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PHYLOGENETIC DISTANCES FOR NEIGHBOUR DEPENDENT
SUBSTITUTION PROCESSES

MIKAEL FALCONNET

ABSTRACT. We consider models of nucleotidic substitution processlesre
the rate of substitution at a given site depends on the stétereighbours. For
a wide class of such nonreversible models, we show how to agonsistent,
mathematically exact, estimators of the time elapsed hetaéigned sequences,
for an ancestral sequence and a present one, and also forésenp sequences.
In both cases, we provide asymptotic confidence intervalg] Yor nucleotidic
sequences of finite length. We compute explicit formulagdtierestimators and
for their confidence intervals in the simplest nontriviabeathe Jukes-Cantor
model with CpG influence.

INTRODUCTION

A crucial step in the computation of phylogenetic trees bamealigned DNA se-
guences is the estimation of the evolutionary times betwilese sequences. In
most phylogenetic algorithms, one assumes that each siteesvindependently
from the others and, in general, according to a given Magkowernel. This as-
sumption is mainly due to practical reasons, since soméhheig influences are
well documented in the literature, and caused by well knovwatogical mecha-
nisms, and yield substitution rates which can be, in somes;amsuch larger than
their independent counterparts. A class of mathematicalatsowith neighbour
influences was recently introduced by biologists, $ee [G§Gohd studied math-
ematically, see[[BGPP8], and through simulations, $ee [&JHhd JABHO3] for
instance. The goal of the present paper is to show that onearapute exact for-
mulas for consistent estimators of the distances betweeA 8#duences whose
evolution is ruled by any model in this class.

As a proof of concept, we completely describe the constragti the simplest non
trivial case, the Jukes-Cantor model with (symmetric) Cpfuence, and we show
that its evolution is ruled by finite sized linear systemsté\that for every model
in this class one can write similar closed formulas.
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2 MIKAEL FALCONNET

In section[]L, we describe the class of manageable modetslinted in [BGPQ8]
and the main properties of the simplest one, the Jukes-Camidel with CpG
influence. In sectiofi] 2, we summarize our main results on stienation of the
elapsed time between an old DNA sequence and a present ahenahe time
since two present DNA sequences issued from the same alcssfjuence di-
verged. The other sections explain how we state our redtite end of sectiof2,
we give the plan of the rest of the paper.

1. MODELS WITH INFLUENCE

We first describe the class of models to which the resultsisfidper apply, and in
particular the simplest one, called Jukes-Cantor moddl @G influence. Then,
we mention its main mathematical properties, already éskednl in [BGPOB], and
we introduce some notations.

Recall that DNA sequences are encoded by the alphabet{A T,C,G}, where
the letters stand for Adenine, Thymine, Cytosine and Guarespectively. Thus,
bi-infinite DNA sequences are elementsagf’.

1.1. Jukes-Cantor model with CpG influence. In most models of DNA evolu-
tion, one assumes that each site evolves independently therothers and fol-
lows a given Markovian kernel, sef TIC69], TKim8(], TF¢l&kid [HKY8%] for
instance. Even in codon evolution models, dee [JTT92], dileassumes that
different codons evolve independently. However, it is al\lebwn experimental
fact, see[[DGQO] by example, that the nature of the closehheigrs of a site can
modify, notably in some cases, the substitution rates gbdeat this site. To take
account of these observations, we consider models, inreanis time, where the
sequence evolves under the combined effect of two supeatpnsehanisms.

&0 e

@ 1 @ CA

Figure 1: Substitution rates for Jukes-Cantor models wiils @Ghfluence

The first mechanism is an independent evolution of the s@@s the usual models.
Hence it is characterized by a4 matrix of substitution rates, each rate being the
mean number of substitutions per unit of time. The simpleseds the Jukes-
Cantor model, where each substitution happens at the saemeHance, possibly
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after a rescaling of the time, the rate of the substitutiohs toy y is set to 1, for
every nucleotideg andy in <.

A second mechanism is superimposed, which describes tisétsitions due to the
influence of the neighborhood: the most noticeable casesiban experimentally
observed CpG-methylation-deamination processes, whioshdmical causes are
well known. Hence we assume that the substitution ratestosine by thymine
and of guanine by adenine in CpG dinucleotides are bothaseidby an additional
nonnegative rate.

This means for example that a@ysite whose right neighbour is not occupied by a
G, changes at global rate 3, hence after an exponential timmeeaf }/3, and when

it does, it becomes afy, aG or aT with probability 1/3 each. On the contrary, any
C site whose right neighbour is occupied bgachanges at global rate= 3+,
hence after an exponential time of meafs,Jand when it does, it becomes Ana

G or aT with unequal probabilities /s, 1/s, and(1+r)/s respectively.

The case = 0 corresponds to the usual Jukes-Cantor model. As soon4as,
the evolution of a site is not independent of the rest of tliueece. Hence the
evolution of the complete sequence is Markovian (on a huate space), but not
the evolution of a given site, nor of any given finite set oésit

Recall from [BGPOB] that the relevant class of models, daRN+YpR in this
paper, is in fact larger than just described.

Firstly, RN stands for Rzhetsky-Nei and means that the4dmatrix of substitu-
tion rates which characterize the independent evolutiaih@sites must satisfy 4
equalities, summarized as follows: for every nucleotidasdy # X, the substitu-
tion rate fromx toy may depend o® but only through the fact thatis a purine A

or G, symbolR) or a pyrimidine C or T, symbolY). For instance, the substitution
rates fromC to A and fromT to A must coincide, likewise for the substitution rates
from Ato C and fromG to C, from C to G and fromT to G, and finally fromA to

T and fromG to T. The 4 remaining rates, corresponding to purine-purinetand
pyrimidine-pyrimidine substitutions, are free.

Secondly, the influence mechanism is called YpR, which stdadthe fact that
one allows any specific substitution rates between any twR dipucleotides@G,
CA, TG andTA) which differ by one position only, for a total of 8 indepemnde
parameters. The case described above is the simplest wiah (S8iymmetric) one:
the only YpR substitutions with positive rate &€& — CAandCG — TG, and
both happen at the same rate.

As already mentioned, the results of this paper about JCkeger models with
CpG influence can be adapted to every RN model with YpR infleenc

1.2. Main properties. We now recall some results df [BGR08], valid for every
RN model with YpR influence. First, for every probability nsesev on «7%,
there exists a unique Markov proced§(t));~o on 7%, with initial distribution v,
associated to the transition rates above. Thus, for evemttiX(t) describes the
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whole sequence and, for evarin Z, theith coordinatex;(t) of X(t) is the random
value of the nucleotide at sifeand timet. The proces$X(t)):>o is ergodic, its
unique stationary distributiorr on 7% is invariant and ergodic with respect to the
translations ofZ, andt puts a positive mass on every cylinder@f’.

Thus, for every finite wordv = (w;)o<i<, Written in the alphabet?, m(w) is pos-
itive. Furthermore, for every positionn Z, P, (X;;i+¢(t) = w) converges tar(w)
whent — +oc0. (Here and later on, for every indicésnd j in Z with i < j and
every symbolS, the shorthand;; denotes(S)i<k<j.) Finally, if & in 7 is dis-
tributed alongr, the empirical frequencies of any wondin &, observed along any
increasing sequence of intervalsZfalmost surely converge ta(w).

These properties stem from the following representatiorihef distribution .
There exists an i.i.d. sequen@d )iz of Poisson processes, and a measurable map
WY with values ineZ, such that if one sets

& =W(Hi_1,Hi,Hi;1)

for every sitei in Z, then the distribution ofé;)icz is 1. In particular, any collec-
tions(&)ic) and(é;)icy are independent as soon as the sullsatslJ of Z are such
that|i — j| > 3 for every sites in | andj in J. We call this property independence
at distance 3.

1.3. Notations. Our estimators are based on various quantities providedddy t
alignment of the two sequences.

i=1 N=7
| | | | | | | |
M ) ) () e -
--O—0O0—C0O0—0OC0—0O—O—B- =
- NN~ N7~ W 7~ W 7~ _
O—E—0O—0O0—0C@—0C—C

Figure 2: Alignment of an ancestral sequence and a present on

For every? > 0 and every wordav of lengthZ + 1 written in the alphabet?, say that
sitei is occupied at timé by wif X, ¢(t) = w. For every subset#&/, W' andW” of
words and every timesands, (W)(t) denotes the frequency of sites occupied by
any word inW at timet, (W,W’)(t) the frequency of sites occupied by any word
inW at time 0 and any word i’ at timet, and(W,W’,W")(t, s) the frequency of
the sites occupied by any word W at time 0, any word i'W’ at timet and any
word inW" at timet +s.

When comparing two present sequences, we use the followitadions. For every
setsW andW’ of words and every timg [W,W'|(t) denotes the frequency of sites
occupied by a word oV in the left sequence (denoted by ) and by a word of
W in the right sequence (denoted XY).



PHYLOGENETIC DISTANCES FOR MODELS WITH INFLUENCE 5

We identify a wordw and the set of wordéw}. For every lette in the alphabet
</, we use the shorthands = <7 x {x}, xx = {X} x &/ andx= <7 \ {x}.

From now on and with the exception of the statement of thed@elnX (0) and
X1(0) = X?(0) are distributed according t, so the system is stationary.

2. SUMMARY OF MAIN RESULTS

Theoremg 2]2 and 2.5 below provide asymptotic confidenesvials for the time
elapsed between a present sequence and an ancestral otiee flukes-Cantor
model with CpG influence of intensity These intervals are based on two consis-
tent estimators of the elapsed timeOur first estimator is based on the evolution
of the frequencyC,C)(t) when the time varies and the other one on the evolution
of (AJA)(t).

Propositiong 2]7, 218 ar{d .9 allow to compare the converyém equilibrium of

(C,C)(t) in models with influence and in independent models with apoading
rates of substitution.

Finally, theorenj 2.11 provides an asymptotic confidenaervial for the time since
two present sequences issued from the same ancestral seqliearged. Theo-
rem[2.I]L is the keystep for the creation of phylogeneticstimelt by a distance-
based method.

2.1. Alignment of cytosines in an ancestral sequence and a preseone. Let
(C,C)obs denote the observed value @@,C) on two aligned sequences of length
N, that is,
1 N
(C.Clobs=; 3 KEM), with KE(t) = 1{%(0) = X(t) =C}.

=
In figure[L for instance = 7 and(C, C)qps = 2.

Definition 2.1. Let Tc denote the estimator of the elapsed time t defined as the
solution in t of the equation

(C>C) (t) = (Cac)obs«
denote observed quantities, defined as

KShs = I (C#,CG)ops— 4(C,C)obs— (C),

c c
LetKg,sand vVge

and
Vs = (C,C)obs— (C,C)Zps+ 2(CC,CC)ops+ 2(C+C,CC)ops

As explained in sectiofi] 6, the functidn— (C,C)(t) is decreasing fronfC) to
(C)?, where(C) is the frequency o€ sites at stationarity. Thu3c is unique and
well defined for any pair of aligned sequences such that

(C)Z < (CvC)ObS< (C)v
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Thanks to the ergodicity of the model, this condition is astrBurely satisfied when
N is large enough becau$g,C)qps — (C,C)(t) almost surely wheiN — co.

We note thavg, is always positive whereas, might be negative for some se-

quences of observations and lengthesHowever, from lemm§ 5.1 ini sectign 5,
kS IS almost surely positive wheN is large.

We now state our main result.

Theorem 2.2. Assume that the ancestral sequence is at stationarity. ,Thkan

N — +o, kS o /N/v§((Tc —t) converges in distribution to the standard normal
law. An asymptotic confidence interval at legdbr t is

C C
| Vobs Vobs
obs obs

where Z¢) denotes any real number such tf{Z| > < € with Z a variable
with standard normal law.

Proposition 2.3. When t is large, the variations of Bround t are of ordeg™ /v/N.

The meaning of propositioh 2.3 is that one must observe aop#ine sequence of
lengthN at least of order® to estimate up to a given factor.

2.2. Alignment of adenines in an ancestral sequence and a preseane. One
can usgA, A) like (C,C) before. We skip the details and only state the results.

Let (A,A)ops denote the observed value OA,A) on two aligned sequences of
lengthN, that is,

N
(A Aobs = %Z KAM, with KA = 1{X(0) = X(t) = A}.

In figure [I: for instance = 7 and(A, A)obs = 3

Definition 2.4. Let Ty denote the estimator of the elapsed time t defined as the
solution in t of the equation

(AA)(t) = (A Aobs
LetkA,and v/} denote observed quantities, defined as
Kabs= —4(A,A)obs+ I (+A,CG)ops— (A),
where(A) is the frequency of sites occupied by an A at stationarity and
Vgbs = (A Aobs+ 2(AA AA)gps+ 2(Asx A, Ak Alops— (A, A)3ps

Theorem 2.5. Assume that the ancestral sequence is at stationarity. ,Thkean
N — o0, k51 /N/VA (Ta—t) converges in distribution to the standard normal
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law. An asymptotic confidence interval at legdbr t is

ra_26) [V do) [V,
K(')Abs N K(')Abs N

where Z¢) is such as in theorein 2.2.

Proposition 2.6. When t is large, the variations of Bround t are of ordee® //N.

2.3. Comparisons with standard models. First, we study the independent Jukes-
Cantor model with the same overall rate of substitutiongntthe independent
Kimura model with the same transition and transversion aleates, and finally
the independent model with the same overall rate for eacheol® possible sub-
stitutions.

Proposition 2.7. The convergences ¢€,C)(t) and (A, A)(t) to equilibrium when
t — 4o in the Jukes-Cantor model with CpG influence are slower thathée
independent Jukes-Cantor model with the same global rasalustitution.

In Kimura’s model [Kim8p], the rates of transitioné ¢~ G and T « C) and
transversionsA, G «— T,C) may be different. Following the notations i [Yah06],
these models describe independent evolutions of the sitesdw 4 infinitesimal
generators:

A T C G
A B B a
T(B - o pB
C|B a - B}
G\a B B -

where the sum of the coefficients on every line is equal to 0.

Proposition 2.8. The convergence ¢€.C)(t) and (A, A)(t) to equilibrium when
t — 4o in the Jukes-Cantor model with CpG influence are the same ith#me
Kimura model with the same transversion and transition alleates.

We finally compare the Jukes-Cantor model with CpG influendbéd independent
RN model with the same overall rate for each of the 12 possilibstitutions. The
4 x 4 infinitesimal generator is given by:

A T C G
A . 1 1 1
T 1 . 1 1
C 1 1+9o 1)

G\1+6 1 1
where the sum of the coefficients on every line is equal to 0d&ad (CG)/(C).

Proposition 2.9. The convergence ¢€,C)(t) to equilibrium when t- +co in the
Jukes-Cantor model with CpG influence is slower than in theghabove whereas
the convergence @A\, A)(t) is the same.
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2.4. Alignment of present sequencesWe build an estimator of the time since
two present sequences issued from the same ancestral seglieerged. We as-
sume that the ancestral sequence is under the stationanyereiylimicking sub-
sectiond 2]1 anfl 2.2, one could build such an estimator ontikerved value of
[A, A] but we only detail the estimator based [GnC].

Let [C,Clops denote the observed value [6f,C], that is

N
CClavs= ;> KO0, KO =1{x'1) =X’()) =C}.

Definition 2.10. Let Tc denote the estimator of the divergence time t defined as the
solution in t of the equation

[C>C] (t) = [Cac]obso
LetK and vobs denote observed quantities, defined as
KSs= —8[C,Clobs+ 2 [C#,CGlobs— 2(C),

and
ObS [C C] 0bs+ 2[CC CC] 0bs+ 2[C * C C * C] obs— [C C] obs

As in definition[2.]L, we pay attention to the fact tfatis unique and well defined
for any pair of aligned sequences such that

(C)? < [C.Clabs < (C).

As the observed quantiwgbs, is almost surely positive wheN is large.

obs
Theorem 2.11. Assume that the common ancestral sequence is at statipnarit

Then, when N— o, k$«/N/VS(Tc —t) converges in distribution to the stan-
dard normal law. An asymptotic confidence interval at levdrt is

= o Vcb
TC— OST _|_~C ons
obs obs

Proposition 2.12. When t is large, the variations df around t are of order

& /VN.

2.5. Plan. The rest of the paper is organized as follows. In secfjon 3state
the central limit theorems which the results in subsect@prdsto[2.}4 are based
on. In sectio{}4, we deal witfC,C)qps and [C,Clops and we detail the proofs of
central limit theorems for these quantities. In sec{ipn &,slow that the central
limit theorems established in sectigh 3 imply the theorentsthe propositions of
section[R. In section 6 affl 7, we characterize the evokitb(C,C)(t), (A,A)(t)
and[C,C](t) and we state some monotony properties. Sefion 8 contasnmtiof
of theoren{ 6]1, which rules the evolution (@,C)(t). Sectior[P contains the proof
of the monotony properties ¢€,C|(t) and of some related functions.
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3. CENTRAL LIMIT THEOREMS FOR THE TIME ESTIMATORS

3.1. Central limit theorems for Tc and Ta. We explicit the behaviour of¢ and
Ta aroundt. To state our result, we first need central limit theoremg®C)ops
and (A, A) obs

Proposition 3.1. For x € {C,A}, when N— 400, v/N((X,X)obs — (X,X)(t)), con-
verges in distribution to the centered normal distributiaith variance o?(t),
where

G2 () = (%, X) () 4 2(x% XX (t) + 2(x5 X, X% X) (t) — 5(x, X) ().

We now deal with the variations @t andTa aroundt.

Forx € {C,A}, let L, denote the reciprocal function bf— (x,x)(t), which is a
diffeomorphism from propositioh 8.3, ang. Then,

T = Ux((%,X)obs) €t t=px((X,X)(t)).
Besides, the derivative @f; with respect td is

1
/ —_—
HX((X7X)(t)) - (X,X)/(t)
Using the delta method, sefe [vdY98], one gets the followesyiit.
Proposition 3.2. For x € {C,A}, when N— +o0, \/N(Tx —t) converges in distri-
bution to the centered normal distribution with variangg(t) /(x,x)’ (t)2.

3.2. Central limit theorem for Te. As for (C,C)obss We prove a central limit the-
orem for|[C,Clops

Proposition 3.3. When N— «, v/N([C,C]ons— [C,C](t)) converges in distribution
to the central normal distribution with varianag?(t), where

0(t) = [C,C](t) + 2[CC,CC](t) + 2[C+C,C*C](t) — 5[C,C](t)%.
Let tic denote the reciprocal function bf— [C,C|(t), which is a diffeomorphism
from propositio 713, angi. its derivative, hence
1
[C.Cl()’
for every nonnegative The delta method yields the following result.

Te = Fc([C.Clobs),  t=[ic([C.CI(t) and FE(IC.CI(Y)) =

Proposition 3.4. When N— oo, \/N('T'C —t) converges in distribution to the cen-
tered normal distribution with varianceZ(t)/[C,C]' ().

4. PROPERTIES OF THE OBSERVED QUANTITIES

We detail the properties @€, C)obs, (A, A)obsand[C,Clops. We assume théd > 2.
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4.1. Description of (C,C)gpsand (A, A)ops.

Lemma4.1. For x € {C,A}, the mean ofx, X)ops With respect tatis (x,X)(t). The
variance of(x, X)ops With respect tatis aZ(N,t), where

NG)(Z(N7t) = (va)(t) - (X7X)(t)2+2 1_1/N)( XX7XX)( ) (X7X)(t) )+
+2(1 - 2/N) ((xx,X%X)(t) — (%,X)(t)?).

Proof. The random variableg(t))icz are identically distributed with respect to
1, their common mean i§x,X)(t), and (x,X)ops i the empirical mean of thil
valuesKX(t) for i from 1 toN. Thus, we obtain the value & (X, X)obs) as(X,X)(t).
Furthermore,

N

N2g2(N,t) = 'zlvar ))+2 Y cov(KK(t), K ().

1<i<J<N

The variance of eackiX(t) is var(K(t)) = (x,X)(t) — (x,X)(t)?. The independence
at distance 3 implies that each covariancelifer j| > 3 is zero. The invariance by
translation ofrt shows that each of thgl® — 1) covariances such that j +£1is

cOV(KX (), K5 (1)) = (xx 300 () — (x,X) (t)?.
Finally, each of the @ — 2) covariances such that j+2 is
cov(K(t),KX(t)) = (x#X,x*X)(t) — (%, X)(t)?.
This concludes the proof. O
Corollary 4.2. For every positive u,
Pr(|(C,Cobs— (C.C)(t)] > U) < 15/(16NW2),

and
P(|(A A)obs— (A A)(1)] > u) < 105/(100NP).

Proof. Since(xx xx)(t) < (X, X)(t) and(x*X,X*X)(t) < (x,x)(t),
NG)(Z(N7t) < 5(X7 X)(t)(l_ (X7X)(t))'

Thanks to propositiof §.3, the functian— (x,X)(t) is decreasing, sx,x)(t) <
(x,X)(0) for everyt > 0. In the stationary regiméx,x)(0) = (x) and, for every
r>0,

4+4r 1 44-3/2r

C) = <> and (A)= <>
© =115 <3 M W="g75 <19

Since 8(1 — 0) < 3/16 for everyf8 < 1/4, and8(1— 0) < 21/100 for every
6 < 3/10,N0(N,t) < 15/16 andNaz(N,t) < 105/100. Chebychev’s inequality
concludes the proof. O
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4.2. Proof of proposition B.3. To prove the convergence in distribution to the
normal law, we use the following result.

Theorem 4.3(Hall and Heyde[[HHY0]) Let (Vi )icz denote a stationary, ergodic,
centered, square integrable sequence..#gt= o(V;; i < 0) denote the-algebra
generated by the random variablesfot i < 0. For every positive integer n, intro-

U—_l EV.
n \/— |

(i) for every positive n, the seriei E(WE(Wn|-%0)) converges,
K>1
(i) the seriesz IE(WE(Vn|-%0))| converges to zero when +co, uniformly
KK
with respect to K.

Assume that

ThenE(U?) converges to a real number? > 0 when n— +o. Furthermore, if
g2>0, then W/V a2 converges in distribution to the standard normal distribat

Forx e {C, A}, the sequencéKX(t))icz is stationary and ergodic. L& = KX(t) —
(x,x)(t). This defines a sequen¢¥X)icz such that the first hypothesis of theo-
rem[4.B holds. We now check conditions (i) et (ii). The indegence at distance
3 implies that, for everyn > 3, E(V|.%3) = E(V) = 0. Hence we only have to
check the cases= 1 andn = 2.

For everyk > 3,\‘ is independent of7} andE(V|.%() is .#3-measurable, hence
EMEM 7)) = E(VE(EVL]F)) = 0.

This implies (i) and (ii), hence theorem }4.3 applies. To catepthe asymptotic

variance in the theorem, we note that the variance/Bif( (X, X)ops — (X, X)(t)) is

NaZ(N,t), which converges ta?(t) whenN — +oco.

4.3. Case of[C,C|ops. As for (C,C)ops, We have a description @€, C|ops.

Lemma 4.4. The mean ofC,Clgps With respect tort is Mc(t) = [C,C](t). The
variance of[C,Clops With respect tatis 63(N,t), where

NGEIN,t) = [C.C](t) - [C.CI(1)* +2(1~1/N)([CC.CC(t) - [C.C|(1)*) +
+2(1-2/N)([C+C,CxC](t) - [C,C](t)?).
The proof of lemmé 4]4 is similar to the proof of lemfngd 4.1. Behev’s inequal-
ity implies the following estimate.

Corollary 4.5. For every positive u and integer M 2,
Pr(|[C,Clops— M (t)] > u) < 1/(NLP).

Proof. The inequalities used in corollafy #.2 hold with-] functions instead of
(+,-) functions. O
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To prove propositiof 3.3, we apply theor¢m| 4.3 to the seqIBN;cz, defined by
W = KE — i (t) for everyi.

5. PROOFS OF THE RESULTS OF SECTIOR

5.1. Proof of theorems[2.R[2]5 and 2.1 1Proposition[ 3]2 yields the variation of
Tx aroundt for x € {C,A}. A priori, to build a confidence interval fdarfrom this
proposition requires to know the value(@fx)’ (t) and ofaZ(t), which both depend
on the quantityt to be estimated.

As is customary, Slutsky’s lemma allows to bypass this difficthrought the ob-

served quantitieg X, .and v, ., defined in sectioff 2.

Lemma 5.1. For x € {C,A}, when N— +oo, kX . — —(X,X)/(t) and v, — 02(t)
almost surely.

Proof. The equalities

(C,C)'(t) = —4(C,C)(t) —r(Cx,CQ)(t) + (C),
and

(AA) (1) = —4AA)(t) —T(+A,CC)(t) + (A),
given by theorenj 6]1, and the almost sure convergence oftikerced quanti-
tles (Cvc)ObS! (C*7CG)ObS! (CC7CC)Ob31 (C*C7C*C)Ob31 (A7 A)ObSﬂ (*A7CG)Ob31
(AA AA)ops and (Ax A, Ax A)gps to the corresponding theoretical values, when
N — +oo, imply the desired convergences. O

Propositio3]1, lemmfa§.1 and Slutsky’s lemma imply thewf2.? and 2}5.

Lemma 5.2. When N— +o, k. — —[C,CJ'(t) and V5, — G&(t) almost surely.

Proof. The equality
[C,C]'(t) = —8|[C,C](t) — 2r[Cx,CG](t) + 2(C),

given by theoreni 711, and the almost sure convergence ofbenged quantities
[C,Clobs: [C*,CGlobs, [CC,CClops and [C xC,C x C|ops to the corresponding theo-
retical values, whelN — +oo, imply the desired convergences. O

Proposition 34, lemmfa§.2 and Slutsky’s lemma imply theggel].

5.2. Proofs of propositions[2.7[2]8 anfl 2| 9Firstly, from corollary[6.R, for every
value ofr, the convergence ¢€C,C)(t) and(A,A)(t) to equilibrium whert — +co

in the Jukes-Cantor model with CpG influence are liké e

Secondly, in Jukes-Cantor models with CpG influence, evecjeotide changes at
rate 3 due to unconditional substitution rates, plus evenydieotide CpG changes
at rate 2. Hence the global rate of substitution is

2r

34+2r(CG) =3+ 6150




PHYLOGENETIC DISTANCES FOR MODELS WITH INFLUENCE 13

On the other hand, in the independent Jukes-Cantor modehraftgeterA, the
global rate of substitution isA3 Hence one should set
2r/3
16+ 5r°
For independent Jukes-Cantor modefs, [YAn06] comp(@eS)(t) = (A A)(t) =

L+ 3e Mt SinceA > 1 for everyr > 0, the comparison with the independent
Jukes-Cantor model is done.

A=1+

Thirdly, in Jukes-Cantor models with CpG influence, eveansversion occurs at
rate 1, and every nucleotide may have two possible transwstsHence the global
rate of transversion is 2. The transitioBs— AandC — G occur at rate 3-r(CG),

the transition®A — G andG — C occur at rate 1. Hence the global rate of transition
is1+2r(CG) = 1+2r/(16+ 5r). On the other hand, in Kimura models, the global
rate of transition isx and the global rate of transversion i8.2Hence one should
set

a:1+16+5r and =1
For independent Kimura model§, [YahO6] computes
1 1 1

“(AA) = — 4 T B T (2a+2B)t

C.OWM) = (AR)(N) = 75+ 758 ¥ +5e @1,

so the convergence dfC,C)(t) and (A,A)(t) to equilibrium whent — oo in
Kimura models is like e*ft, when one assumes > B. Sincep =1, the com-
parison with the independent Kimura model is done.

Fourthly, simple computations yield in the independent el@dth the same over-
all rate of substitutions

C.OM =

@+ 0)2 <1+ (3+ 5)e—(4+6)t) :

and

AR = 28 (2454 @+ )4 264190,

(84290)

thus the convergence ¢€C,C)(t), respectivly(A,A)(t) to equilibrium whent —
+00 in the model above is like @)t respectivly €. Since 4+ & > 4 for every
r > 0, the comparison with this model is complete.

6. EvoLUTIONS OF (C,C)(t) AND (A,A)(t)

We provide a linear differential system which rules the atioh of (C,C)(t) and
(A,A)(t). Introduce the constant matrices

—4 —r 0

1
M=|1 —-(8+2r) 1|, B=|0|, and L=(0,1,0),
0 —r -4 1
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and the time-dependent vectors
(C.O)1) (A,G)(t)
Uc(t) = | (C+,CG)(t) and \Vc(t) = | (*A,CO)(t) | .
(Cx,xG)(t) (+A,Cx)(t)
The proof of theorefn.1 is in sectiph 8.

Theorem 6.1. The evolutions of E(t) and \&(t) are ruled by the linear differential
system

US(t) =MUc(t) + (C)(0)B,  VE(t) = MVc(t) + (A)(0)B.

The evolution of A, A)(t) can be deduced from the one @f(¥) through the differ-
ential equation

(A, A)/(t) = —4(AA)(t) +rLVc(t) + (A)(0).
The initial conditions are
((C)(O)) ( 0 )
Uc0)= [ €GO ], Ve@=| o0 and (AA)(0) = (A)(0).
(CG)(0) (CA)(0)

Theoren6]1 is valid out of equilibrium. We use it at statidtyshence, in particu-
lar, for the initial values

O =) =gore (WO = ()= 22
1 1+7r/16

(CG)(0) = (CG) = (CA)(0) = (CA) =

16+5r’ 16+5r °

Solving the system in theorefn .1 yields expressionéCo€)(t) and (A, A)(t).
Consider the positive real numbarsu, andu_ defined as

U=+V4+2r+r?, u.=6+r+u, Uu.=6+r—u.

Corollary 6.2. In the stationary regime,

(C,O)(t) = coe*+cetic et (C)?
(AA1N) = ae*ta e tae (A2
with
34 8043l
© = Z@ersr) T 3216450
3+ 2
= T (u(16+3r)+ (324 14r +3
Ct = Zuitersryz (U(16+3)E (324 14r+3r%)),
a 5124 384 + 1062 + 1334+ u(256+ 18 +13r?)
+ - .

64u(16+ 5r)?
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As expected,
Ci+C +c=(C)—(C)Y* and a,+a +ap=(A)—(A)%
Furthermore, for every positive
4<Uu_<5<2r+7<uy <2r+8.

For every positive, the parameters., ¢y, ar andag are positive. This proves the
following proposition.

Proposition 6.3. The functions - (C,C)(t) and t— (A,A)(t) are decreasing
diffeomorphisms.

7. EvoLuTION OF [C,C](t)

We wish to compute a linear differential system which woulk the evolution of
t — [C,C](t). To this end, we use repeatedly the fact that for every\&etmdW’
of words and every timg [W,W’|(t) = [W’,W](t), since the evolution of the two
sequences from their common ancestor is exchangeable.

Additionally, we assume that the common ancestral sequisratestationarity. A
consequence is the symmetry ©fand G in the Jukes-Cantor model with CpG
influence. Thus, for every positive

[G,G](t) =[C,C](t) and [*G,CG|(t) = [Cx,CG|(t).

Introduce the constant matrices

-8 —2r 0 0 2(C)
N — 1 —(12+2r) —r 1 5_ (CG)
a 0 4 —(16+4r) 0 |’ a 0 ’
0 —2r 0 -8 2(C)
and the time-dependent vector

c-coly
Ue® = | (ce.cqm)
[Cx, %G (1)

Theorem 7.1. The evolution oflc(t) is ruled by the linear differential system
UL (t) = MUg(t) +B.

Proof. As for theoren{ 6]1, one compares easlyC|(t) to [C,C](t +s) up to the
orders, for every positivea and vanishingly small positive O

Solving this system yields expressions[BGfC](t), [Cx,CG(t), [CG,CG|(t) and
[Cx, xG](t).
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Corollary 7.2. In the stationary regime,
[C,Cl(t) = coe B +c et yc ety (C)?
[Cx,CQ(t) = c e?'+cd e (C)(CG),
[CGCQ(t) = e e+ (CGY?
[Cx,*G|(t) = —coe ¥ +c e?ic,e?'L(C)(G),
where the constantg @nd c. are defined in sectiof} 6, and
d. = cL(2+rFu),
L = (2c./r?) (4+3r+r2Fu2+r)).
Proposition 7.3. The functions t [C,C]|(t), t — [Cx,CG|(t) and t— [CG,CG](t)

are decreasing diffeomorphisms. The function {Cx, xG|(t) is an increasing
diffeormorphism.

The proof of propositiofi 7]3 is in sectih 9.

8. PROOF OF THEOREMB-1

To compute(C,C)’(t), for example, one must compa(@,C)(t) to (C,C)(t +s) up
to the orders, for every positived and vanishingly small positive The probability
that at least two substitutions occur at the same site betweest andt + s is
o(s), hence these events do not appear in the limit we consider.

Let (W'|W)(s) denote the probability that sites occupied by a wori\bat time
0 are occupied by a word &/ at times. For every letterx in <7, recall that
X= g\ {X}.
For everyx in C, (C|x)(s) = s+ 0(s), hence(C|C)(s) = s+ 0(s). Two other cases
arise, namely
(Cx|CG)(S) =1— (3+1)s+0(s), (Cx|CG)(S) =1—3s+0(s).
We are now ready to evaluat€,C)(t +s). Decomposing along the values at time
t, one gets
(C.C)(t+5) = (Cx,CG.Cx)(t,9) + (C+,CG,Cx)(t,9) + (C.C.C)(t,9).
The first contribution is
(Cx,CG,Cx)(t,s) = (C+,CG)(t)(C«|CG)(s) = (Cx,CG)(t)(1— (3+T)s) +0(S).
Likewise, the second contribution is
(C#,CG,Cx)(t,s) = (C+,CG)(t)(C|CG)(s) = (C*,CG)(t)(1— 3s) + 0(S).
Finally,

(C.C,O)(t,5) = (C,C)(1)(CIC)(s) = (C,C)(t)s+0(s).
The sum of the contributions of order 1(i8,C)(t). The sum of the contributions

of ordersyields the derivative, hence
(C,C)'(t) = —(3+1)(Cx,CG)(t) — 3(C*,CG)(t) + (C,C)(1).
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Using the relations
(C,O)(t) = (C)(0) — (C.C)(t) = (Cx,CO)(t) + (Cx,CB)(t),

one gets thatC,C)'(t) is the sum of(C)(0) and of the first coordinate dflUc(t),
as stated in theorem 6.1.
The same method applies (0+,CG) and to(Cx, *G). For instance,

(Cx,CG)(t+s) = (Cx,CG,CG)(t,s)+ (Cx,CG,CG)(t,s)+

+(C%,CG,CG)(t,s) + (C+,CG,CG)(t,S).
The last term i(s) since one asks that at least two substitutions occur between
timest andt + s. The three other terms can be factored as
(Cx,xy,CG)(t,s) = (Cx,xy)(t)(CG|xy)(s).
Plugging into this the expansions
(CGICG)(s) =1— (6+2r)s+0(s),
and B B
(CGICG)(s) = (CGICG)(s) =s+0(s),
and regrouping the first order terms yields
(C+,CG)'(t) = —(6+2r)(C+,CG)(t) + (C+,CG)(t) + (C+,CG)(t).
Using the relations
(Cx,CG)(t) = (C,C)(t) — (Cx,CG)(1),
and B
(C+,CG)(t) = (Cx,*G)(t) — (Cx,CG)(t),
yields (Cx,CG)/(t) as the second coordinate Mfc(t), as stated in theorefn .1.
As regards the evolution @¢€x, *G), using once again the relation
(Cx,*G) = (Cx,CG) + (C+,CG),

one is left with the evolution o¢C*,5G). Decomposing as before, one gets

(Cx,CG)(t+s) = (Cx,CG,CG)(t,s)+ (Cx,CG,CG)(t,s)+

+ (C*,CG,CG)(t,s) + (C*,CG,CG)(t,s).

The last term i(s) since one asks that at least two substitutions occur between

timest andt +s. The three other terms can be factored like before. Using the
expansions

(CGICG)(s) = 1—4s+0(s), (CGICG)(S) = (3+T)s+0(s),
and o
(CGICG)(s) =s+0(s),
and regrouping the first order terms yields
(Cx,CG)'(t) = —4(Cx,CG)(t) + (3+T)(C+,CG)(t) + (Cx,CG)(t).

Coming back tqCx, *G) yields (Cx,*G)'(t) as the sum ofC)(0) and of the third
coordinate oMUc(t), as stated in theorefn p.1.
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9. PROOF OF PROPOSITION.3

The function t — [C,C](t) is decreasing.Since the parameters andc are pos-
itive, this is direct.

The function t — [Cx,CGJ(t) is decreasing.Simple computations yield
(16+ 5r)ue?" [Cx,CGJ'(t) = —2u(r +3) — (u+2—r)(r +3)(e" - 1).

Sinceu+ —r2> 0, the right hand side is a sum of negative terms, hé@egC G|’ (t)
is negative for every nonnegative

The function t — [CG,CG](t) is decreasingAs for [Cx,CG], one computes

(16+5r)ue®+![CG,CG]/(t) = —4u(3+r1) — 2(3+r)(u—r — 1) (e* — 1),
and the fact thati — r — 1 > 0 concludes the proof.
The function t — [Cx,*G](t) is increasing.We begin with the differential equa-
ion
" [Cx, %G (t) = —2r[Cx,CGJ(t) — 8[Cx,*G]|(t) + 2(C).
This yields

[Cx, @] (t) = —2r[Cx,CG]'(t) — 8[Cx,xG]'(t).
Hence,
& [Cx, +GJ'(t) = [Cx, +G'(0) — 2r /0 ' C,CEl (908
One now computefCx, «*G|’(0). Using our first equation, one gets
[Cx,+G]'(0) = —2r[C*,CG|(0) — 8[Cx, *G](0) + 2(C)
=-2r(CG)—8(CG)+2(C) =2(C)—2(r+4)(CG) =0.
Hence,
e [Cx, +G] (1) = —2r /: e®[C+,CG]'(s)ds.

Since the functiort — [Cx,CG|(t) is decreasing, the last integral above is negative
and this yield the result.
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