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Abstract. We propose a new torsion estimator for spatial curves based
on results of discrete geometry that works in O(n log2 n) time. We also
present a curvature estimator for spatial curves. Our methods use the
3D extension of the 2D blurred segment notion [1]. These estimators can
naturally work with disconnected curves.

1 Introduction

Geometric properties of curves are important characteristics to be exploited in
geometric processing. They directly lead to applications in machine vision [2]
and computer graphics [3]. In the planar case, many applications are based on
the curvature property in domains such as curve approximation [4], geometry
compression [3], and particularly in corner detection after the pioneer paper of
Attneave [5].
In 3D space, torsion and curvature are the most important properties that permit
to describe how a spatial curve bends. Several methods have been proposed
for torsion estimation. Mokhtarian [6] used Gaussian smoothing to estimate it
directly from torsion formula. Similarly, Kehtarnavaz et. al. [7] used B-spline
smoothing technique; Lewiner et al. [3] utilized weighted least-squares fitting
techniques. Raluben Medina et al. [8] proposed two methods to estimate torsion
and curvature values at each point of the curve. The first one utilized Fourier
transform, the second one is based on the least squares fitting. These methods
are applied for description of arteries in medical imaging.
We propose in this paper a novel method for the estimation of local geometric
parameters of a spatial curve. It uses a geometric approach and relies on results of
discrete geometry on decomposition of a curve into maximal blurred segments [9,
1, 10]. This paper presents an extension to 3D of these results. The 3D curvature
estimator given in [11] is extended here with the notion of blurred segment and
it permits to study curves possibly noisy or disconnected. We also propose a new
approach to the discrete torsion estimation.
We recall, in the Section II, 2D definitions and results [10] that we use. Section III
presents how to extend these ideas into 3D space. Sections IV and V respectively
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propose a curvature and a torsion estimator. Last sections give experiments and
conclusions.

2 Maximal 2D blurred segment of width ν

The notion of blurred segments relies on the arithmetical definition of discrete
lines [12] where a line, with slope a

b
, is the set of integer points (x, y) verifying

µ ≤ ax− by < µ + ω (a, b, µ and ω being integer and gcd(a, b) = 1). Such a line
is denoted by D(a, b, µ, ω). The notion of 2D blurred segment extends the notion
of segment of a discrete line and permits more flexibility in operations such as
recognition, segmentation of discrete curves. Let us recall definitions [1, 10] that
we use in this paper (see also the Fig. 1).

Definition 1. Let Sb be a sequence of digital points.
A discrete line D(a, b, µ, ω) is said optimal for Sb if each point of Sb belongs to
D and if its vertical width, ω−1

max(|a|,|b|) , is equal to the vertical width of the convex

hull of Sb (see the Fig. 1.a).
Sb is a blurred segment of width ν iff there exists an optimal discrete line
D(a, b, µ, ω) of Sb such that ω−1

max(|a|,|b|) ≤ ν.

Let C be a discrete curve and Ci,j a sequence of points of C indexing from i to
j. Suppose that the predicate ”Ci,j is a blurred segment of width ν” is denoted
by BS(i, j, ν).

Definition 2. Ci,j is called a maximal blurred segment of width ν and
noted MBS(i, j, ν) iff BS(i, j, ν), ¬BS(i, j + 1, ν) and ¬BS(i − 1, j, ν) (see the
Fig. 1.b).

y

x

Fig. 1. From left to right: a. D(5, 8,−8, 11) (blue and grey points) is the optimal
discrete line of the sequence of grey points, b. the set of black points is a maximal
blurred segment (MBS) of width 2.

In [10] an algorithm is proposed to decompose a planar curve into maximal
blurred segments for a given width and the theorem below is proved. The algo-
rithm relies on operations of insertion (or deletion) of a point to (or from) the
convex hull of the current studied segment. We have proven that the decompo-
sition of a planar curve with n points into maximal blurred segments of width ν

can be done in time O(n log2 n).



3 Maximal 3D blurred segment of width ν

3.1 3D blurred segment of width ν

The notion of 3D discrete line (see the references [13, 14]) is defined as follows:

Definition 3. A 3D discrete line [43], denoted D3D(a, b, c, µ, µ′, e, e′), with a
main vector (a, b, c) such that (a, b, c) ∈ ZZ3, and a ≥ b ≥ c is defined as the set
of points (x, y, z) from ZZ3 verifying:

D

{

µ ≤ cx − az < µ + e (1)
µ′ ≤ bx − ay < µ′ + e′ (2)

with µ, µ′, e, e′ ∈ ZZ. e and e′ are called arithmetical width of D.

According to the definition, it is obvious that a 3D discrete line is bijec-
tively projected into two projection planes as two 2D arithmetical discrete lines.
Thanks to that property, we naturally define the notion of 3D blurred segment
by using the notion of 2D blurred segment and by considering the projections of
the sequence of studied points in the coordinate planes (see the Fig. 2.a).

Definition 4. Let Sf3D be a sequence of points of ZZ3, Sf3D is a 3D blurred
segment of width ν with a main vector (a, b, c) such that (a, b, c) ∈ ZZ3, and a ≥
b ≥ c if it possesses a said optimal discrete line, named D3D(a, b, c, µ, µ′, e, e′),
such that

– D(a, b, µ′, e′) is optimal for the sequence of projections of points of Sf3D in

the plane (O, x, y) and e′−1
max(|a|,|b|) ≤ ν,

– D(a, c, µ, e) is optimal for the sequence of projections of points of Sf3D in
the plane (O, x, z) and e−1

max(|a|,|c|) ≤ ν.

A linear algorithm of 3D blurred segment recognition may be deduced
from that definition. Indeed, we only need to use an algorithm of 2D blurred
segment recognition in each projection plane.

3.2 Maximal 3D blurred segment of width ν

In this section, we present an algorithm to obtain the sequence of 3D maximal
blurred segments of width ν in time O(n log2 n) for any noisy 3D discrete curve
C. This sequence is noted MBSν(C) = {MBSi(Bi, Ei, ν)}i=0 to m−1 with Bi

(resp. Ei) the index of the first (resp. last) point of the ith maximal blurred
segment, MBSi, of C. This algorithm uses an algorithm to determine the 2D
maximal blurred segment (see [10]) of the projections in the coordinate planes
of the points of the studied curve.



Algorithm 1: Algorithm for the segmentation of a curve C into maximal
3D blurred segments of width ν

Data: C - discrete curve with n points, ν - width of the segmentation

Result: MBSν - the sequence of maximal blurred segments of width ν of C

begin

k=0; Sb = {C0}; MBSν = ∅; a = 0; b = 1; ω = b, µ = 0;
while the widths of 2 blurred segments obtained by projecting the points of
Sb in the coordinate planes are ≤ ν do

k++; Sb = Sb ∪ Ck ;
Determine D3D(a, b, c, µ, µ′, e, e′), optimal discrete line of Sb; (*)

end

bSegment=0; eSegment=k-1 ;
MBSν = MBSν ∪ MBS(bSegment, eSegment, ν);
while k < n − 1 do

while the widths of 2 blurred segments obtained by projecting the points
of Sb in the coordinate planes are > ν do

Sb = Sb \ CbSegment; bSegment++ ;
Determine D3D(a, b, c, µ, µ′, e, e′), optimal discrete line of Sb; (*)

end

while the widths of 2 blurred segments obtained by projecting the points
of Sb in the coordinate planes are ≤ ν do

k++ ; Sb = Sb ∪ Ck;
Determine D3D(a, b, c, µ, µ′, e, e′), optimal discrete line of Sb; (*)

end

eSegment=k-1; MBSν = MBSν ∪ MBS(bSegment, eSegment, ν);

end

end

(*) To determine the optimal discrete line of the current 3D blurred segment
Sb, we consider the characteristic of the two 2D blurred segments obtained in
the planes of projection and combine them to obtain the characteristics of the
optimal 3D discrete line of Sb. As the whole process is done in dimension 2, this
algorithm has the same complexity as the one in dimension 2. So, we have the
following result :
The decomposition of a 3D curve into maximal blurred segments of width ν can
be done in time O(nlog2n).

4 3D discrete curvature of width ν

In this section, we’re interested in curvature estimation based on osculating
circle. Deducing from [10], we present below the notion of discrete curvature of
width ν at each point of a 3D curve (see the Fig. 2.b). This method extends
the one proposed in [11] to the blurred segments and is adapted to noisy curves
thanks to the width parameter.
Let C be a 3D discrete curve, Ck is a point of the curve. Let us consider the



points Cl and Cr of C such that : l < k < r, BS(l, k, ν) and ¬BS(l − 1, k, ν),
BS(k, r, ν) and ¬BS(k, r +1, ν). The points Cl and Cr for a given point Ck of C
are deduced from the sequence of maximal blurred segments of width ν of C. The
estimation of the 3D curvature of width ν at the point Ck is determined
thanks to the radius of the circle passing through the points Cl, Ck and Cr. To
determine the radius Rν(Ck) of the circumcircle of the triangle [Cl, Ck, Cr], we
use the formula given in [15] as follows:

Let s1 = ||
−−−→
CkCr||, s2 = ||

−−−→
CkCl|| and s3 = ||

−−−→
ClCr||, then

Rν(Ck) =
s1s2s3

√

(s1 + s2 + s3)(s1 − s2 + s3)(s1 + s2 − s3)(s2 + s3 − s1)

Then, the curvature of width ν at the point Ck is Cν(Ck) = s
Rν(Ck) with

s = sign(det(
−−−→
CkCr,

−−−→
CkCl)) (it indicates concavities and convexities of the curve).

Thanks to the sequence of maximal blurred segments of width ν (MBSν) of
a 3D curve C, an algorithm for curvature estimation at each point of a 3D curve
can be directly deduced from [10].

Algorithm 2: Width ν curvature estimation at each point of ζ

Data: C 3D discrete curve of n points, ν width of the segmentation

Result: {Cν(Ck)}k=0..n−1 - Curvature of width ν at each point of C

begin

Build MBSν = {MBSi(Bi, Ei, ν)}i=0 to m−1 (See the Algo. 1 ); m =
|MBSν |; E−1 = −1; Bm = n;
for i = 0 to m − 1 do

for k = Ei−1 + 1 to Ei do L(k) = Bi;
for k = Bi to Bi+1 − 1 do R(k) = Ei;

end

for i = 0(∗) to n − 1(∗) do

Rν(Ci) = Radius of the circumcircle to [CL(i), Ci, CR(i)];
Cν(Ci) = s

Rν(Ci)
;

end

end

(*) The bounds mentioned in the algorithm 2 are correct for a closed curve. In
case of an open curve, the instruction becomes: for i = l to n - 1 - l with l fixed to a
constant value.

5 Discrete torsion of width ν

5.1 Preliminary

The 3D curvature is not sufficient to characterize the local property of a 3D curve.
This parameter only measures how rapidly the direction of the curve changes. In case



Fig. 2. From left to right: a. D3D(45, 27, 20,−45,−81, 90, 90) optimal discrete line of
the grey points, b. The curvature at the red point is defined as the inverse of circumcircle
(passing through both blue points and the red point) radius.

of a planar curve, the osculating plane does not change. For 3D curves, torsion is a
parameter that measures how rapidly the osculating plane changes. To clarify this
notion, we recall below some definitions and results in differential geometry (see [16]
for more details).

Definition 5. Let r : I → R
3 be a regular unit speed curve parameterized by t.

i T (t) (resp. N(t)) a unit vector in direction r
′

(t) (resp. r
′′

(t)). So, N(t) is a normal
vector to T (t). T (t) (resp. N(t)) is called the unit tangent vector (resp. normal
vector) at t.

ii |T
′

(t)| = k(t) is called the curvature of r at t.
iii The plane determined by the unit tangent and normal vectors (T (t) and N(t)), is

called the osculating plane at t. The unit vector B(t) = T (t)∧N(t) is normal to
the osculating plane and is called the binormal vector at t.

iv |B
′

(t)| = τ (t) is called the torsion of curve at t.

Theorem 1 Let r : I → R
3 be a spatial curve parameterized by t.

i The curvature of r at t ∈ I: k(t) = |r
′

∧r
′′

|

|r
′
|
3

ii The torsion of r at t ∈ I: τ (t) = (r
′

∧r
′′

).r
′′′

|r
′
∧r

′′
|
2

Thanks to theorem 3, the torsion value at a point is 0 if the curvature value at this
point is 0.

5.2 Discrete torsion

Discrete torsion was studied in [3, 6, 8, 7]. In this section, we propose a new geometric
approach for the problem of torsion estimation that uses the definitions and results
presented in the previous sections.

Definitions

Let ζ be a 3D discrete curve, Ck is kth point of the curve. Let us consider the
points Cl and Cr of ζ such that : l < k < r, BS(l, k, ν)&¬BS(l − 1, k, ν) and
BS(k, r, ν)&¬BS(k, r + 1, ν). Let’s recall that the curvature of width ν (see section

4.) is estimated by circumcircle of triangle △ClCkCr. If
−−−→
CkCl and

−−−→
CkCr are colinear,



the curvature value at Ck is 0, therefore the torsion value at Ck is 0. So, without loss

of generality, we suppose that
−−−→
ClCk and

−−−→
CkCr are not colinear. In addition, the plane

defined by
−−−→
ClCk and

−−−→
CkCr is noted (Cl, Ck, Cr), and we propose the definition below.

Definition 6. The osculating plane of width ν at Ck is the plane (Cl, Ck, Cr).

The osculating plane (Cl, Ck, Cr) has two unit tangent vectors :
−→
t1 =

−−−→
ClCk

|
−−−→
CkCr|

and

−→
t2 =

−−−→
CkCr

|
−−−→
CkCr|

. Therefore, we have the binormal vector at the kth point:
−→
bk =

−→
t1 ∧

−→
t2 =

(bx, by, bz) So, we propose the following definition of discrete torsion of width ν.

Definition 7. The discrete torsion of width ν at Ck is the derivation of
−→
bk

Torsion estimator Our proposed method for torsion estimation is based on the

definition 7. Let us remark that the set {
−→
bk}

n−1
k=0 can be constructed from the set of

maximal blurred segments in O(n log2 n) time. So, we can obtain torsion value by

calculating the derivative at each position of {
−→
bk}

n−1
k=0 . The traditional method for

derivation estimation of discrete sequence is utilizing Gaussian kernel [17]. We propose
below a geometric approach method to this problem.

Let us consider the curve ζ1 = {P}n
i=0 that is constructed by this rule:

−−−−→
PiPi+1 =

−→
bi ,

i = 0, .., n − 1 (see the Fig. 3).

−→
b3

−→
b1

P0
P1

−→
b4

−→
b5

−→
b5

P3
P4

P5

−→
b0

−→
b0

−→
b1

−→
b2 −→

b3
−→
b4

P2

P6

−→
b2

Fig. 3. The curve ζ1 is constructed from the sequence of binormal vector

Proposition 1 The tangent vector at each point Pi of the curve ζ1 is
−→
bi (i = 0, .., n−

1).

Proof. In differential geometry, the tangent vector of a curve r(t) at the point Pt0 =

r(t0) is defined as: t(t0) = r
′

(t0) = limh→0
r(t0+h)−r(t0)

h
= limh→0

−−−→
Pt0P

h
. Therefore, in

discrete space, the tangent vector at the point Pi = α(i) can be estimated as t(i) =
r(i+1)−r(i)

1
=

−−−−−→
PiPi+1

1
=

−−−−→
PiPi+1 =

−→
bi .

Proposition 2 The torsion value at each point of curve ζ corresponds to curvature
value of ζ1 curve.

Proof. Thanks to definition 8, the discrete torsion at Ck of ζ curve is the derivation of
−→
bk . In addition,

−→
bk is the tangent vector at the kth point of ζ1 curve. So,this value is

also curvature value at the kth point of ζ1 curve.



Therefore, by using these two propositions, we can estimate torsion value at each
point of ζ curve by determining curvature value at corresponding point of ζ1 curve.
Our proposed method is presented in the algorithm 3, it uses the curvature estimator
presented in section 3.3.
(*) Same remark as for the Algorithm 2.

Algorithm 3: Width ν torsion estimation at each point of ζ

Data: ζ 3D discrete curve of n points, ν width of the segmentation

Result: {Tν(Ck)}k=0..n−1 - Torsion of width ν at each point of ζ

begin

Build MBSν = {MBSi(Bi, Ei, ν)}i=0 to m−1 ;
m = |MBSν |; E−1 = −1; Bm = n;
for i = 0 to m − 1 do

for k = Ei−1 + 1 to Ei do L(k) = Bi;
for k = Bi to Bi+1 − 1 do R(k) = Ei;

end

for i = 0(∗) to n − 1(∗) do
−→
t1 =

−−−−−−→
CiCL(I)

|
−−−−−→
CiCL(i)|

;
−→
t2 =

−−−−−→
CiCR(i)

|
−−−−−→
CiCR(i)|

;
−→
bi =

−→
t1 ∧

−→
t2;

end

Construct ζ1 = {Pk}
n
k=0, with

−−−−−→
PkPk+1 =

−→
bk ;

Estimate the curvature value of width ν at each point of the ζ1 curve as
torsion value of corresponding point of the ζ curve (see the Algo. 2);

end

6 Experiments

We introduce some experiments of our method on some ideal 3D curves : helix, Vi-
viani’s, spheric, horopter and hyper helix curves. The tests are done after a process of
discretisation of these 3D curves (see the Fig. 6). We have tested our methods on this
computer configuration: CPU Pentium 4 with 3.2GHz of speed, 1Gb of memory RAM,
linux kernel 2.6.22-14 operating system.
We introduce three criteria for measuring error: mean relative error (meanRE), max
relative error (maxRE) and quadratic relative error (QRE). Let’s consider 2 sequences:
{IRi}

n
i=1 (resp. {RRi}

n
i=1) the ideal result (resp. estimated result) at each position.

So, we have:

meanRE = 1
n

Pn

i=1
|RRi−IRi|

IRi
, maxRE = max

n

|RRi−IRi|
IRi

o

, i = 1, .., n and QRE =
r

1
n

Pn

i=1

8

:

|RRi−IRi|
IRi

9

;

2

.

Because the estimated result is not correct for the beginning and the end of the open
curve (see the bounds mentioned in the algorithms 2 and 3), during the phase of error
estimation we use the border parameter to eliminate this influence.
In most cases of the studied curves (see the Table 1 and Fig. 6), the mean relative
errors do not overtake 0.15, and the quadratic relative errors do not overtake 0.015. If



the ideal torsion of the input curve has a value which is close to 0 at some positions,
the obtained result is not very good. Let’s see the case of Viviani’s curve in the Table
1. In this case, the maximal relative error is high (15.6036). In spite of that, the mean
relative error is acceptable (0.628899). In particular cases, if most of input curves has
a torsion value which is close to 0, the obtained result is the worst (see the Fig. 4).

(a) Hyper helix curve (b) Ideal torsion (c) Estimated tor-
sion

Fig. 4. Most of the hyper helix curve has a torsion value close to 0. So in this case, the
obtained result is the worst.

Fig. 5. Relatif error

Let’s consider the case of an hyper helix curve (see
the Fig. 4). The problem is that the torsion approxi-
mation is not good at nearly-0 values. In spite of that,
the approximation value is also close to 0 but rela-
tive rate between approximation value and ideal value
is very high. In Fig. 5, we show the relation between
approximation torsion and ideal torsion of an hyper
helix curve from the index 15 and to the index 250. In
this index interval, the ideal torsion is close to 0. So,
the relative error between approximation torsion and
ideal torsion is very high, in spite of that the approx-
imation value does not overtake 0.006. So, we propose
to consider only the points whose ideal torsion value
is greater than the threshold. In the error calculus, n

is replaced by number of points whose ideal torsion value is greater than a threshold.
The table 2 shows the approximated error with a threshold equal to 0.0005.

7 Conclusions

We have presented in this paper 2 methods to estimate curvature and torsion of a 3D
curve. These methods benefit from the amelioration of curvature estimator in planar
case [10], so they’re efficient. These estimators permit to discover local properties of
spatial curve. We hope to identify and classify 3D objects by using these estimators.
In the future, we will compare our methods with other existing methods [6, 11, 2, 3]
for curvature and torsion estimation. Morover, we will work with real discrete data of
biology or medical area. We intend to present these works in a journal version.



Curves No of points Border meanRE maxRE QRE Time (ms)

Spheric 255 30 0.13174 0.34281 0.164156 280

Horopter 239 30 0.0827392 0.186243 0.0979267 300

Helix 760 30 0.0481056 0.514517 0.0813778 920

Viviani 274 30 0.628899 15.6036 1.62278 290

Hyper helix 740 30 8551.24 154378 24704.2 720
Table 1. Error estimation on the estimated torsion result

(a) Helix curve (b) Ideal torsion
of an helix

(c) Estimated tor-
sion of an helix

(d) Viviani’s curve (e) Ideal torsion of
a Viviani

(f) Estimated tor-
sion of a Viviani

(g) Spheric curve (h) Ideal torsion
of a spheric

(i) Estimated tor-
sion of a spheric

(j) Horopter curve (k) Ideal torsion
of an horopter

(l) Estimated tor-
sion of horopter

Fig. 6. Experiments with width ν= 2



Curves No points No considered points Border meanRE maxRE QRE

Spheric 255 255 30 0.13174 0.34281 0.164156

Horopter 239 239 30 0.0827392 0.186243 0.0979267

Helix 760 760 30 0.0481056 0.514517 0.0813778

Viviani 274 270 30 0.456954 3.51278 0.615561

Hyper helix 740 196 30 1.15266 3.80191 1.62102
Table 2. Error estimation on the estimated torsion result, threshold = 0.0005
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