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PHYLOGENETIC DISTANCES FOR NEIGHBOUR DEPENDENT
SUBSTITUTION PROCESSES

MIKAEL FALCONNET

ABSTRACT. We consider models of nucleotidic substitution processeswhere
the rate of substitution at a given site depends on the state of its neighbours. For
a wide class of such nonreversible models, we show how to compute consistent,
mathematically exact, estimators of the time elapsed between aligned sequences,
for an ancestral sequence and a present one, and also for two present sequences.
In both cases, we provide asymptotic confidence intervals, valid for nucleotidic
sequences of finite length. We compute explicit formulas forthe estimators and
for their confidence intervals in the simplest nontrivial case, the Jukes-Cantor
model with CpG influence.

INTRODUCTION

A crucial step in the computation of phylogenetic trees based on aligned DNA se-
quences is the estimation of the evolutionary times betweenthese sequences. In
most phylogenetic algorithms, one assumes that each site evolves independently
from the others and, in general, according to a given Markovian kernel. This as-
sumption is mainly due to practical reasons, since some neighbour influences are
well documented in the literature, and caused by well known biological mecha-
nisms, and yield substitution rates which can be, in some cases, much larger than
their independent counterparts. A class of mathematical models with neighbour
influences was recently introduced by biologists, see [GGG96], and studied math-
ematically, see [BGP08], and through simulations, see [AH05] and [ABH03] for
instance. The goal of the present paper is to show that one cancompute exact for-
mulas for consistent estimators of the distances between DNA sequences whose
evolution is ruled by any model in this class.

As a proof of concept, we completely describe the construction in the simplest non
trivial case, the Jukes-Cantor model with (symmetric) CpG influence, and we show
that its evolution is ruled by finite sized linear systems. Note that for every model
in this class one can write similar closed formulas.
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In section 1, we describe the class of manageable models introduced in [BGP08]
and the main properties of the simplest one, the Jukes-Cantor model with CpG
influence. In section 2, we summarize our main results on the estimation of the
elapsed time between an old DNA sequence and a present one, and on the time
since two present DNA sequences issued from the same ancestral sequence di-
verged. The other sections explain how we state our results.At the end of section 2,
we give the plan of the rest of the paper.

1. MODELS WITH INFLUENCE

We first describe the class of models to which the results of this paper apply, and in
particular the simplest one, called Jukes-Cantor model with CpG influence. Then,
we mention its main mathematical properties, already established in [BGP08], and
we introduce some notations.

Recall that DNA sequences are encoded by the alphabetA = {A,T,C,G}, where
the letters stand for Adenine, Thymine, Cytosine and Guanine respectively. Thus,
bi-infinite DNA sequences are elements ofA Z.

1.1. Jukes-Cantor model with CpG influence. In most models of DNA evolu-
tion, one assumes that each site evolves independently fromthe others and fol-
lows a given Markovian kernel, see [JC69], [Kim80], [Fel81]and [HKY85] for
instance. Even in codon evolution models, see [JTT92], one still assumes that
different codons evolve independently. However, it is a well known experimental
fact, see [DG00] by example, that the nature of the close neighbours of a site can
modify, notably in some cases, the substitution rates observed at this site. To take
account of these observations, we consider models, in continuous time, where the
sequence evolves under the combined effect of two superposed mechanisms.
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Figure 1: Substitution rates for Jukes-Cantor models with CpG influence

The first mechanism is an independent evolution of the sites as in the usual models.
Hence it is characterized by a 4×4 matrix of substitution rates, each rate being the
mean number of substitutions per unit of time. The simplest case is the Jukes-
Cantor model, where each substitution happens at the same rate. Hence, possibly
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after a rescaling of the time, the rate of the substitutions of x by y is set to 1, for
every nucleotidesx andy in A .

A second mechanism is superimposed, which describes the substitutions due to the
influence of the neighborhood: the most noticeable case is based on experimentally
observed CpG-methylation-deamination processes, whose biochemical causes are
well known. Hence we assume that the substitution rates of cytosine by thymine
and of guanine by adenine in CpG dinucleotides are both increased by an additional
nonnegative rater.

This means for example that anyC site whose right neighbour is not occupied by a
G, changes at global rate 3, hence after an exponential time ofmean 1/3, and when
it does, it becomes anA, aG or aT with probability 1/3 each. On the contrary, any
C site whose right neighbour is occupied by aG, changes at global rates= 3+ r,
hence after an exponential time of mean 1/s, and when it does, it becomes anA, a
G or aT with unequal probabilities 1/s, 1/s, and(1+ r)/s respectively.

The caser = 0 corresponds to the usual Jukes-Cantor model. As soon asr 6= 0,
the evolution of a site is not independent of the rest of the sequence. Hence the
evolution of the complete sequence is Markovian (on a huge state space), but not
the evolution of a given site, nor of any given finite set of sites.

Recall from [BGP08] that the relevant class of models, called RN+YpR in this
paper, is in fact larger than just described.

Firstly, RN stands for Rzhetsky-Nei and means that the 4× 4 matrix of substitu-
tion rates which characterize the independent evolution ofthe sites must satisfy 4
equalities, summarized as follows: for every nucleotidesx andy 6= x, the substitu-
tion rate fromx to y may depend onx but only through the fact thatx is a purine (A
or G, symbolR) or a pyrimidine (C or T, symbolY). For instance, the substitution
rates fromC to A and fromT to A must coincide, likewise for the substitution rates
from A to C and fromG to C, from C to G and fromT to G, and finally fromA to
T and fromG to T. The 4 remaining rates, corresponding to purine-purine andto
pyrimidine-pyrimidine substitutions, are free.

Secondly, the influence mechanism is called YpR, which stands for the fact that
one allows any specific substitution rates between any two YpR dinucleotides (CG,
CA, TG andTA) which differ by one position only, for a total of 8 independent
parameters. The case described above is the simplest non trivial (symmetric) one:
the only YpR substitutions with positive rate areCG→ CA andCG→ TG, and
both happen at the same rate.

As already mentioned, the results of this paper about Jukes-Cantor models with
CpG influence can be adapted to every RN model with YpR influence.

1.2. Main properties. We now recall some results of [BGP08], valid for every
RN model with YpR influence. First, for every probability measureν on A Z,
there exists a unique Markov process(X(t))t>0 on A Z, with initial distributionν ,
associated to the transition rates above. Thus, for every time t, X(t) describes the
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whole sequence and, for everyi in Z, theith coordinateXi(t) of X(t) is the random
value of the nucleotide at sitei and timet. The process(X(t))t>0 is ergodic, its
unique stationary distributionπ onA Z is invariant and ergodic with respect to the
translations ofZ, andπ puts a positive mass on every cylinder ofA Z.

Thus, for every finite wordw = (wi)06i6ℓ written in the alphabetA , π(w) is pos-
itive. Furthermore, for every positioni in Z, Pν(Xi:i+ℓ(t) = w) converges toπ(w)
whent → +∞. (Here and later on, for every indicesi and j in Z with i 6 j and
every symbolS, the shorthandSi: j denotes(Sk)i6k6 j .) Finally, if ξ in A Z is dis-
tributed alongπ, the empirical frequencies of any wordw in ξ , observed along any
increasing sequence of intervals ofZ, almost surely converge toπ(w).

These properties stem from the following representation ofthe distributionπ.
There exists an i.i.d. sequence(Hi)i∈Z of Poisson processes, and a measurable map
Ψ with values inA , such that if one sets

ξi = Ψ(Hi−1,Hi,Hi+1)

for every sitei in Z, then the distribution of(ξi)i∈Z is π. In particular, any collec-
tions(ξi)i∈I and(ξi)i∈J are independent as soon as the subsetsI andJ of Z are such
that |i − j| > 3 for every sitesi in I and j in J. We call this property independence
at distance 3.

1.3. Notations. Our estimators are based on various quantities provided by the
alignment of the two sequences.

A T C C C G A

A C C GA G A

i = 7= 1

t = 0

N

Figure 2: Alignment of an ancestral sequence and a present one

For everyℓ > 0 and every wordw of lengthℓ+1 written in the alphabetA , say that
sitei is occupied at timet by w if Xi:i+ℓ(t) = w. For every subsetsW, W′ andW′′ of
words and every timest ands, (W)(t) denotes the frequency of sites occupied by
any word inW at timet, (W,W′)(t) the frequency of sites occupied by any word
in W at time 0 and any word inW′ at timet, and(W,W′,W′′)(t,s) the frequency of
the sites occupied by any word inW at time 0, any word inW′ at timet and any
word inW′′ at timet +s.

When comparing two present sequences, we use the following notations. For every
setsW andW′ of words and every timet, [W,W′](t) denotes the frequency of sites
occupied by a word ofW in the left sequence (denoted byX1 ) and by a word of
W′ in the right sequence (denoted byX2).
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We identify a wordw and the set of words{w}. For every letterx in the alphabet
A , we use the shorthands∗x = A ×{x}, x∗ = {x}×A andx̄ = A \{x}.

From now on and with the exception of the statement of theorem6.1, X(0) and
X1(0) = X2(0) are distributed according toπ, so the system is stationary.

2. SUMMARY OF MAIN RESULTS

Theorems 2.2 and 2.5 below provide asymptotic confidence intervals for the time
elapsed between a present sequence and an ancestral one, forthe Jukes-Cantor
model with CpG influence of intensityr. These intervals are based on two consis-
tent estimators of the elapsed timet. Our first estimator is based on the evolution
of the frequency(C,C)(t) when the timet varies and the other one on the evolution
of (A,A)(t).

Propositions 2.7, 2.8 and 2.9 allow to compare the convergence to equilibrium of
(C,C)(t) in models with influence and in independent models with corresponding
rates of substitution.

Finally, theorem 2.11 provides an asymptotic confidence interval for the time since
two present sequences issued from the same ancestral sequence diverged. Theo-
rem 2.11 is the keystep for the creation of phylogenetic trees built by a distance-
based method.

2.1. Alignment of cytosines in an ancestral sequence and a present one. Let
(C,C)obs denote the observed value of(C,C) on two aligned sequences of length
N, that is,

(C,C)obs=
1
N

N

∑
i=1

KC
i (t), with KC

i (t) = 1{Xi(0) = Xi(t) = C}.

In figure 1.3 for instance,N = 7 and(C,C)obs= 2
7.

Definition 2.1. Let TC denote the estimator of the elapsed time t defined as the
solution in t of the equation

(C,C)(t) = (C,C)obs.

Let κC
obs andνC

obs denote observed quantities, defined as

κC
obs= r(C∗,CG)obs−4(C,C)obs− (C),

and
νC

obs= (C,C)obs− (C,C)2
obs+2(CC,CC)obs+2(C∗C,C∗C)obs.

As explained in section 6, the functiont 7→ (C,C)(t) is decreasing from(C) to
(C)2, where(C) is the frequency ofC sites at stationarity. Thus,TC is unique and
well defined for any pair of aligned sequences such that

(C)2 < (C,C)obs< (C),
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Thanks to the ergodicity of the model, this condition is almost surely satisfied when
N is large enough because(C,C)obs→ (C,C)(t) almost surely whenN → ∞.

We note thatνC
obs is always positive whereasκC

obs might be negative for some se-
quences of observations and lengthesN. However, from lemma 5.1 ini section 5,
κC

obs is almost surely positive whenN is large.

We now state our main result.

Theorem 2.2. Assume that the ancestral sequence is at stationarity. Then, when

N → +∞, κC
obs

√
N/νC

obs(TC − t) converges in distribution to the standard normal
law. An asymptotic confidence interval at levelε for t is


TC− z(ε)

κC
obs

√
νC

obs

N
,TC +

z(ε)

κC
obs

√
νC

obs

N


 ,

where z(ε) denotes any real number such thatP(|Z|> z(ε)) 6 ε with Z a variable
with standard normal law.

Proposition 2.3. When t is large, the variations of TC around t are of ordere4t/
√

N.

The meaning of proposition 2.3 is that one must observe a partof the sequence of
lengthN at least of order e8t to estimatet up to a given factor.

2.2. Alignment of adenines in an ancestral sequence and a presentone. One
can use(A,A) like (C,C) before. We skip the details and only state the results.

Let (A,A)obs denote the observed value of(A,A) on two aligned sequences of
lengthN, that is,

(A,A)obs=
1
N

N

∑
i=1

KA
i (t), with KA

i (t) = 1{Xi(0) = Xi(t) = A}.

In figure 1.3 for instance,N = 7 and(A,A)obs= 2
7.

Definition 2.4. Let TA denote the estimator of the elapsed time t defined as the
solution in t of the equation

(A,A)(t) = (A,A)obs.

Let κA
obs andνA

obs denote observed quantities, defined as

κA
obs= −4(A,A)obs+ r(∗A,CG)obs− (A),

where(A) is the frequency of sites occupied by an A at stationarity and

νA
obs= (A,A)obs+2(AA,AA)obs+2(A∗A,A∗A)obs− (A,A)2

obs.

Theorem 2.5. Assume that the ancestral sequence is at stationarity. Then, when

N → +∞, κA
obs

√
N/νA

obs(TA− t) converges in distribution to the standard normal
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law. An asymptotic confidence interval at levelε for t is

TA−

z(ε)

κA
obs

√
νA

obs

N
,TA +

z(ε)

κA
obs

√
νA

obs

N


 ,

where z(ε) is such as in theorem 2.2.

Proposition 2.6. When t is large, the variations of TA around t are of ordere4t/
√

N.

2.3. Comparisons with standard models.First, we study the independent Jukes-
Cantor model with the same overall rate of substitutions, then the independent
Kimura model with the same transition and transversion overall rates, and finally
the independent model with the same overall rate for each of the 12 possible sub-
stitutions.

Proposition 2.7. The convergences of(C,C)(t) and(A,A)(t) to equilibrium when
t → +∞ in the Jukes-Cantor model with CpG influence are slower than in the
independent Jukes-Cantor model with the same global rate ofsubstitution.

In Kimura’s model [Kim80], the rates of transitions (A ↔ G and T ↔ C) and
transversions (A,G↔ T,C) may be different. Following the notations in [Yan06],
these models describe independent evolutions of the sites with 4×4 infinitesimal
generators:




A T C G
A · β β α
T β · α β
C β α · β
G α β β ·


,

where the sum of the coefficients on every line is equal to 0.

Proposition 2.8. The convergence of(C,C)(t) and (A,A)(t) to equilibrium when
t → +∞ in the Jukes-Cantor model with CpG influence are the same thanin the
Kimura model with the same transversion and transition overall rates.

We finally compare the Jukes-Cantor model with CpG influence to the independent
RN model with the same overall rate for each of the 12 possiblesubstitutions. The
4×4 infinitesimal generator is given by:




A T C G
A · 1 1 1
T 1 · 1 1
C 1 1+ δ · 1
G 1+ δ 1 1 ·


,

where the sum of the coefficients on every line is equal to 0 andδ = r(CG)/(C).

Proposition 2.9. The convergence of(C,C)(t) to equilibrium when t→ +∞ in the
Jukes-Cantor model with CpG influence is slower than in the model above whereas
the convergence of(A,A)(t) is the same.
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2.4. Alignment of present sequences.We build an estimator of the time since
two present sequences issued from the same ancestral sequence diverged. We as-
sume that the ancestral sequence is under the stationary regime. Mimicking sub-
sections 2.1 and 2.2, one could build such an estimator on theobserved value of
[A,A] but we only detail the estimator based on[C,C].

Let [C,C]obs denote the observed value of[C,C], that is

[C,C]obs=
1
N

N

∑
i=1

K̃C
i (t), K̃C

i (t) = 1{X1
i (t) = X2

i (t) = C}.

Definition 2.10. LetT̃C denote the estimator of the divergence time t defined as the
solution in t of the equation

[C,C](t) = [C,C]obs.

Let κ̃C
obs and ν̃C

obs denote observed quantities, defined as

κ̃C
obs= −8[C,C]obs+2r[C∗,CG]obs−2(C),

and
ν̃C

obs= [C,C]obs+2[CC,CC]obs+2[C∗C,C∗C]obs− [C,C]2obs.

As in definition 2.1, we pay attention to the fact thatT̃C is unique and well defined
for any pair of aligned sequences such that

(C)2 < [C,C]obs< (C).

As the observed quantityκC
obs, κ̃C

obs is almost surely positive whenN is large.

Theorem 2.11. Assume that the common ancestral sequence is at stationarity.

Then, when N→ ∞, κ̃C
obs

√
N/ν̃C

obs(T̃C − t) converges in distribution to the stan-
dard normal law. An asymptotic confidence interval at levelε for t is


T̃C− z(ε)

κ̃C
obs

√
ν̃C

obs

N
, T̃C +

z(ε)

κ̃C
obs

√
ν̃C

obs

N


 .

Proposition 2.12. When t is large, the variations of̃TC around t are of order
e8t/

√
N.

2.5. Plan. The rest of the paper is organized as follows. In section 3, westate
the central limit theorems which the results in subsections2.1 to 2.4 are based
on. In section 4, we deal with(C,C)obs and [C,C]obs and we detail the proofs of
central limit theorems for these quantities. In section 5, we show that the central
limit theorems established in section 3 imply the theorems and the propositions of
section 2. In sections 6 and 7, we characterize the evolutions of (C,C)(t), (A,A)(t)
and[C,C](t) and we state some monotony properties. Section 8 contains the proof
of theorem 6.1, which rules the evolution of(C,C)(t). Section 9 contains the proof
of the monotony properties of[C,C](t) and of some related functions.
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3. CENTRAL LIMIT THEOREMS FOR THE TIME ESTIMATORS

3.1. Central limit theorems for TC and TA. We explicit the behaviour ofTC and
TA aroundt. To state our result, we first need central limit theorems for(C,C)obs

and(A,A)obs.

Proposition 3.1. For x ∈ {C,A}, when N→ +∞,
√

N((x,x)obs− (x,x)(t)), con-
verges in distribution to the centered normal distributionwith varianceσ2

x (t),
where

σ2
x (t) = (x,x)(t)+2(xx,xx)(t)+2(x∗x,x∗x)(t)−5(x,x)(t)2.

We now deal with the variations ofTC andTA aroundt.

For x ∈ {C,A}, let µx, denote the reciprocal function oft 7→ (x,x)(t), which is a
diffeomorphism from proposition 6.3, andµ ′

x. Then,

Tx = µx((x,x)obs) et t = µx((x,x)(t)).

Besides, the derivative ofµx with respect tot is

µ ′
x((x,x)(t)) =

1
(x,x)′(t)

Using the delta method, see [vdV98], one gets the following result.

Proposition 3.2. For x∈ {C,A}, when N→ +∞,
√

N(Tx− t) converges in distri-
bution to the centered normal distribution with varianceσ2

x (t)/(x,x)′(t)2.

3.2. Central limit theorem for T̃C. As for (C,C)obs, we prove a central limit the-
orem for[C,C]obs.

Proposition 3.3. When N→ ∞,
√

N([C,C]obs− [C,C](t)) converges in distribution
to the central normal distribution with variancẽσ2

C(t), where

σ̃2
C(t) = [C,C](t)+2[CC,CC](t)+2[C∗C,C∗C](t)−5[C,C](t)2.

Let µ̃C denote the reciprocal function oft 7→ [C,C](t), which is a diffeomorphism
from proposition 7.3, and̃µ ′

C its derivative, hence

T̃C = µ̃C([C,C]obs), t = µ̃C([C,C](t)) and µ̃ ′
C([C,C](t)) =

1
[C,C]′(t)

,

for every nonnegativet. The delta method yields the following result.

Proposition 3.4. When N→ ∞,
√

N(T̃C − t) converges in distribution to the cen-
tered normal distribution with variancẽσ2

C(t)/[C,C]′(t)2.

4. PROPERTIES OF THE OBSERVED QUANTITIES

We detail the properties of(C,C)obs, (A,A)obsand[C,C]obs. We assume thatN > 2.
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4.1. Description of (C,C)obs and (A,A)obs.

Lemma 4.1. For x∈ {C,A}, the mean of(x,x)obs with respect toπ is (x,x)(t). The
variance of(x,x)obs with respect toπ is σ2

x (N, t), where

Nσ2
x (N, t) = (x,x)(t)− (x,x)(t)2 +2(1−1/N)

(
(xx,xx)(t)− (x,x)(t)2)

+

+2(1−2/N)
(
(x∗x,x∗x)(t)− (x,x)(t)2)

.

Proof. The random variables(Kx
i (t))i∈Z are identically distributed with respect to

π, their common mean is(x,x)(t), and (x,x)obs is the empirical mean of theN
valuesKx

i (t) for i from 1 toN. Thus, we obtain the value ofE((x,x)obs) as(x,x)(t).
Furthermore,

N2σ2
x (N, t) =

N

∑
i=1

var(Kx
i (t))+2 ∑

16i< j6N

cov(Kx
i (t),K

x
j (t)).

The variance of eachKx
i (t) is var(Kx

1(t)) = (x,x)(t)− (x,x)(t)2. The independence
at distance 3 implies that each covariance for|i − j| > 3 is zero. The invariance by
translation ofπ shows that each of the 2(N−1) covariances such thati = j ±1 is

cov(Kx
1(t),K

x
2(t)) = (xx,xx)(t)− (x,x)(t)2.

Finally, each of the 2(N−2) covariances such thati = j ±2 is

cov(Kx
1(t),K

x
3(t)) = (x∗x,x∗x)(t)− (x,x)(t)2.

This concludes the proof. �

Corollary 4.2. For every positive u,

Pπ(|(C,C)obs− (C,C)(t)| > u) 6 15/(16Nu2),

and

Pπ(|(A,A)obs− (A,A)(t)| > u) 6 105/(100Nu2).

Proof. Since(xx,xx)(t) 6 (x,x)(t) and(x∗x,x∗x)(t) 6 (x,x)(t),

Nσ2
x (N, t) 6 5(x,x)(t)

(
1− (x,x)(t)

)
.

Thanks to proposition 6.3, the functiont 7→ (x,x)(t) is decreasing, so(x,x)(t) 6

(x,x)(0) for every t > 0. In the stationary regime,(x,x)(0) = (x) and, for every
r > 0,

(C) =
4+ r

16+5r
6

1
4

and (A) =
4+3/2r
16+5r

6
3
10

.

Since θ(1− θ) 6 3/16 for everyθ 6 1/4, andθ(1− θ) 6 21/100 for every
θ 6 3/10,Nσ2

C(N, t) 6 15/16 andNσ2
A(N, t) 6 105/100. Chebychev’s inequality

concludes the proof. �



PHYLOGENETIC DISTANCES FOR MODELS WITH INFLUENCE 11

4.2. Proof of proposition 3.1. To prove the convergence in distribution to the
normal law, we use the following result.

Theorem 4.3(Hall and Heyde [HH80]). Let (Vi)i∈Z denote a stationary, ergodic,
centered, square integrable sequence. LetF0 = σ(Vi ; i 6 0) denote theσ -algebra
generated by the random variables Vi for i 6 0. For every positive integer n, intro-
duce

Un =
1√
n

n

∑
i=1

Vi .

Assume that

(i) for every positive n, the series∑
k>1

E(VkE(Vn|F0)) converges,

(ii) the series∑
k>K

|E(VkE(Vn|F0))| converges to zero when n→+∞, uniformly

with respect to K.

ThenE(U2
n ) converges to a real numberσ2 > 0 when n→ +∞. Furthermore, if

σ2 > 0, then Un/
√

σ2 converges in distribution to the standard normal distribution.

Forx∈ {C,A}, the sequence(Kx
i (t))i∈Z is stationary and ergodic. LetVx

i = Kx
i (t)−

(x,x)(t). This defines a sequence(Vx
i )i∈Z such that the first hypothesis of theo-

rem 4.3 holds. We now check conditions (i) et (ii). The independence at distance
3 implies that, for everyn > 3, E(Vx

n |F x
0) = E(Vx

n ) = 0. Hence we only have to
check the casesn = 1 andn = 2.

For everyk > 3,Vx
k is independent ofF x

0 andE(Vx
n |F x

0) is F x
0-measurable, hence

E(Vx
k E(Vx

n |F x
0)) = E(Vx

k )E(E(Vx
n |F x

0)) = 0.

This implies (i) and (ii), hence theorem 4.3 applies. To compute the asymptotic
variance in the theorem, we note that the variance of

√
N((x,x)obs− (x,x)(t)) is

Nσ2
x (N, t), which converges toσ2

x (t) whenN → +∞.

4.3. Case of[C,C]obs. As for (C,C)obs, we have a description of[C,C]obs.

Lemma 4.4. The mean of[C,C]obs with respect toπ is m̃C(t) = [C,C](t). The
variance of[C,C]obs with respect toπ is σ̃2

C(N, t), where

Nσ̃2
C(N, t) = [C,C](t)− [C,C](t)2 +2(1−1/N)

(
[CC,CC](t)− [C,C](t)2)+

+2(1−2/N)
(
[C∗C,C∗C](t)− [C,C](t)2).

The proof of lemma 4.4 is similar to the proof of lemma 4.1. Chebychev’s inequal-
ity implies the following estimate.

Corollary 4.5. For every positive u and integer N> 2,

Pπ(|[C,C]obs− m̃C(t)| > u) 6 1/(Nu2).

Proof. The inequalities used in corollary 4.2 hold with[·, ·] functions instead of
(·, ·) functions. �
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To prove proposition 3.3, we apply theorem 4.3 to the sequence (W̃i)i∈Z defined by
W̃i = K̃C

i − m̃C(t) for everyi.

5. PROOFS OF THE RESULTS OF SECTION2

5.1. Proof of theorems 2.2, 2.5 and 2.11.Proposition 3.2 yields the variation of
Tx aroundt for x∈ {C,A}. A priori, to build a confidence interval fort from this
proposition requires to know the value of(x,x)′(t) and ofσ2

C(t), which both depend
on the quantityt to be estimated.

As is customary, Slutsky’s lemma allows to bypass this difficulty throught the ob-
served quantitiesκx

obs andνx
obs, defined in section 2.

Lemma 5.1. For x∈ {C,A}, when N→ +∞, κx
obs→−(x,x)′(t) andνx

obs→ σ2
x (t)

almost surely.

Proof. The equalities

(C,C)′(t) = −4(C,C)(t)− r(C∗,CG)(t)+ (C),

and
(A,A)′(t) = −4(A,A)(t)− r(∗A,CG)(t)+ (A),

given by theorem 6.1, and the almost sure convergence of the observed quanti-
ties (C,C)obs, (C∗,CG)obs, (CC,CC)obs, (C ∗C,C ∗C)obs, (A,A)obs, (∗A,CG)obs,
(AA,AA)obs and (A∗ A,A∗ A)obs to the corresponding theoretical values, when
N → +∞, imply the desired convergences. �

Proposition 3.1, lemma 5.1 and Slutsky’s lemma imply theorems 2.2 and 2.5.

Lemma 5.2. When N→ +∞, κ̃C
obs→−[C,C]′(t) and ν̃C

obs→ σ̃2
C(t) almost surely.

Proof. The equality

[C,C]′(t) = −8[C,C](t)−2r[C∗,CG](t)+2(C),

given by theorem 7.1, and the almost sure convergence of the observed quantities
[C,C]obs, [C∗,CG]obs, [CC,CC]obs and [C∗C,C∗C]obs to the corresponding theo-
retical values, whenN → +∞, imply the desired convergences. �

Proposition 3.4, lemma 5.2 and Slutsky’s lemma imply theorem 2.11.

5.2. Proofs of propositions 2.7, 2.8 and 2.9.Firstly, from corollary 6.2, for every
value ofr, the convergence of(C,C)(t) and(A,A)(t) to equilibrium whent → +∞
in the Jukes-Cantor model with CpG influence are like e−4t .

Secondly, in Jukes-Cantor models with CpG influence, every nucleotide changes at
rate 3 due to unconditional substitution rates, plus every dinucleotide CpG changes
at rate 2r. Hence the global rate of substitution is

3+2r(CG) = 3+
2r

16+5r
.
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On the other hand, in the independent Jukes-Cantor model of parameterλ , the
global rate of substitution is 3λ . Hence one should set

λ = 1+
2r/3

16+5r
.

For independent Jukes-Cantor models, [Yan06] computes(C,C)(t) = (A,A)(t) =
1
16 + 3

16e−4λ t . Sinceλ > 1 for everyr > 0, the comparison with the independent
Jukes-Cantor model is done.

Thirdly, in Jukes-Cantor models with CpG influence, every transversion occurs at
rate 1, and every nucleotide may have two possible transversions. Hence the global
rate of transversion is 2. The transitionsG→A andC→G occur at rate 1+ r(CG),
the transitionsA→G andG→C occur at rate 1. Hence the global rate of transition
is 1+2r(CG) = 1+2r/(16+5r). On the other hand, in Kimura models, the global
rate of transition isα and the global rate of transversion is 2β . Hence one should
set

α = 1+
2r

16+5r
and β = 1.

For independent Kimura models, [Yan06] computes

(C,C)(t) = (A,A)(t) =
1
16

+
1
16

e−4β t +
1
8

e−(2α+2β)t ,

so the convergence of(C,C)(t) and (A,A)(t) to equilibrium whent → +∞ in
Kimura models is like e−4β t , when one assumesα > β . Sinceβ = 1, the com-
parison with the independent Kimura model is done.

Fourthly, simple computations yield in the independent model with the same over-
all rate of substitutions

(C,C)(t) =
1

(4+ δ )2

(
1+(3+ δ )e−(4+δ )t

)
,

and

(A,A)(t) =
2+ δ

(8+2δ )2

(
2+ δ +(4+ δ )e−4t +2e−(4+δ )t

)
.

thus the convergence of(C,C)(t), respectivly(A,A)(t) to equilibrium whent →
+∞ in the model above is like e−(4+δ )t , respectivly e−4t . Since 4+δ > 4 for every
r > 0, the comparison with this model is complete.

6. EVOLUTIONS OF (C,C)(t) AND (A,A)(t)

We provide a linear differential system which rules the evolution of (C,C)(t) and
(A,A)(t). Introduce the constant matrices

M =



−4 −r 0
1 −(8+2r) 1
0 −r −4


 , B =




1
0
1


 , and L = (0,1,0),
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and the time-dependent vectors

UC(t) =




(C,C)(t)
(C∗,CG)(t)
(C∗,∗G)(t)


 and VC(t) =




(A,G)(t)
(∗A,CG)(t)
(∗A,C∗)(t)


 .

The proof of theorem6.1 is in section 8.

Theorem 6.1.The evolutions of UC(t) and VC(t) are ruled by the linear differential
system

U ′
C(t) = MUC(t)+ (C)(0)B, V ′

C(t) = MVC(t)+ (A)(0)B.

The evolution of(A,A)(t) can be deduced from the one of VC(t) through the differ-
ential equation

(A,A)′(t) = −4(A,A)(t)+ rLVC(t)+ (A)(0).

The initial conditions are

UC(0) =




(C)(0)
(CG)(0)
(CG)(0)


 , VC(0) =




0
0

(CA)(0)


 and (A,A)(0) = (A)(0).

Theorem 6.1 is valid out of equilibrium. We use it at stationarity hence, in particu-
lar, for the initial values

(C)(0) = (C) =
4+ r

16+5r
, (A)(0) = (A) =

4+3r/2
16+5r

,

(CG)(0) = (CG) =
1

16+5r
, (CA)(0) = (CA) =

1+7r/16
16+5r

.

Solving the system in theorem 6.1 yields expressions of(C,C)(t) and (A,A)(t).
Consider the positive real numbersu, u+ andu− defined as

u =
√

4+2r + r2, u+ = 6+ r +u, u− = 6+ r −u.

Corollary 6.2. In the stationary regime,

(C,C)(t) = c0e−4t +c+e−u+t +c−e−u−t +(C)2,

(A,A)(t) = a0e−4t +a+e−u+t +a−e−u−t +(A)2,

with

c0 =
3+ r

2(16+5r)
, a0 =

80+31r
32(16+5r)

,

c± =
3+ r

4u(16+5r)2

(
u(16+3r)± (32+14r +3r2)

)
,

a± =
512+384r +106r2 +13r3±u(256+18r +13r2)

64u(16+5r)2 .
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As expected,

c+ +c− +c0 = (C)− (C)2 and a+ +a− +a0 = (A)− (A)2.

Furthermore, for every positiver,

4 < u− < 5 < 2r +7 < u+ < 2r +8.

For every positiver, the parametersc±, c0, a± anda0 are positive. This proves the
following proposition.

Proposition 6.3. The functions t7→ (C,C)(t) and t 7→ (A,A)(t) are decreasing
diffeomorphisms.

7. EVOLUTION OF [C,C](t)

We wish to compute a linear differential system which would rule the evolution of
t 7→ [C,C](t). To this end, we use repeatedly the fact that for every setsW andW′

of words and every timet, [W,W′](t) = [W′,W](t), since the evolution of the two
sequences from their common ancestor is exchangeable.

Additionally, we assume that the common ancestral sequenceis at stationarity. A
consequence is the symmetry ofC and G in the Jukes-Cantor model with CpG
influence. Thus, for every positivet,

[G,G](t) = [C,C](t) and [∗G,CG](t) = [C∗,CG](t).

Introduce the constant matrices

M̃ =




−8 −2r 0 0
1 −(12+2r) −r 1
0 4 −(16+4r) 0
0 −2r 0 −8


 , B̃ =




2(C)
(CG)

0
2(C)


 ,

and the time-dependent vector

ŨC(t) =




[C,C](t)
[C∗,CG](t)
[CG,CG](t)
[C∗,∗G](t)


 .

Theorem 7.1. The evolution of̃UC(t) is ruled by the linear differential system

Ũ ′
C(t) = M̃ŨC(t)+ B̃.

Proof. As for theorem 6.1, one compares easily[C,C](t) to [C,C](t + s) up to the
orders, for every positivet and vanishingly small positives. �

Solving this system yields expressions of[C,C](t), [C∗,CG](t), [CG,CG](t) and
[C∗,∗G](t).
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Corollary 7.2. In the stationary regime,

[C,C](t) = c0e−8t +c−e−2u+t +c+e−2u−t +(C)2,

[C∗,CG](t) = c′−e−2u+t +c′+e−2u−t +(C)(CG),

[CG,CG](t) = c′′−e−2u+t +c′′+e−2u−t +(CG)2,

[C∗,∗G](t) = −c0e−8t +c−e−2u+t +c+e−2u−t +(C)(G),

where the constants c0 and c± are defined in section 6, and

c′± = c± (2+ r ∓u) ,

c′′± = (2c±/r2)
(
4+3r + r2∓u(2+ r)

)
.

Proposition 7.3. The functions t7→ [C,C](t), t 7→ [C∗,CG](t) and t 7→ [CG,CG](t)
are decreasing diffeomorphisms. The function t7→ [C∗,∗G](t) is an increasing
diffeormorphism.

The proof of proposition 7.3 is in section 9.

8. PROOF OF THEOREM6.1

To compute(C,C)′(t), for example, one must compare(C,C)(t) to (C,C)(t +s) up
to the orders, for every positivet and vanishingly small positives. The probability
that at least two substitutions occur at the same site between timest and t + s is
o(s), hence these events do not appear in the limit we consider.

Let (W′|W)(s) denote the probability that sites occupied by a word ofW at time
0 are occupied by a word ofW′ at time s. For every letterx in A , recall that
x̄ = A \{x}.

For everyx in C̄, (C|x)(s) = s+ o(s), hence(C|C̄)(s) = s+ o(s). Two other cases
arise, namely

(C∗ |CG)(s) = 1− (3+ r)s+o(s), (C∗ |CḠ)(s) = 1−3s+o(s).

We are now ready to evaluate(C,C)(t +s). Decomposing along the values at time
t, one gets

(C,C)(t +s) = (C∗,CG,C∗)(t,s)+ (C∗,CḠ,C∗)(t,s)+ (C,C̄,C)(t,s).

The first contribution is

(C∗,CG,C∗)(t,s) = (C∗,CG)(t)(C∗ |CG)(s) = (C∗,CG)(t)(1− (3+ r)s)+o(s).

Likewise, the second contribution is

(C∗,CḠ,C∗)(t,s) = (C∗,CḠ)(t)(C∗ |CḠ)(s) = (C∗,CḠ)(t)(1−3s)+o(s).

Finally,
(C,C̄,C)(t,s) = (C,C̄)(t)(C|C̄)(s) = (C,C̄)(t)s+o(s).

The sum of the contributions of order 1 is(C,C)(t). The sum of the contributions
of ordersyields the derivative, hence

(C,C)′(t) = −(3+ r)(C∗,CG)(t)−3(C∗,CḠ)(t)+ (C,C̄)(t).
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Using the relations

(C,C)(t) = (C)(0)− (C,C̄)(t) = (C∗,CG)(t)+ (C∗,CḠ)(t),

one gets that(C,C)′(t) is the sum of(C)(0) and of the first coordinate ofMUC(t),
as stated in theorem 6.1.

The same method applies to(C∗,CG) and to(C∗,∗G). For instance,

(C∗,CG)(t +s) = (C∗,CG,CG)(t,s)+ (C∗,CḠ,CG)(t,s)+

+(C∗,C̄G,CG)(t,s)+ (C∗,C̄Ḡ,CG)(t,s).

The last term iso(s) since one asks that at least two substitutions occur between
timest andt +s. The three other terms can be factored as

(C∗,xy,CG)(t,s) = (C∗,xy)(t)(CG|xy)(s).

Plugging into this the expansions

(CG|CG)(s) = 1− (6+2r)s+o(s),

and
(CG|CḠ)(s) = (CG|C̄G)(s) = s+o(s),

and regrouping the first order terms yields

(C∗,CG)′(t) = −(6+2r)(C∗,CG)(t)+ (C∗,CḠ)(t)+ (C∗,C̄G)(t).

Using the relations

(C∗,CḠ)(t) = (C,C)(t)− (C∗,CG)(t),

and
(C∗,C̄G)(t) = (C∗,∗G)(t)− (C∗,CG)(t),

yields(C∗,CG)′(t) as the second coordinate ofMUC(t), as stated in theorem 6.1.

As regards the evolution of(C∗,∗G), using once again the relation

(C∗,∗G) = (C∗,CG)+ (C∗,C̄G),

one is left with the evolution of(C∗,C̄G). Decomposing as before, one gets

(C∗,C̄G)(t +s) = (C∗,C̄G,C̄G)(t,s)+ (C∗,CG,C̄G)(t,s)+

+(C∗,C̄Ḡ,C̄G)(t,s)+ (C∗,CḠ,C̄G)(t,s).

The last term iso(s) since one asks that at least two substitutions occur between
times t and t + s. The three other terms can be factored like before. Using the
expansions

(C̄G|C̄G)(s) = 1−4s+o(s), (C̄G|CG)(s) = (3+ r)s+o(s),

and
(C̄G|C̄Ḡ)(s) = s+o(s),

and regrouping the first order terms yields

(C∗,C̄G)′(t) = −4(C∗,C̄G)(t)+ (3+ r)(C∗,CG)(t)+ (C∗,C̄Ḡ)(t).

Coming back to(C∗,∗G) yields(C∗,∗G)′(t) as the sum of(C)(0) and of the third
coordinate ofMUC(t), as stated in theorem 6.1.
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9. PROOF OF PROPOSITION7.3

The function t 7→ [C,C](t) is decreasing.Since the parametersc0 andc± are pos-
itive, this is direct.

The function t 7→ [C∗,CG](t) is decreasing.Simple computations yield

(16+5r)ue2u+t [C∗,CG]′(t) = −2u(r +3)− (u+2− r)(r +3)(e4ut −1
)
.

Sinceu+−r2> 0, the right hand side is a sum of negative terms, hence[C∗,CG]′(t)
is negative for every nonnegativet.

The function t 7→ [CG,CG](t) is decreasing.As for [C∗,CG], one computes

(16+5r)ue2u+t [CG,CG]′(t) = −4u(3+ r)−2(3+ r)(u− r −1)(e4ut −1),

and the fact thatu− r −1> 0 concludes the proof.

The function t 7→ [C∗,∗G](t) is increasing.We begin with the differential equa-
tion

[C∗,∗G]′(t) = −2r[C∗,CG](t)−8[C∗,∗G](t)+2(C).

This yields
[C∗,∗G]′′(t) = −2r[C∗,CG]′(t)−8[C∗,∗G]′(t).

Hence,

e8t [C∗,∗G]′(t) = [C∗,∗G]′(0)−2r
∫ t

0
e8s[C∗,CG]′(s)ds.

One now computes[C∗,∗G]′(0). Using our first equation, one gets

[C∗,∗G]′(0) = −2r[C∗,CG](0)−8[C∗,∗G](0)+2(C)

= −2r(CG)−8(CG)+2(C) = 2(C)−2(r +4)(CG) = 0.

Hence,

e8t [C∗,∗G]′(t) = −2r
∫ t

0
e8s[C∗,CG]′(s)ds.

Since the functiont 7→ [C∗,CG](t) is decreasing, the last integral above is negative
and this yield the result.
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