with

a0 =
80 + 31r

32(16 + 5r)
,
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and

a± =
512 + 384r + 106r2 + 13r3 ∓ u(256 + 18r + 13r2)

64u(16 + 5r)2
.

For every positive r, the parameters a± and a0, are positive. This proves
the following proposition.

Proposition 6.3. In the stationary JC+CpG model, the function t 7→
(A,A)(t) is a decreasing diffeomorphism from [0,+∞) to ((A)2∗, (A)∗].

We deal now with the evolution of [A,A](t). Extending the strategy used to
prove proposition 6.3, one can also derive an explicit expression (not stated)
for [A,A](t), which turns out to be different from (A,A)(2t). Indeed, the
computation under Maple shows that the coefficients of e−v+t and e−v−t,
where v± = 10 + r ± u, in the expression of [A,A](t) are nonzero. This
fact alone proves that [A,A](t) can’t be equal to (A,A)(2t). However, we
observe on an exemple that the two quantities are very close as one can see
on figure 4.

Figure 4. Representation of t 7→ [A,A](t) − (A,A)(2t),
when r = 10

We do not provide the expression of [A,A](t), however it seems that the
following conjecture holds.

Conjecture 6.4. In the JC+CpG model, the function t 7→ [A,A](t) is a

decreasing diffeomorphism from [0,+∞) to ((A)2∗, (A)∗].
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Appendix A. Short description of the RN model with YpR

influence and notations

Firstly, RN stands for Rzhetsky-Nei and means that the 4 × 4 matrix of
substitution rates which characterize the independent evolution of the sites
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must satisfy 4 equalities, summarized as follows: for every pair of nucleotides
x and y 6= x, the substitution rate from x to y may depend on x but only
through the fact that x is a purine (A or G, symbol R) or a pyrimidine (C or
T , symbol Y ). For instance, the substitution rates from C to A and from T
to A must coincide, likewise for the substitution rates from A to C and from
G to C, from C to G and from T to G, and finally from A to T and from G
to T . The 4 remaining rates, corresponding to purine-purine substitutions
and to pyrimidine-pyrimidine substitutions, are free.

Secondly, the influence mechanism is called YpR, which stands for the fact
that one allows any specific substitution rates between any two YpR din-
ucleotides (CG, CA, TG and TA) which differ by one position only, for a
total of 8 independent parameters. The Jukes-Cantor model with CpG ef-
fect is the simplest non trivial one: the only YpR substitutions with positive
rate are CG → CA and CG → TG, and both happen at the same rate.

Recall that Y denote the set of pyrimidines defined as Y = {T,C}, and R
the set of purines defined as = {A,G}.
The 4 × 4 matrix of substitution rates which characterize the independent
evolution of the sites in RN model is given by




A T C G

A · vT vC wG

T vA · wC vG

C vA wT · vG

G wA vT vC ·


.

The influence mechanism called YpR adds specific rates of substitutions
from each YpR dinucleotide as follows.

• Every dinucleotide CG moves to CA at rate rC
A and to TG at rate

rG
T .

• Every dinucleotide TA moves to CA at rate rA
C and to TG at rate

rT
G.

• Every dinucleotide CA moves to CG at rate rC
G and to TA at rate

rA
T .

• Every dinucleotide TG moves to CG at rate rG
C and to TA at rate

rT
A.

Appendix B. Extension of theorem 2.4 to the RN model with

YpR influence

Under conjecture 3.4, it is possible to generalize theorem 2.4 by suitably
generalizing the definitions of κ and ν given in section 2. Introduce the
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parameters

κRN
obs = − vC(C,A)obs − wC(C, T )obs + (vA + wT + vG)(C,C)obs − vC(C,G)obs

− rA
C(C∗, TA)obs − rG

C (C∗, TG)obs + rA
T (C∗, CA)obs + rG

T (C∗, CG)obs.

νRN
obs = νC

obs.

When vC = wC = vA = wT = vG = 1, rA
C = rG

C = rA
T = 0 and rG

T = r, which
is the case in the JC+CpG model, κRN

obs
= κC

obs
.

On the other hand, the observed quantity νC
obs is unchanged between JC+CpG

models and RN+YpR models because lemma 3.1 holds in the general case.

Once again, Slutsky’s lemma, through the observed quantities κRN
obs and νRN

obs

is the key to state theorem B.1 below, which is a consequence of proposi-
tion 3.5.

Theorem B.1. Assume that the ancestral sequence is at stationarity and

that conjecture 3.4 holds. Then, when N → +∞, κRN
obs

√
N/νRN

obs
(TC−t) con-

verges in distribution to the standard normal law. An asymptotic confidence

interval at level ε for t is


TC − z(ε)

κRN
obs

√
νRN
obs

N
,TC +

z(ε)

κRN
obs

√
νRN
obs

N


 ,

where z(ε) denotes the unique real number such that P(|Z| > z(ε)) = ε with

Z a variable with standard normal law.

As in the JC+CpG model, the estimator TC is defined implicitly for RN+YpR
models. We do not provide an explicit formula for (C,C)(t) in the general
model, but there are numerical methods to compute a closed form of the
theoretical solution of the differential linear system, and consequently it is
possible to solve equation (C,C)(t) = (C,C)obs with numerical methods.

Appendix C. Evolution of (C,C)(t) in RN+YpR models

We base our description of the method in the general RN+YpR model on the
encoding of dinucleotides as {R,T,C} × {Y,G,A}, which has autonomous
evolution.

The detailed description of the corresponding 9× 9 matrix is given below as
m(uv, xy), where uv and xy are generic elements of the alphabet.

Let vR and vY denote the quantities defined as

vR = vA + vG, vY = vT + vC .
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Then,

m(uv, xy) = 0, if u 6= x and v 6= y;

m(Rx, ux) = vu, if x ∈ {Y,G,A} and u ∈ {C, T};
m(ux,Rx) = vR, if x ∈ {Y,G,A} and u ∈ {C, T};
m(Ru,Rv) = wv, if {u, v} = {A,G};
m(xY, xu) = vu, if x ∈ {R,C, T} and u ∈ {A,G};
m(xu, xY ) = vR, if x ∈ {R,C, T} and u ∈ {A,G};
m(uY, vY ) = wv, if {u, v} = {T,C};
m(xu, xv) = wv + rx

v , if {u, v} = {A,G} and x ∈ {T,C};
m(ux, vx) = wv + rx

v , if {u, v} = {C, T} and x ∈ {A,G}.

It is then clear that quantities such as (C,C)(t) can be computed provided
one computes the exponential of the rate-matrix, and that quantities such
as (C,C)′(t) have computable explicit expressions in terms of frequencies
expressed in the coded dinucleotide-alphabet {R,T,C} × {Y,G,A}.

Appendix D. Simulations

As a support to the conjecture that t 7→ (C,C)(t) always defines a diffeo-
morphism in the general RN+YpR model, we performed some simulations.
We give the range of parameter values that we explored and one example of
figure obtained for one set of parameters, here a Kimura model with CpG
influence. The code is available on the website

http://www-fourier.ujf-grenoble.fr/~mikael.f/en/recherches.htm

D.1. Range of parameter values explored.

vA 1 1 1 1 1 1 1 wA 1 3 0.3 0.3 3 3 3
vT 1 1 1 1 1 2 0.3 wT 1 3 0.3 0.3 3 6 1
vC 1 1 1 1 1 1 2 wC 1 3 0.3 0.3 3 3 1
vG 1 1 1 1 1 2 10 wG 1 3 0.3 0.3 3 6 0.1

rC
A 10 10 10 10 0.3 10 10 rG

T 10 10 10 10 0.3 10 5

rA
C 0 0 0 10 0.3 5 1 rT

G 0 0 0 10 0.3 5 0.5

rC
G 0 0 0 10 0.3 3 20 rA

T 0 0 0 10 0.3 3 3

rG
C 0 0 0 10 0.3 1 0.3 rT

A 0 0 0 10 0.3 1 0.1

D.2. One example of figure performed on Maple. Figure 5 illustrates
a simulation performed with the parameter values

vA = vT = vC = vG = 1, wA = wT = wC = wG = 3,

rC
A = rG

T = 10, rA
C = rT

G = rC
G = rA

T = rG
C = rT

A = 0.
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This is a Kimura model with CpG influence. The function t 7→ [A,A](t) is
represented on the interval [0, 2].

Figure 5. One simulation of the function t 7→ [A,A](t) on
the interval [0, 2]
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