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Considering temporal variations of spatial visual
distortions in video quality assessment

*Alexandre Ninassi, Olivier Le Meur, Patrick Le Callet, and Dominique Barba

Abstract—The temporal distortions such as flickering, jerki-
ness and mosquito noise play a fundamental part in video quality
assessment. A temporal distortion is commonly defined as the
temporal evolution, or fluctuation, of the spatial distortion on
a particular area which corresponds to the image of a specific
object in the scene. Perception of spatial distortions over time can
be largely modified by their temporal changes, such as increase
or decrease in the distortions, or as periodic changes in the
distortions. In this work, we have designed a perceptual full
reference video quality assessment metric by focusing on the
temporal evolutions of the spatial distortions. As the perception
of the temporal distortions is closely linked to the visual attention
mechanisms, we have chosen to first evaluate the temporal dis-
tortion at eye fixation level. In this short-term temporal pooling,
the video sequence is divided into spatio-temporal segments in
which the spatio-temporal distortions are evaluated, resulting in
spatio-temporal distortion maps. Afterwards, the global quality
score of the whole video sequence is obtained by the long-
term temporal pooling in which the spatio-temporal maps are
spatially and temporally pooled. Consistent improvement over
objective existing video quality assessment methods is observed.
Our validation has been realized with a dataset built from video
sequences of various contents.

Index Terms—Video quality assessment, perceptual temporal
distortion, temporal pooling, perceptual saturation, asymmetrical
behavior, visual attention.

I. INTRODUCTION

The purpose of an objective image or video quality evalua-
tion is to automatically assess the quality of images or video
sequences in agreement with human quality judgments. Over
the past few decades, image and video quality assessment
has been extensively studied and many different objective
criteria have been set. Video quality metric can be classified
into Full Reference metrics (FR), Reduced Reference metrics
(RR), and No Reference (NR). This paper is dedicated to the
design of an FR video quality metric, for which the original
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video and the distorted video are both required. One obvious
way to implement video quality metrics is to apply a still
image quality assessment metric on a frame-by-frame basis.
The quality of each frame is evaluated independently, and the
global quality of the video sequence can be obtained by a
simple time average, or with a Minkowski summation of per-
frame quality. However, a more sophisticated approach would
model the temporal aspects of the Human Visual System
(HVS) in the design of a quality metric. A number of methods
have been proposed taking into account the main temporal
features of the HVS [1]–[5].

In the scope of the error sensitivity-based approaches, Van
den Branden Lambrecht et al. [2], [4] have extended the HVS
models into the time dimension by modeling the temporal
dimension of the Contrast Sensitivity Function (CSF), and
by generating two visual streams tuned to different temporal
aspects of the stimulus from the output of each spatial chan-
nel. The two streams model the transient and the sustained
temporal mechanisms of the HVS respectively, and play an
important role in other metrics such as in [1], or in [5] where
only the sustained temporal mechanism is taken into account.
However, in these metrics, the temporal variations in the errors
are not considered.

The approach of Wang et al. [6]–[8] was different. Rather
than assessing the error in terms of visibility, Wang et al.
used structural distortion [6] as an estimate of perceived
visual distortion. This approach was extended to the temporal
dimension by using motion information in a more [7] or less
[8] sophisticated way. In [8], Wang et al. proposed a heuristic
weighting model which takes into account the fact that the
accuracy of the visual perception is reduced when the speed
of the motion is high. In [7], the errors are weighted by the
perceptual uncertainty based on the motion information, which
is computed from a model of human visual speed perception
[9]. As in other cases, these metrics do not take into account
the temporal variations of the errors.

Another approach is the one from the National Telecommu-
nications and Information Administration (NTIA) which has
developed a Video Quality Model (VQM) [10] adopted by the
ANSI as a U.S. national standard [11], and as international
ITU Recommendations [12], [13]. The NTIA’s research fo-
cused on developing technology independent parameters that
model how people perceive video quality. These parameters
were combined by using linear models. The General Model
contains seven independent parameters. Four parameters are
based on features extracted from spatial gradients of the Y
luminance component. Two parameters are based on features
extracted from the vector formed by the two (CB , CR) chromi-
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nance components. One parameter is based on the product
of features that measures contrast and motion, both extracted
from the Y luminance component. This last parameter deals
with the fact that perception of spatial impairments can be
influenced by the amount of motion, but once again, the
temporal variations of spatial impairments are not considered.

The effects of the introduction of the temporal dimension
in a quality assessment context can be addressed in a different
way. A major consequence of the temporal dimension is the
introduction of temporal effects in the distortions such as
flickering, jerkiness and mosquito noise. Broadly speaking, a
temporal distortion can be defined as the temporal evolution,
or fluctuation, of the spatial distortion on a particular area
which corresponds to the image of a specific object in the
scene. Perception over time of spatial distortions can be largely
modified (enhanced or attenuated) by their temporal changes.
The time frequency and the speed of the spatial distortion
variations, for instance, can considerably influence human
perception. The temporal variations of the distortions have
been studied in the scope of continuous quality evaluation
[14], [15], where objective quality metrics try to mimic the
temporally varying subjective quality of video sequences, as
recorded by subjective continuous evaluation such as Single
Stimulus Continuous Quality Evaluation (SSCQE). In [15], the
existence of both a short-term and a long-term mechanisms
in the temporal pooling of the distortions is introduced.
The short-term mechanism is a smoothing step of per-frame
quality scores, and the long-term mechanism is addressed by
a recursive process on the smoothed per-frame quality scores.
This process includes perceptual saturation and asymmetrical
behavior.

In this work, we addressed the effects of the introduction of
the temporal dimension by focusing on the temporal evolutions
of the spatial distortions. Consequently, the question arises to
know how a human observer perceives a temporal distortion.

The perception of the temporal distortions is closely linked
to the visual attention mechanisms. HVS is intrinsically a
limited system. The visual inspection of the visual field is
performed through many visual attention mechanisms. The
eye movements can be mainly decomposed into three types
[16]: saccades, fixations and smooth pursuits. Saccades are
very rapid eye movements allowing humans to explore the
visual field. Fixation is a residual movement of the eye when
the gaze is fixed on a particular area of the visual field. Pursuit
movement is the ability of the eyes to smoothly track the
image of a moving object. Saccades allow us to mobilize the
visual sensory resources (i.e. all parts of the HVS dedicated
to processing the visual signal coming from the central part
of the retina: the fovea) on the different parts of a scene.
Between two saccade periods a fixation (or smooth pursuit)
occurs. When a human observer assesses a video sequence,
different spatio-temporal segments of the video sequence are
successively assessed. These segments are spatially limited
by the area of the sequence projected on both the fovea
and the perifovea. Even if the perifovea plays a role in the
perception of the temporal distortion, we have simplified the
problem by using a foveal model. Motion information is
essential to perform the temporal distortion evaluation of a

moving object, because the eye movement is very likely a
pursuit in this situation. In that case, the evaluation of the
temporal distortions must be done according to the apparent
movement of this object. Furthermore, these segments are
temporally limited by the fixation duration, or by the smooth
pursuit duration. The perception of a temporal distortion is
likely to happen during a fixation, or during a smooth pursuit.
The fixation duration being shorter than the smooth pursuit
duration, the temporal distortions must be evaluated first at
eye fixation level. This short-term evaluation constitutes the
first stage of our approach. This stage then is completed by a
long-term evaluation in which the global quality of the whole
sequence is evaluated from the quality perceived over each
fixation.

In this paper, a full reference objective video quality as-
sessment method is proposed. The spatio-temporal distortions
are evaluated through a temporal analysis of spatial percep-
tual distortion maps. The spatial perceptual distortion maps
are computed for each frame with a wavelet-based quality
assessment (WQA) metric developed in a previous study
[17]. This paper is composed of the following sections. In
section II, the new Video Quality Assessment metric (VQA)
is presented. In order to investigate its efficiency, the VQA
metric is compared with subjective ratings and two state-of-
the-art metrics (VSSIM [8], VQM [10]) in section III. Finally
conclusions are drawn.

II. VIDEO QUALITY ASSESSMENT METHOD

In the proposed video quality assessment system, the tem-
poral evolution of the spatial distortions is locally evaluated,
at short-term, through the mechanisms of the visual attention.
The mechanisms of the visual attention indicate that the HVS
integrates most of the visual information at the scale of the
fixations [16]. Therefore, the spatio-temporal distortions are
locally observed and measured for each possible fixation. It
does not make sense to evaluate the distortion variations on
a longer period than the fixation duration, because this does
not happen in reality. The duration of 400 ms is chosen in
accordance to the average duration of the visual fixation.
This is the most simple and straightforward solution. A better
solution, but much more complex, would be to adjust this
value according to the local spatial and temporal properties. A
rather simple content, such as flat areas, probably requires less
attentional resources than a more complex area [18]. Moreover,
a smooth pursuit movement can be longer than a fixation
duration. The complexity as well as the validation of such
a solution still remains an issue.

Since the variations of the spatial distortions are evaluated
locally according to where humans gaze, a special attention
must be paid to the moving objects. In the case of a moving
object, the quality of its rendering cannot be assessed if it is
not well stabilized on the fovea. Consequently, the evaluation
of the temporal distortions must take into account the motion
information, and the locality of evaluation must be motion
compensated. These spatio-temporal segments of the sequence,
evaluated by a human observer during fixations, can be roughly
linked to spatio-temporal tubes (cf. section II-B1). These
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structures contain the spatial distortion variations for each
possible fixation.

The description of the proposed method is divided into three
subsections. The general architecture of the proposed metric
is presented in section II-A. Section II-B is devoted to the
evaluation of the spatio-temporal distortions at eye fixation
level. Finally, the evaluation of the temporal distortion on the
whole video sequence is described in section II-C.

A. General architecture
The proposed video quality assessment system is composed

of four steps as shown in Fig. 1. In the first step, numbered 1
in Fig. 1, for each frame t of the video sequence, a spatial
perceptual distortion map V Et,x,y is computed. Each site
(x, y) of this map encodes the degree of distortion that is
perceived at the same site (x, y) between the original and
the distorted frame. In this first step, there is no temporal
consideration. In this work, the spatial perceptual distortion
maps are obtained through the WQA metric developed in
our previous work [17]. The WQA metric is a still image
quality metric based on a multi-channel model of HVS. The
HVS model of the low-level perception used in this metric
includes subband decomposition, spatial frequency sensitivity,
contrast and semi-local masking. The subband decomposition
is based on a spatial frequency dependent wavelet transform.
The spatial frequency sensitivity of the HVS is simulated
by a wavelet CSF derived from Daly’s CSF [19]. Masking
effects include both contrast and semi-local masking. Semi-
local masking allows to consider the modification of the visi-
bility threshold due to the semi-local complexity of an image.
The objective quality scores computed with this metric are
well correlated with subjective scores [17], [20]. Performance
evaluation of WQA, PSNR and SSIM on three subjective
experiments are presented in Table I. Table II describes the
different subjective experiments. These results show that WQA
performs well compared to PSNR and SSIM irrespective of
the subjective experiments. The WQA distortion maps of a
JPEG and a JPEG2000 compressed images are shown in Fig.
2. The major interest of using the WQA to compute the spatial
perceptual distortion maps is its tradeoff between performance
and complexity.

The second step, numbered 2 in Fig. 1, performs the motion
estimation in which the local motion between two frames
are estimated, as well as the dominant motion. This step is
achieved with the use of a classical Hierarchical Motion Es-
timator (HME). The motion estimation is block-based (block
8× 8) and multiresolution. The estimated motion is expected
to be as close as possible to the real apparent movement. Local
motion and dominant motion are used to construct the spatio-
temporal structure (spatio-temporal tube) in which the spatio-
temporal distortions are evaluated. The local motion is used
to track a moving object in the past, and the dominant motion
is used to determine the temporal horizon on which the object
can be tracked (appearance or disappearance of the object).
Local motion (or motion vector) −→V local(x, y) at each site
(x, y) of a frame is produced by a hierarchical block matching.
It is computed through a series of levels (different resolutions),
each providing input for the next.

Dominant motion corresponds to the motion of the camera.
In our work, dominant motion is defined by a parametric
motion model −→V Θ(x, y). The motion model is a 2D affine
motion model parametrized by Θ :

−→
V Θ(x, y) =

(
a1 + a2x + a3y
a4 + a5x + a6y

)
, (1)

where Θ = [a1, a2, a3, a4, a5, a6] represents the 2D affine
parameters of the model. The six parameters of the 2D affine
motion model can describe several types of motion such
as translation, rotation and zoom. The affine parameters are
computed from the local motion field −→V local with a robust
maximum likelihood-type estimator [21]. A recursive process,
based on a weighted least mean square method, is used.
Dominant motion parameters are recalculated until the results
are stable or the number of recursive calls exceeds a maximum.

Temporal evaluation of the quality is performed through
steps 3 and 4. Step 3 realizes the short-term evaluation of the
temporal distortions, in which the spatio-temporal perceptual
distortion maps VEt,k,l are computed from the spatial dis-
tortion maps and the motion information. For each frame of
the video sequence, a temporal perceptual distortion map is
computed. Each site (k, l) of this map encodes the degree
of distortion that is perceived between the block (k, l) of
the original frame and the block (k, l) of the distorted frame
including temporal considerations (temporal distortions, etc.).
The time scale of this evaluation is that of the human eye
fixation [22] (around 400ms). This step is elaborated in section
II-B. Step 4 performs the long-term evaluation of the temporal
distortions in which the quality score for the whole video
sequence is computed from the temporal perceptual distortion
maps. Section II-C will describe this last part.

B. Spatio-temporal distortion evaluation at eye fixation level

Spatio-temporal distortion evaluation is a complex problem.
The purpose of this step is to perform the short-term eval-
uation of the temporal distortions at eye fixation level. The
video sequence must be divided into spatio-temporal segments
corresponding to each possible fixation (or smooth pursuit).
This means that a fixation can start at every time t, and every
site (x, y) of the sequence. At eye fixation level, the temporal
distortion evaluation depends both on the mean distortion level
and on the temporal variations of distortions. The temporal
variations of distortions have to be smoothed to obtain the
mean distortion level that is perceptible during fixation. The
insignificant temporal variations of distortions have to be
discarded, and only the most perceptually important temporal
variations of distortions have to be taken into account. Fig.
3 gives the main components involved in this evaluation.
The first component (3.1) is dedicated to the creation of the
spatio-temporal structures required to analyze the variation
of the distortion during a fixation, i.e. the spatio-temporal
tubes. Then, the distortions in the spatio-temporal tubes are
calculated. The process is then separated into two parallel
branches. The purpose of the first branch is to evaluate a
mean distortion level during the visual fixation. The aim of the
second branch is to evaluate the distortion variations occurring
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Fig. 1. Block diagram of the proposed video quality assessment system.

TABLE I
PERFORMANCE COMPARISON OF WQA, PSNR AND SSIM ON THREE SUBJECTIVE EXPERIMENTS (IVC, OriginalToyama AND NewToyama). COMPARISON
PERFORMED BETWEEN MOS AND PREDICTED MOS (MOSP) IN TERMS OF CORRELATION COEFFICIENT (CC), SPEARMAN RANK ORDER CORRELATION

COEFFICIENT (SROCC) AND ROOT MEAN SQUARE ERROR (RMSE).

Metrics
IVC (DSIS) NewToyama (ACR) OriginalToyama (ACR)

CC SROCC RMSE CC SROCC RMSE CC SROCC RMSE

MOSp(WQA) 0.923 0.921 0.48 0.937 0.941 0.38 0.919 0.923 0.514

MOSp(PSNR) 0.768 0.77 0.795 0.699 0.685 0.777 0.685 0.678 0.943

MOSp(SSIM) 0.832 0.844 0.691 0.823 0.826 0.618 0.814 0.82 0.754

TABLE II
DESCRIPTION OF THE THREE SUBJECTIVE EXPERIMENTS : IVC, OriginalToyama AND NewToyama.

Subjective Distortions #Contents / Protocol Viewing Display Observers
Experiments #Distorted images Conditions Devices (#)

IVC
DCT Coding,

10 / 120 DSIS
ITU-R BT 500.10

CRT
French

DWT Coding, 6H (20)
Blur

OriginalToyama DCT Coding, 14 / 168 ACR ITU-R BT 500.10 CRT Japanese
DWT Coding 4H (16)

NewToyama DCT Coding, 14 / 168 ACR ITU-R BT 500.10 LCD French
DWT Coding 4H (27)

during a fixation, and at which humans are the most sensitive.
Next, these two branches are merged resulting in the spatio-
temporal distortion maps.

1) Spatio-temporal tubes creation: In step 3.1, the Spatio-
temporal Tubes are created. The aim of this step is to divide the
video sequence into spatio-temporal segments corresponding
to each possible fixation (or smooth pursuit). To create a
spatio-temporal tube for a block (k,l,t) of a frame It, previous
positions of the block are deduced by using backward local
motion vectors. The local motion vectors are computed from
the reference video sequence. The displacement of the block
between two frames corresponds to an integer number of
pixels. A spatio-temporal tube is then composed of n blocks,
where n is the frame number of its temporal horizon, each
block coming from a frame It−i (cf. Fig. 4). In other words,
the past positions of the given block are motion compensated.
The temporal horizon is limited to 400ms.

2) Distortions in spatio-temporal tubes: After the spatio-
temporal tubes are created, the distortion values in a spatio-
temporal tube are computed from the spatial distortion values

of each block in the past frames It−i. The distortion value
of one block in the frame It−i is the average of the spatial
distortion values of the corresponding block in the spatial
distortion maps VEt−i,x,y (cf. Fig. 4).

3) Temporal filtering of the spatial distortion in the tube:
Step 3.3 realizes the Temporal Filtering of Spatial Distortions.
The goal of this step is to obtain a mean distortion level
over the fixation duration. The large temporal variations of
distortions are the most annoying for observers and their
contribution should be more important than limited tempo-
ral variations of distortions. The spatial distortions are then
temporally filtered in each tube of a frame t. The temporal
filter is a recursive filter. The characteristics of the filter
are modified according to the importance of the temporal
variations of distortions. The contribution of the large temporal
variations of the distortions is increased compared to the
contribution of the limited temporal variations of distortions.
Time constant of this filter changes according to the value
of the corresponding distortion gradient value (cf. step 3.5).
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Examples of WQA perceptual distortion maps: (a) and (d) are original Mandrill and Plane respectively; (b) is JPEG compressed Mandrill image; (c)
is WQA perceptual distortion map of JPEG compressed Mandrill image; (e) is JPEG2000 compressed Plane image; (f) is WQA perceptual distortion map of
JPEG2000 compressed Plane image. In (c) and (f), brightness indicates the magnitude of the perceptual distortion (black means no perceptual distortion).

It-4It-5It-6It-n It-3 It-2 It-1 It

Spatio-temporal tube

...

Average fixation duration

VEt-4VEt-5VEt-6VEt-n VEt-3 VEt-2 VEt-1 VEt

Distortion values in a spatio-temporal tube

...

Fig. 4. Spatio-temporal tube illustration. The past trajectory of a block of the frame It is reconstituted by using the past motion vectors of this block. VEt

are the spatial percpetual distortion maps.
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Fig. 3. Block diagram of the Spatio-temporal Perceptual Distortion Evalua-
tion.

Time constant α1 = 200ms is used if the absolute value
of the distortion gradient value is greater than µ, otherwise
α2 = 400ms is used. The output of this step is the map VE

tube

t,k,l

where each block (k, l) is the result of the temporal filtering
of the spatial distortions in each tube finishing at frame t.

4) Visual temporal distortion measurement in a tube: The
purpose of step 3.4 is to assess the temporal variation of dis-
tortions. The temporal gradients of the spatial distortions in the
tubes are computed in order to evaluate the most perceptually
important temporal variations of distortions during fixations. In
a tube, the distortion gradient ∇VEtube

ti,k,l at time ti is computed
as follows:

∇VEtube
ti,k,l =

δVEtube
ti,k,l

δt

∣∣∣∣ δt = ti − ti−1

ti ∈ TemporalHorizon
, (2)

where VEtube
ti,k,l is the distortion value at instant ti.

Low temporal variations of distortions which are probably
not annoying must not be taken into account. The aim of step
3.5 is to delete them. In this step, a thresholding operation
is performed on the absolute value of the gradient values.
The purpose is to reduce the weight of the limited temporal
variations of distortions (below µ) compared to large temporal
variations of distortions (above µ). If the absolute value of the
gradient is lower than µ the gradient value is set to 0. This

thresholding operation is also used to manage the temporal
filtering of step 3.3, as described in the previous section.

The characteristics of temporal distortions, such as fre-
quency and amplitude of the variations, impact the perception.
The purpose of step 3.6 is to evaluate the perceptual impact
of temporal distortions according to the characteristics of the
temporal variations of distortions. In this step, the temporal
filtering of distortion gradient is realized, in which the distor-
tion gradients are temporally filtered in each tube of a frame
t. This temporal filtering operation is achieved by counting
the number of sign changes of the distortion gradients nStube

t,k,l

along the tube duration. The maximal distortion gradient
Max(∇VEtube

t,k,l ) is computed, and used as maximal response
of the filter. The temporal filtering result is obtained by:

VĔtube
t,k,l = Max(∇VEtube

t,k,l ) · fs(nStube
t,k,l ) , (3)

where fs is the response of the filter dependent on the number
of sign changes:

fs(n) =
gs

σs

√
2π
· e

− (n−µs)2

2σ2
s , (4)

The response of the function fs(n) is given in Fig. 5. Function

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Number of sign changes

fs

Fig. 5. Plot of the fs response. The function reaches its maximum around
one sign change of the distortion gradients per fixation.

fs(n) gives more importance to temporal distortion at medium
frequencies than at low or high frequencies. The rationale rests
on the fact that HVS is most sensitive to temporal variations
around 2cy/s, which correspond to about one sign change by
fixation duration. The output of this step is the map VĔtube

t,k,l

where each block (k, l) is the result of the temporal filtering
of the distortion gradient in each tube finishing at frame t.

The results coming from the two branches are then mixed
together in step 3.7. This step performs the Fixation Pooling,
in which the map VEt,k,l and the map VĔt,k,l are merged
in order to obtain the final spatio-temporal distortion map
VEt,k,l. If there is no temporal variation of distortions in
the video sequence, the final map VEt,k,l is equal to the
VEt,k,l map. But when temporal variations of distortions
occur, the VEt,k,l map are consolidated by the temporal
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variation evaluation of the map VĔt,k,l. This map is computed
according to the following relation:

VEt,k,l = VEt,k,l · (1 + β · VĔt,k,l) , (5)

where the value of parameter β is empirically deduced from
experiments performed on synthetic sequences. These exper-
iments aimed at obtaining relevant spatio-temporal distortion
maps from synthetic sequences with synthetic distortions. This
was achieved by setting the value β at 3.

Until now, the impact of the temporal distortions has been
evaluated at the fixation level, resulting in the final spatio-
temporal distortion maps VEt,k,l. However, a human observer
scores a video sequence using the impairments he perceives
during the whole sequence. This is the issue addressed in the
next section.

C. Temporal distortion evaluation on the whole video se-
quence

The long-term temporal pooling is the final stage that
allows to construct the global objective quality score of a
video sequence. The global objective quality score depends
both on the mean distortion level over the whole sequence,
and on the temporal variations of distortions over the whole
sequence. The temporal variations of the distortions along a
video sequence play an important part in the global score,
and a mean distortion level on the whole sequence is not
sufficient to evaluate the quality of the video. The evaluation
process of a human observer could be summed up by the
following sentence “quick to criticize and slow to forgive”.
So, the overall temporal distortions evaluation of the whole
video sequence is divided into two steps as shown in Fig. 6.

Spatial Pooling

Temporal Pooling

lktVE ,,

Spatio-temporal distortion maps

Global Perceptual 

Distortion Score

Frame Perceptual 

Distortion ScoretD

D

4.1

4.2

Fig. 6. Block diagram of the long-term temporal pooling.

1) Spatial pooling: The purpose of step 4.1 is to obtain
a perceptual distortion score for each frame. A per-frame
perceptual distortion score Dt is computed from the spatio-
temporal distortion map of each frame through a classical
Minkowski summation:

Dt =
(

1
K · L

K∑
k=1

L∑
l=1

(
VEt,k,l

)βs
) 1

βs

, (6)

where K and L are the height and the width of the spatio-
temporal distortion maps respectively (i.e. the vertical and the
horizontal number of blocks in the original frame), and βs is
the Minkowski exponent (βs = 2).

2) Temporal pooling: The global objective perceptual dis-
tortion score, called D, depends both on the average of
distortion level over the whole sequence, and on the temporal
variations of distortions over the whole sequence. The per-
ceptual distortion is increased by the temporal variations of
distortions over the whole sequence. The proposed temporal
pooling contains two main elements: perceptual saturation and
asymmetric behavior. There are limitations in the viewer’s
ability to observe any further changes in the frame qual-
ity beyond certain thresholds, either toward better or worse
quality [14]. This is what we call perceptual saturation. The
asymmetrical behavior is the fact that humans are better able
to remember unpleasant experiences than pleasant moments,
and also experience great intensity of feelings from disliked
situations compared to favorable situations [14].

The global perceptual distortion score D of a video is
computed from every per-frame perceptual distortion scores
Dt, as the sum (D = D̄+∆D) of the time average of distortion
D̄, and a term representing the variation of distortions along
the sequence ∆D. But in order to limit the influence of too
high distortion variations, D is computed with a saturation
effect as follows:

D =
{

D̄ + ∆D for ∆D < λ1 · D̄
D̄ + λ1 · D̄ for ∆D ≥ λ1 · D̄

. (7)

The global distortion score D increases linearly with the tem-
poral variation up to a saturation threshold value proportional
to D̄. The term ∆D favours the most important variations of
distortions, and is computed as follows:

∆D = λ2 · avgn %(abs(∇′Dt)) , (8)

where ∇′Dt is the temporal gradient of the per-frame dis-
tortion values Dt after the asymmetrical transformation of
the gradient values, abs(X) is the absolute value of X , and
avgn %(X) is the average of X values above the nth percentile
of X. The asymmetrical transformation of the gradient values
is computed as follows:

∇′Dt =
{

λ3 · ∇Dt for ∇Dt < 0
∇Dt for ∇Dt ≥ 0

∣∣∣∣ λ3 ≤ 1, (9)

where value of λ3 controls the asymmetrical behavior. If
λ3 < 1, more weight is given to distortion increases than
to distortion decreases.

Finally, the global quality score VQA is computed from per-
ceptual distortion score D by using a psychometric function,
as recommended by the Video Quality Expert Group (VQEG)
[23]:

V QA =
b1′

1 + e−b2′·(D−b3′)
, (10)

where b1′, b2′ and b3′ are the three parameters of the psycho-
metric function. This psychometric function is also used to
compare VQA with state-of-the-art metrics (cf. section III-C).
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III. EXPERIMENTATION

A. Video database

1) Participants: Thirty-six compensated participants were
asked to assign each sequence with a quality score, indicating
the extent to which the artifacts were more or less annoying.
Prior to the test, subjects were screened for visual acuity by
using a Monoyer optometric table. Besides, tests for normal
color vision were performed using Ishihara chart. Therefore,
all observers had normal or corrected to normal visual acuity
(Monoyer test), and normal color perception (Ichihara test).
All were inexperienced observers (not familiar with video
processing) and naive to the experiment.

2) Method: The standardized method DSIS (Double Stimu-
lus Impairment Scale) is used to determine the Mean Opinion
Score (MOS). In DSIS, each observer views an unimpaired
reference video sequence followed by its impaired version,
each lasting for 8s. Experiments were conducted in normalized
viewing conditions [24]. The scale used to score the distortion
level is composed of five distortion grades:

• imperceptible (MOS=5);
• not annoying (MOS=4);
• slightly annoying (MOS=3);
• annoying (MOS=2);
• very annoying (MOS=1).
3) Stimuli: The video database is built from ten unimpaired

video sequences of various contents as illustrated in Fig. 7. The
spatial resolution of the video sequences is 720x480 with a
frequency of 50Hz in a progressive scan mode. Each clip lasts
8s. They are displayed at a viewing distance of four times the
height of the picture (66 cm). These video sequences have been
degraded by using a H.264/AVC compression scheme at five
different bitrates, resulting in fifty impaired video sequences.
The five different bitrates were chosen in order to generate
degradations all over the distortion scale (from imperceptible
to very annoying).

The impairments produced by the encoding are evidently
neither spatially nor temporally uniform, and therefore depend
on each video content. Fig. 8a illustrates the temporal varia-
tions of the quality through the scores given by the WQA
metric (cf. Section II). This example indicates that the quality
of the sequences varies from frame to frame, which is a clue
on the presence of temporal distortions.

B. Video quality metrics tested

Several quality assessment metrics have been compared with
subjective scores (MOS):

• The proposed video quality metric VQA (achromatic
version),

• The usual PSNR (achromatic version). The PSNR global
score is the temporal average of the per-frame PSNR.

• VSSIM developed by Wang et al. [8]. We used all the
parameters described in [8], except for the normalization
factor KM of the frame motion level which was adapted
to our frame rate.

• VQM developed by NTIA [10]. Among the different
models of VQM, we have chosen to use the General

Model which is considered to be the most accurate.
The General Model is known as metric H in the Video
Quality Experts Group (VQEG) Phase II Full Reference
Television (FR-TV) tests [25].

In order to evaluate the different steps of the VQA metric,
two alternative video perceptual distortion scores (VQA1,
VQA2) are computed in addition to the global quality score.

The first intermediate video perceptual distortion score is a
purely spatial quality score called VQA1. It is computed from
the spatial distortion maps of the still image metric WQA [17]
as follows:

VQA1 =
1
T

T∑
t=1

dt , (11)

where T is the total number of frames and dt is a frame score
computed as follows:

dt =
(

1
K · L

K∑
k=1

L∑
l=1

(
VEt,k,l

)βs
) 1

βs

, (12)

where VEt,k,l are the spatial distortion maps computed with
WQA [17], K and L are the height and the width of the
spatial distortion maps, respectively, and βs is the Minkowski
exponent.

In the second intermediate quality score called VQA2, the
fixation temporal pooling is disabled. This means that the
perceptual distortion score is computed from the long-term
temporal pooling (cf. Eq. 7) where Dt is replaced by dt.
Dt is the spatio-temporal per-frame distortion score (with the
fixation temporal pooling), whereas dt is the purely spatial per-
frame distortion score (without the fixation temporal pooling).

A comparison between VQA2 and VQA allows to evaluate
the improvement due to spatio-temporal distortion evaluation
at eye fixation level (or short-term temporal pooling). On the
other hand, a comparison between VQA1 and VQA allows to
evaluate the improvement due to temporal pooling.

C. Results

As previously said, prior to evaluating the objective video
quality measures, a psychometric function (Eq. 10) is used
to transform the different objective quality scores in predicted
MOS (MOSp), as recommended by VQEG [23]. The objective
quality metrics are evaluated using three performance indica-
tors recommended by VQEG [23]. The three performance indi-
cators are the linear correlation coefficient (CC), the Spearman
rank order correlation coefficient (SROCC) and the root-mean-
square-error (RMSE).

The results, presented in Table III, are reported for the
different metrics (VSSIM, VQM and VQA) and for the two
intermediate quality scores (VQA1 and VQA2) of VQA.
PSNR results are provided for information and could help
readers to make their own opinion on the video dataset. Fig.
9 shows the scatter plots of the MOS versus MOSp on the
whole database given by PSNR, VSSIM, VQM, VQA, and by
the two intermediate video quality scores (VQA1 and VQA2)
of VQA.

The results of the statistical tests are presented in Table IV.
According to [26], the statistical test is an F-test based on the
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Examples of video sequences from the database. (a) MobCal, (b) InToTree, (c) ParkJoy, (d) DucksTakeOff, (e) CrowdRun, and (f) ParkRun.
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Fig. 8. Temporal evolution of the per-frame distortion score dt (a), and the per-frame distortion score Dt (b) for the three impaired sequences of the database:
Hockey (MOS=1.4), PrincessRun (MOS=2.6) and MobCal (MOS=1.3). The horizontal scale is the frame number, and the vertical scale is a distortion scale,
which goes from 0 (best quality) to 0.5 (worst quality).

TABLE IV
STATISTICAL SIGNIFICANCE MATRIX BASED ON RESIDUALS BETWEEN MOS AND MOSP. THE VALUES ARE THE PROBABILITY THAT THE NULL

HYPOTHESIS OF EQUAL VARIANCES IS NOT REJECTED. IF THIS VALUE IS LESS THAN 0.05 THE TWO METRICS ARE SIGNICANTLY DIFFERENT WITH 95%
CONFIDENCE. IF THIS VALUE IS LESS THAN 0.10 THE TWO METRICS ARE SIGNICANTLY DIFFERENT WITH 90% CONFIDENCE.

MOSp(PSNR) MOSp(VSSIM) MOSp(VQM) MOSp(VQA)

MOSp(PSNR) 1.0 0.09690 (p < 0.10) 0.00066 (p < 0.05) 0.00002 (p < 0.05)

MOSp(VSSIM) 0.09690 (p < 0.10) 1.0 0.07259 (p < 0.10) 0.00610 (p < 0.05)

MOSp(VQM) 0.00066 (p < 0.05) 0.07259 (p < 0.10) 1.0 0.33157

MOSp(VQA) 0.00002 (p < 0.05) 0.00610 (p < 0.05) 0.33157 1.0
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TABLE III
COMPARISON OF THE PERFORMANCES OF QUALITY METRICS ON THE

ENTIRE DATASET IN TERMS CC, SROCC AND RMSE.

Metrics CC SROCC RMSE

MOSp(PSNR) 0.516 0.523 0.982

MOSp(VQM) 0.854 0.898 0.597

MOSp(VSSIM) 0.738 0.758 0.773

MOSp(VQA) 0.892 0.903 0.519

MOSp(VQA1) 0.831 0.872 0.638

MOSp(VQA2) 0.834 0.863 0.633

difference between MOS and MOSp, i.e. the residuals between
MOS and MOSp. To statistically compare two metrics m1 and
m2, the Null Hypothesis is defined as follows :

Null Hypothesis ⇔ σMOS−MOSp(m1) = σMOS−MOSp(m2) ,
(13)

where σMOS−MOSp(m1) and σMOS−MOSp(m2) are the vari-
ances of the residuals between MOS and MOSp.

The PSNR does not lead to a good prediction of quality as
CC is only 0.516. This result gives a clue of how difficult the
quality of the video sequences of the database is to evaluate.
According to Table III and Table IV, PSNR is significantly
worse than VQM and VQA with 95% confidence, and than
VSSIM with 90% confidence.

The proposed method provides good results compared to
the other approaches. VQA is statistically equivalent to VQM.
However, with 95% confidence, VQA is statistically better
than VSSIM, while VQM is not. VQM is statistically better
than VSSIM with 90% confidence. It is important to mention
that the parameters of the proposed method (VQA) were
selected empirically, without any optimization process for the
video database (λ1=1, λ2=10, λ3=0.25, and n=95).

The sample size is a critical point to perform statistical
tests. In our experiment, only fifty impaired video sequences
were scored. Therefore, the interpretation of the statistical
tests must be done with care. This remark raises the global
issue of finding numerous subjective video quality data. This
international problem is mainly due to the content copyright
issue and to the amount of work required to perform subjective
experiments. However, the creation of a large public video
database with subjective ratings would be helpful for the
quality assessment community.

Fig. 9 shows that the prediction performances of the metrics
depends on the video content and that the video content does
not disturb the different metrics in the same way. For example,
VQM underestimates the quality of the sequence Ducks,
whereas VQA does not. VQA underestimates the quality of
the sequences PrincessRun and Dance, and overestimates the
quality of the sequence Hockey. A possible explanation lies in
the fact that the spatial distortions are also overestimated, and
underestimated respectively. Fig. 8 shows that the per-frame
distortion scores (dt and Dt) of the sequence Hockey are lower
than those of the sequence PrincessRun, whereas the MOS of
the sequence Hockey are lower than the MOS of the sequence
PrincessRun. In these sequences, the temporal variations of
the distortions could not explain the prediction errors of the

quality. This shows that, in the proposed metric, the evaluation
of temporal distortions is dependent on a good evaluation of
the spatial distortion in the first step of the metric.

A comparison between the results from VQA1, VQA2 and
VQA shows the positive contribution of the different steps of
the proposed metric. The trend is a prediction improvement of
the quality from the purely spatial quality score (VQA1) to the
spatio-temporal quality score (VQA), even if they are statis-
tically indistinguishable on this database. For example, ∆CC
between these two configurations is +0.061. As expected, it
shows that temporal distortions play an important part in video
quality assessment. The prediction improvement of quality
between VQA2 and VQA shows the importance of the spatio-
temporal distortion evaluation at eye fixation level (short-term
temporal pooling). This step seems fundamental prior to the
long-term temporal pooling. One possible explanation is the
smoothing effect of the short-term temporal distortion varia-
tions due to the fixation temporal pooling. This effect enables a
better analysis of the long-term temporal distortion variations,
by eliminating parasite temporal distortion variations. This
smoothing effect is illustrated in Fig. 8, by comparing the
temporal variation of the per-frame distortion scores dt (Fig.
8(a)) and Dt (Fig. 8(b)). The fixation temporal pooling does
not only improve the prediction performance of the metric, but
it also improves the relevance of distortions maps.

TABLE V
COMPARISON OF THE PERFORMANCES OF VQA FOR DIFFERENT VALUES

OF THE PARAMETERS λ3 AND n, IN TERMS CC, SROCC AND RMSE. THE
PARAMETERS λ1 AND λ2 ARE CHOSEN TO OPTIMIZE PREDICTION

PERFORMANCES. RESULTS USING THE ENTIRE DATASET.

λ3 nth percentile CC SROCC RMSE

0 0 0.85 0.874 0.605

0 80 0.879 0.892 0.547

0 85 0.885 0.893 0.535

0 90 0.892 0.901 0.518

0 95 0.895 0.912 0.512

0.25 0 0.851 0.874 0.601

0.25 80 0.88 0.892 0.545

0.25 85 0.885 0.893 0.533

0.25 90 0.892 0.901 0.518

0.25 95 0.895 0.912 0.511

0.5 0 0.853 0.875 0.599

0.5 80 0.877 0.89 0.551

0.5 85 0.883 0.895 0.539

0.5 90 0.89 0.901 0.522

0.5 95 0.894 0.912 0.513

0.75 0 0.854 0.878 0.597

0.75 80 0.872 0.89 0.561

0.75 85 0.876 0.893 0.552

0.75 90 0.883 0.896 0.538

0.75 95 0.892 0.91 0.519

1 0 0.854 0.877 0.596

1 80 0.867 0.883 0.571

1 85 0.87 0.886 0.565

1 90 0.875 0.89 0.554

1 95 0.887 0.908 0.53
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Fig. 9. Scatter plot comparison of different video quality assessment metrics on our video database. Vertical and horizontal axes are for subjective (MOS)
and objective measurement (MOSp), respectively. Each sample point represents one test video sequence. The same marker type is used for each impaired
video obtained from the same original video: (a) PSNR, (c) VSSIM, (e) VQM, (b) VQA1, (d) VQA2, and (f) VQA.
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Results, presented in Table V, are reported for VQA and
for different values of the parameters λ3 and n. In this
experiment, values of parameters λ1 and λ2 are selected to
optimize prediction performances. The parameter λ3 modifies
the asymmetrical behavior of the long-term temporal pooling.
The prediction modification of quality as a function of λ3

shows that the long-term temporal pooling with symmetrical
behavior (λ3=1) leads to lower results than the long-term
temporal pooling with asymmetrical behavior. It is interesting
to note that, to reach the best prediction performances, asym-
metrical behavior must give, at least, twice as much weight to
the distortion increases as to the distortion decreases. Besides,
the choice of the empirical value of λ3 (λ3=0.25) seems to be
a good option.

The parameter n modifies the weight given to the maximal
temporal gradients of per-frame distortion values. The worst
results are obtained when all temporal gradients of per-frame
distortion values are considered (n=0). The prediction modi-
fication of the quality as a function of n shows that long-term
temporal pooling takes advantage of using maximal temporal
gradients of per-frame distortion values. Even if the best
prediction performances are obtained with n=95, the results
are robust to high values of n. It is interesting to note that n=95
means that the most important distortion variations occurring
5 per cent of the time are the most important in terms of
prediction performance. This reinforces the fact that distortion
variations with high dynamic range must be considered.

Results are also reported for VQA2 (without the fixation
temporal pooling), presented in Table VI, and for different
values of parameters λ3 and n. In this experiment, values of
parameters λ1 and λ2 are selected to optimize prediction per-
formance. The results show that long-term temporal pooling
failed to improve the prediction performance when the fixation
pooling is disabled. This observation is valid irrespective of
the values of the parameters λ1, λ2, λ3, and n. Consequently,
the fundamental nature of the fixation pooling step is enhanced
by these results.

IV. CONCLUSION

This paper described a full reference video quality assess-
ment metric. This metric focuses on the temporal variations of
the spatial distortions. The temporal variations of the spatial
distortions are evaluated both at eye fixation level, and on the
whole video sequence. These two kinds of temporal variations
are assimilated into a short-term temporal pooling and a long-
term temporal pooling respectively.

Consistent improvement over existing video quality assess-
ment methods is observed. CC between VQA and subjective
scores is 0.892, and the prediction improvements in term of CC
are +73%, +21% and +4% compared to PSNR, VSSIM and
VQM, respectively. Results also show the positive contribution
of the different steps of the proposed metric. In particular, this
metric shows that the short-term temporal pooling is essential
prior to the long-term temporal pooling, as it improves the
prediction performances of VQA. An interesting point of the
proposed method is that the spatial distortion maps could be
considered as inputs. In this work, we used a still image

TABLE VI
COMPARISON OF THE PERFORMANCES OF VQA2 FOR DIFFERENT VALUES
OF THE PARAMETERS λ3 AND n, IN TERMS CC, SROCC AND RMSE. THE

PARAMETERS λ1 AND λ2 ARE CHOSEN TO OPTIMIZE PREDICTION
PERFORMANCES. RESULTS USING THE ENTIRE DATASET.

λ3 nth percentile CC SROCC RMSE

0 0 0.831 0.872 0.638

0 80 0.831 0.872 0.638

0 85 0.831 0.872 0.638

0 90 0.831 0.872 0.638

0 95 0.832 0.869 0.636

0.25 0 0.831 0.872 0.638

0.25 80 0.831 0.872 0.638

0.25 85 0.831 0.868 0.638

0.25 90 0.832 0.867 0.636

0.25 95 0.834 0.863 0.633

0.5 0 0.831 0.872 0.638

0.5 80 0.831 0.868 0.638

0.5 85 0.832 0.866 0.636

0.5 90 0.833 0.87 0.634

0.5 95 0.839 0.866 0.624

0.75 0 0.831 0.872 0.638

0.75 80 0.832 0.868 0.636

0.75 85 0.833 0.867 0.635

0.75 90 0.834 0.869 0.633

0.75 95 0.846 0.869 0.611

1 0 0.831 0.872 0.638

1 80 0.832 0.867 0.636

1 85 0.833 0.87 0.634

1 90 0.835 0.869 0.632

1 95 0.85 0.865 0.605

quality metric WQA developed in a previous work to compute
the spatial perceptual distortion map, but we can imagine to
replace it by any still image quality metric that computes a
spatial perceptual distortion map. The performance compari-
son of the proposed method, using different models to obtain
the spatial perceptual distortion maps, could be an interesting
investigation.

Further work should include the development of a more
sophisticated way to realize the long-term temporal pooling.
In the proposed metric, we believe that relevant information is
lost in the spatial pooling step, and that a more sophisticated
long-term temporal pooling should resolve this issue.
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