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Abstract

We first obtain exponential inequalities for martingales. Let (Xk)(1 ≤ k ≤ n) be a sequence of
martingale differences relative to a filtration (Fk), and set Sn = X1 + ... + Xn. We prove that if

for some δ > 0, Q ≥ 1, K > 0 and all k, a.s. E[eδ|Xk|Q |Fk−1] ≤ K, then for some constant c > 0
(depending only on δ, Q and K) and all x > 0, P [|Sn| > nx] ≤ 2e−nc(x), where c(x) = cx2 if x ∈]0, 1],
and c(x) = cxQ if x > 1; the converse also holds if (Xi) are independent and identically distributed.
It extends Bernstein’s inequality for Q = 1, and Hoeffding’s inequality for Q = 2. We then apply
the preceding result to establish exponential concentration inequalities for the free energy of directed
polymers in random environment, show its rate of convergence (in probability, almost surely, and in
Lp), and give it an expression in terms of free energies of some multiplicative cascades, which improves
an inequality of Comets and Vargas (2006, [13]) to an equality.

Key words. Martingale differences, super-martingales, large deviation inequality, exponential inequality,
Bernstein’s inequality, Hoeffding-Azuma’s inequality, directed polymers, random environment, concentra-
tion inequality, free energy, convergence rate, multiplicative cascades.
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1 Introduction and main results

Our work was initially motivated by the study of the free energy of a directed polymer in a random
environment. Comets and Vargas (2006, [13]) proved that the free energy (at ∞) is bounded by the
infimum of those of some generalized multiplicative cascades, and that the equality holds if the environment
is bounded or gaussian. The essential point in their proof for the equality is an exponential concentration
inequality for the free energy (at time n), which was not known for a general environment. Using a large
deviation inequality of Lesigne and Volny (2001, [27]) on martingales, Comets, Shiga and Yoshida (2003,
[11]) did obtain a concentration inequality for the free energy; but their bound is larger than the exponential
one, and is not sharper enough to imply the equality mentioned above. Another non satisfactory point
of their inequality is that it cannot be used to prove rigourous results on the rate of convergence, for the
almost sure (a.s.) or Lp convergence of the free energies.

The objective of the present paper is to establish exponential large deviation inequalities, and to use them to
show exponential concentration inequalities for the free energy of a polymer in general random environment,
its rate of convergence, and an expression of its limit value in terms of those of some multiplicative cascades.

∗Email: Quansheng.Liu@univ-ubs.fr
†Email: Frederique.Watbled@univ-ubs.fr
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Large deviation inequalities are very powerful tools in probability theory, and have been studied by many
authors: see e.g. the classical works of Bernstein (1924, [3]), Cramér (1938, [15]), Hoeffding (1963, [22]),
Azuma (1967, [1]), Chernoff (1981, [8]), the books of Chow and Teicher (1978, [9]), and Petrov (1995, [31]),
and the recent papers by de la Peña, (1999, [16]), Lesigne and Volný (2001, [27]), Bentkus (2004, [2]), and
Chung and Lu (2006, [10]). See also Ledoux (1999, [26]) and Wang (2005, [33]) for related concentration
inequalities and general functional inequalities.
Let (Ω,F , P ) be a probability space, and let F0 = {∅, Ω} ⊂ F1 ⊂ · · · ⊂ Fn be an increasing sequence of
sub-σ-fields of F . Let X1, ..., Xn be a sequence of real- valued martingale differences defined on (Ω,F , P ),
adapted to the filtration (Fk): that is, for each 1 ≤ k ≤ n, Xk is Fk measurable, and E[Xk|Fk−1] = 0. Set

Sn = X1 + ... + Xn. (1.1)

We are interested in exponential large deviation inequalities of the form

P [|Sn| > nx] = O(e−c(x)n), (1.2)

where x > 0 and c(x) > 0. When (Xi) are independent and identically distributed (iid) with mean EXi = 0,
it is known [see Petrov (1995, [31] p.137)] that (1.2) holds for all x > 0 and some c(x) > 0 if and only if for
some δ > 0,

Eeδ|X1| < ∞. (1.3)

For a sequence of martingale differences, Lesigne and Volný (2001, [27]) proved that if for some constant
K > 0 and all k = 1, ..., n,

Ee|Xk| ≤ K, (1.4)

then for any x > 0,

P

[

Sn

n
> x

]

= O(e−
1
4
x2/3n1/3

), (1.5)

and that this is the best possible inequality that we can have under the condition (1.4), even in the class
of stationary and ergodic sequences of martingale differences, in the sense that there exist such sequences
of martingale differences (Xi) satisfying (1.4) for some K > 0, but

P

[

Sn

n
> 1

]

> e−cn1/3

(1.6)

for some constant c > 0 and infinitely many n. It is therefore interesting to know what is the good
condition to have the exponential inequality (1.2) in the martingale case. It turns out that (1.2) still holds
if we replace the expectation in (1.4) by the conditional one given Fk−1. In fact we shall prove the following
much sharper result. It is a consequence of Theorems 2.1, 3.1, and 3.2.

Theorem 1.1 Let (Xk) be a {Fk}-adapted sequence of martingale differences. Assume that for some
constants Q ≥ 1, δ > 0, K > 0 and all k ∈ {1, · · · , n}, almost surely

E[eδ|Xk|Q |Fk−1] ≤ K. (1.7)

Then there exists a constant c > 0 depending only on Q, δ and K, such that for all x > 0,

P

[

±Sn

n
> x

]

≤
{

e−ncx2

if x ∈]0, 1],

e−ncxQ

if x ∈]1,∞[.
(1.8)

The converse also holds in the iid case: if Xk are iid and if P [±Sn

n > x] ≤ e−ncxQ

holds for some n ≥ 1,
Q ≥ 1, c > 0, x1 > 0 and all x ≥ x1, then for all δ ∈]0, c[, there exists K = K(δ, Q, c, x1) > 0 such that

E[eδ|X1|Q ] ≤ K.

By the result of Lesigne and Volný ([27]) cited above, the conditional exponential moment condition (1.7)
cannot be relaxed to the non conditional one.
When (Xk) are iid with E[Xk] = 0, Bernstein’s inequality states (cf. [31], page 57) that if σ2 = E[X2

k ] < ∞
and

|EXm
k | ≤ 1

2
m!σ2Hm−2 (1.9)

2



for some H > 0 and all m = 2, 3, · · · , then

P

[

±Sn

n
> x

]

≤
{

e−nc0x2

if x ∈]0, x0],

e−nc1x if x ∈]x0,∞[,
(1.10)

where c0 = 1
4σ2 , c1 = 1

4H , x0 = σ2

H . Notice that (in the iid case) Bernstein’s condition (1.9) is equivalent to
Cramer’s condition that ∃δ > 0 such that

E[eδ|Xk|] < ∞. (1.11)

In applications we find more convenient to use Cramer’s condition. Taking Q = 1 in Theorem 1.1, we
obtain the following Bernstein-type inequality.

Corollary 1.2 (A Bernstein-type inequality) Assume that (Xk) are iid with E[Xk] = 0, 1 ≤ k ≤ n. If
(1.11) holds for some δ > 0, then for some c = c(δ) > 0,

P

[

±Sn

n
> x

]

≤
{

e−ncx2

if x ∈]0, 1],

e−ncx if x ∈]1,∞[.
(1.12)

Conversely, if for some n ≥ 1, c > 0, x0 > 0 and all x > x0, P
[

±Sn

n > x
]

≤ e−ncx, then (1.11) holds for
each δ ∈]0, c[.

When Q = 2, Theorem 1.1 extends the following well-known Hoeffding’s inequality1 : if (Xk) is a sequence
of martingale differences with |Xk| ≤ a a.s. for some constant a ∈]0,∞[, then for all n ≥ 1 and all x > 0,

P

[

±Sn

n
> x

]

≤ e−ncx2

, (1.13)

where c = 1/(2a2). In fact, by our result for Q = 2, we obtain:

Corollary 1.3 (Extension of Hoeffding’s inequality) When (Xk) are iid, then there is a constant c > 0
such that (1.13) holds for all n ≥ 1 and all x > 0, if and only if for some δ > 0,

EeδX2
1 < ∞. (1.14)

Moreover, if (1.13) holds for some n ≥ 1 and all x > 0, with some constant c = c1, then it holds for all
n ≥ 1 and x > 0, with some constant c = c2 depending only on c1.

So our result is a complete extension of Hoeffding’s inequality even in the iid case.

We then apply the preceding results to directed polymers in random environment that we describe as follows.
Let (ωn)n∈N be the simple random walk on Zd starting at 0, defined on a probability space (Ω,F , P ). Let
(η(n, x))(n,x)∈N×Zd be a sequence of i.i.d. real random variables defined on another probability space
(E, E , Q) (we use the letter E to refer the Environment). For real β (the inverse of temperature), define

λ(β) = ln Q[eβη(0,0)]. (1.15)

(If µ is a measure and f is a function, we write µ(f) or µ[f ] for the integral of f with respect to µ.) We fix
β > 0, and only suppose that

Q[eβ|η(0,0)|] < ∞ (1.16)

(we do not suppose that it holds for all β > 0). Of course this condition is equivalent to λ(±β) < ∞. We
are interested in the normalized partition function

Wn(β) = P



exp



β
n
∑

j=1

η(j, ωj) − nλ(β)







 , (1.17)

1The inequality (1.13) is often called Hoeffding’s inequality when (Xk) are iid, and Azuma’s inequality when (Xk) are
martingale differences. This is rather strange, as it was Hoeffding (1963) who first obtained it for martingales, although he
mainly treated the iid case, and only mentioned the martingale case as a remark [see [22], p.18]. To respect the history, we
call it Hoeffding’s inequality, although Azuma (1967, [1]) refound it four years later. We think that what happened would
be that, the first author who called it Azuma’s inequality did not know the existence of the remark of Hoeffding, the second
followed the first without verification, and so on.
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and the free energy 1
n lnWn(β).

This model first appeared in physics literature [see Huse and Henley (1985, [23])] to modelize the phase
boundary of Ising model subject to random impurities; the first mathematical study was undertaken by
Imbrie and Spencer (1988, [24]) and Bolthausen (1989, [4]). For recent results, see e.g. Carmona and Hu
(2004, [7]), Carmona, Guerra, Hu and Méjane (2006, [5]), Comets, Shiga and Yoshida (2004, [12]), and
Comets and Yoshida (2006, [14]).

Assuming Q[eβ|η(0,0)|] < ∞ for all β > 0, Comets, Shiga and Yoshida ([11]) proved that ∀x > 0, there
exists n0 ∈ N∗ such that for any n ≥ n0,

Q

[∣

∣

∣

∣

1

n
lnWn(β) − 1

n
Q[lnWn(β)]

∣

∣

∣

∣

> x

]

≤ exp

(

−n
1
3 x

2
3

4

)

. (1.18)

In fact, in their proof of (1.18), they used the condition that Q[e3β|η(0,0)|] < ∞, due to the application of
their Lemma 3.1 (p.711).

We first improve this result to an exponential inequality under the weaker condition that Q[eβ|η(0,0)|] < ∞
for the fixed β.

Theorem 1.4 (Exponential concentration inequality for the free energy) Let β > 0 be fixed such that
Q[eβ|η(0,0)|] < ∞. If for some Q ≥ 1 and R > 0,

Q[eR|η(0,0)|Q ] < +∞, (1.19)

then

Q

[

1

n
|lnWn(β) − Q[lnWn(β)]| > x

]

≤
{

2e−ncx2

if 0 ≤ x ≤ 1,

2e−ncxQ

if x > 1,
(1.20)

where c > 0 is a constant depending only on Q, R, and the law of η(0, 0).

Notice that the condition (1.19) holds automatically for Q = 1 and R = β, so that (1.20) holds for Q = 1
under the only hypothesis Q[eβ|η(0,0)|] < ∞; when (1.19) holds for some Q > 1 and R > 0, (1.20) gives a
sharper bound for large values of x.
Theorem 1.4 is a consequence of Corollary 6.7. As shown in Carmona and Hu (2002, [6]) and Comets and
Vargas (2006, [13]), when the environment is gaussian or bounded, the inequality can be obtained directly
by a general concentration result on gaussian or bounded variables (see e.g. Ledoux (1999, [26])). But this
method does not work for a general environment.
As applications we shall show the following properties about the free energy 1

n lnWn(β):

(1) for some p−(β) ≤ 0, 1
n lnWn(β) → p−(β) in probability at an exponential rate (cf. Theorem 7.2);

(2) 1
n lnWn(β) → p−(β) a.s. and in Lp, for all p ≥ 1, at a rate O

(

√

lnn
n

)

(cf. Theorem 7.5);

(3) p−(β) can be expressed in terms of some generalized multiplicative cascades (cf. Theorem 8.1).

Part (1) extends the same conclusion of Carmona and Hu (2002, [6]) for the gaussian environment case

to a general environment case. The rate of a.s. convergence in part (2) improves the bound O(n−( 1
2
−ε))

(ε > 0) of Carmona and Hu (2004, [7]) obtained for the gaussian environment case. Part (3) improves an
inequality of Comets and Vargas (2006, [13]) to an equality.

The rest of the paper is organized as follows. In Section 2 we establish exponential inequalities for su-
permartingales, which extend Bernstein or Hoeffding’s inequalities, according to E

[

eδ|Xi||Fi−1

]

≤ K or

E

[

eδ|Xi|2 |Fi−1

]

≤ K, respectively. For large values of x, sharper inequalities are proven in Section 3 under

the condition that E

[

eδ|Xi|Q |Fi−1

]

≤ K (Q > 1). These results are extended in Section 4 to the more gen-

eral case where E

[

eδ|Xi|Q |Fi−1

]

≤ Ki. As applications, we show in Section 5 the rate of convergences, a.s.

and in Lp. In the last 3 sections, we study the free energies of directed polymers in random environment,
with the help of our results on martingales: we show exponential concentration inequalities for the free
energies in Section 6, their convergence rates (in probability, a.s. and in Lp) in Section 7, and, in Section
8, an expression of their limit value in terms of some generalized multiplicative cascades.

4



2 Exponential inequalities for supermartingales

In this section we give an extension of Bernstein and Hoeffding’s inequalities to supermartingales with
unbounded differences. Our results are sharp even in the iid case.
Let (Xi)1≤i≤n be a sequence of real-valued supermartingale differences defined on a probability space
(Ω,F , P ), adapted to a filtration (Fi), with F0 = {∅, Ω}. This means that for each 1 ≤ i ≤ n, Xi is
Fi-measurable, and E[Xi|Fi−1] ≤ 0 a.s.. We are interested in the growth rate of the Laplace transform
E[etSn ], and the convergence rate of the deviation probabilities P

[

Sn

n > x
]

.

Theorem 2.1 Let (Xi)1≤i≤n be a finite sequence of supermartingale differences. If for some constant
K > 0 and all i ∈ [[1, n]],

E[e|Xi||Fi−1] ≤ K a.s., (2.1)

then:

E[etSn ] ≤ exp

(

nKt2

1 − t

)

for all t ∈]0, 1[, (2.2)

and

P

[

Sn

n
> x

]

≤ exp

(

−n
(√

x + K −
√

K
)2
)

for all x > 0. (2.3)

Consequently,

P

[

Sn

n
> x

]

≤



















exp

(

− nx2

K(1 +
√

2)2

)

if x ∈]0, K],

exp

(

− nx

(1 +
√

2)2

)

if x ∈]K,∞[.

(2.4)

Conversely, if (Xk) are iid, and if P
[

Sn

n > x
]

≤ e−ncx for some n > 1, c > 0, and all x ≥ x1 > 0 large
enough, then for all δ ∈]0, c[,

E[eδX+

1 ] ≤ K, where X+
1 = max(X1, 0), and K = eδx1 +

δ

c − δ
e−(c−δ)x1 .

Corollary 2.2 Under the conditions of Theorem 2.1, ∀ε > 0, there exist 0 < x0 < x1 and K1 > 0
depending only on K and ε, such that:

P

[

Sn

n
> x

]

≤



































exp

(

− nx2

4K(1 + ε)

)

if x ∈]0, x0[,

exp

(

− nx

K1

)

if x ∈ [x0, x1],

exp

(

− nx

1 + ε

)

if x ∈]x1, +∞[.

(2.5)

We divide the proof into a series of lemmas.

Lemma 2.3 Let (Xi)1≤i≤n be a finite sequence of random variables adapted to a filtration (Fi)1≤i≤n. Let
(li)1≤i≤n be a finite sequence of deterministic functions defined on a subinterval I of ]0,∞[, such that for
each i and each t ∈ I,

E[etXi |Fi−1] ≤ eli(t) a.s.. (2.6)

Then for every t ∈ I,

E[etSn ] ≤ exp

(

n
∑

i=1

li(t)

)

, (2.7)

and for every x > 0,

P

[

Sn

n
> x

]

≤ e−nL∗

n(x), (2.8)

where

Ln(t) =
1

n

n
∑

i=1

li(t), and L∗
n(x) = sup

t∈I
(tx − Ln(t)) . (2.9)

5



Proof. (2.7) can be obtained by a simple induction argument on n. (2.8) is an immediate consequence of
(2.7), since ∀x > 0, ∀t ∈ I,

P

[

Sn

n
> x

]

= P [etSn > etnx] ≤ e−ntxE[etSn ] ≤ exp (−n(tx − Ln(t))) .

Remark 2.4 The submultiplicativity (2.7) for an adapted sequence corresponds to the multiplicativity
E[etSn ] =

∏n
i=1 E[etXi ] in the independent case. This explains why it is natural to consider the conditional

Laplace transform E[etXi |Fi−1] in the supermartingale case, instead of the Laplace transform E[etXi ] in the
independent case. For example, using Lemma 2.3, we can obtain the following generalization of Petrov’s
inequality (p.54 of [31]):

Lemma 2.5 Let ai > 0 and T > 0 be constants such that for all 1 ≤ i ≤ n and all t ∈]0, T ], a.s.

E[etXi |Fi−1] ≤ eait
2

. Then for each A ≥ 1
n

n
∑

i=1

ai, we have

P

[

Sn

n
> x

]

≤















exp

(

−nx2

4A

)

if x ∈]0, 2AT [,

exp

(

−nTx

2

)

if x ∈ [2AT, +∞[.

(2.10)

Proof. We apply Lemma 2.3 with I =]0, T ] and li(t) = ait
2, Ln(t) = At2, which gives:

E[etSn ] ≤ exp(nAt2) for every t ∈]0, T ],

and

P

[

Sn

n
> x

]

≤ e−nL∗

n(x),

with L∗
n(x) = supt∈]0,T ]

(

tx − At2
)

. We calculate this sup and find:

L∗
n(x) =











x2

4A
if x ∈]0, 2AT [,

Tx − AT 2 ≥ Tx

2
if x ≥ 2AT,

which ends the proof.

Lemma 2.6 Let X be a real-valued random variable defined on some probability space (Ω,F , P), with EX ≤
0 and E[e|X|] ≤ K for some K > 0. Then for all t ∈]0, 1[,

E[etX ] ≤ exp

(

Kt2

1 − t

)

. (2.11)

Consequently,

E[etX ] ≤ exp
(

2Kt2
)

for every t ∈
]

0,
1

2

]

. (2.12)

Proof. Let t ∈]0, 1[. Since EX ≤ 0, we have

E[etX ] =
∞
∑

k=0

tkE

[

Xk

k!

]

≤ 1 +
∞
∑

k=2

tkE

[

Xk

k!

]

≤ 1 +

∞
∑

k=2

tkE[e|X|] ≤ 1 + K
t2

1 − t
≤ exp

(

Kt2

1 − t

)

.
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Lemma 2.7 For K > 0 and x > 0,

sup
t∈]0,1[

(

tx − Kt2

1 − t

)

=
(√

x + K −
√

K
)2

. (2.13)

Proof. Let lK(t) = Kt2

1−t . We first consider l1(t) = t2

1−t (the case where K = 1). Let h(t) = xt − t2

1−t ,

t ∈]0, 1[. Notice that h′(t) = 0 if and only if x = t(2−t)
(1−t)2 , that is, t = 1 − 1√

1+x
. Therefore

l∗1(x) = h

(

1 − 1√
1 + x

)

= (
√

x + 1 − 1)2.

In the general case, we have

l∗K(x) = Kl∗1

( x

K

)

=
(√

x + K −
√

K
)2

.

Proof of Theorem 2.1. By Lemma 2.6, we obtain that for every i and for every t ∈]0, 1[, a.s.

E[etXi |Fi−1] ≤ exp

(

Kt2

1 − t

)

.

Therefore by Lemmas 2.3 and 2.7, we obtain immediately (2.2) and (2.3).

To show (2.4), we notice that the function g(x) =
(
√

x+K−
√

K)
2

x2 is strictly decreasing on ]0, +∞[ with

lim
x→+∞

g(x) = 0 and lim
x→0

g(x) = 1
4K , whereas the function f(x) =

(
√

x+K−
√

K)
2

x is strictly increasing on

]0, +∞[, with lim
x→+∞

f(x) = 1 and lim
x→0

f(x) = 0.

Therefore for every x ∈]0, K],
(√

x + K −
√

K
)2

≥ x2g(K) = x2

K(1+
√

2)2
, and for every x > K,

(√
x + K −

√
K
)2

≥
xf(K) = x

(1+
√

2)2
, which ends the proof of (2.4).

Conversely, suppose that (Xk) are iid, and that P
[

Sn

n > x
]

≤ e−ncx for some n > 1, c > 0 and all
x ≥ x1 > 0 large enough. Let δ ∈]0, c[. Then for all x > 0,

(P [X1 > x])
n

= P [Xi > x for all 1 ≤ i ≤ n] ≤ P

[

Sn

n
> x

]

≤ e−ncx,

so that P [X+
1 > x] = P [X1 > x] ≤ e−cx, and

E[eδX+

1 ] = 1 +

∫ +∞

0

P [X+
1 > x]δeδxdx ≤ 1 +

∫ x1

0

δeδxdx +

∫ +∞

x1

δe−(c−δ)xdx = eδx1 +
δ

c − δ
e−(c−δ)x1.

Remark 2.8 Notice that by Lemma 2.6, ∀t ∈]0, 1
2 ], a.s.

E[etXi |Fi−1] ≤ exp
(

2Kt2
)

.

Therefore by Lemma 2.5, we obtain immediately,

P

[

Sn

n
> x

]

≤















exp

(

−nx2

8K

)

if x ∈]0, 2K],

exp
(

−nx

4

)

if x > 2K.

(2.14)

But (2.3) of Theorem 2.1 gives more precise information.
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Proof of Corollary 2.2. For ε ∈]0, 1[, let x0 > 0 and x1 > 0 be such that g(x0) = 1
4K(1+ε) and

f(x1) = 1
1+ε , where g and f are as in the proof of Theorem 2.1.

If x ∈]0, x0], then
(√

x + K −
√

K
)2

≥ x2g(x0), hence P
[

Sn

n > x
]

≤ exp
(

− nx2

4K(1+ε)

)

.

If x ∈ [x1, +∞[, then
(√

x + K −
√

K
)2

≥ xf(x1), hence P
[

Sn

n > x
]

≤ exp
(

− nx
1+ε

)

.

If x ∈ [x0, x1], then
(√

x + K −
√

K
)2

≥ xf(x0) = xx0g(x0) = xx0

4K(1+ε) . We set K1 = 4K(1+ε)
x0

, so that

P
[

Sn

n > x
]

≤ exp
(

− nx
K1

)

.

If we impose an exponential moment condition to X2
i instead of Xi, we get the following Hoeffding type

inequality.

Theorem 2.9 Let (Xi)1≤i≤n be a sequence of supermartingale differences adapted to (Fi). If there exist
some constants R > 0 and K > 0 such that for all i,

E[eRX2
i |Fi−1] ≤ K a.s., (2.15)

then there exists a constant c > 0 depending only on R and K such that:

E[etSn ] ≤ enct2 for all t > 0, (2.16)

and

P

[

Sn

n
> x

]

≤ e−
nx2

4c for all x > 0. (2.17)

Conversely, if (Xi) are iid and if (2.16) or (2.17) holds for some n ≥ 1 and c > 0, then for each R ∈
]

0, 1
4c

[

,

E[eRX+2

1 ] ≤ K, where X+
1 = max(X1, 0) and K = 1 +

R
1
4c − R

.

Its proof will be based on the following Lemma.

Lemma 2.10 Let X be a random variable defined on a probability space (Ω,F , P). If for some constants K

and R > 0, E[eRX2

] ≤ K, then for all t > 0,

E[et|X|] ≤ 1 +
K
√

π

2
√

R
t exp

(

t2

4R

)

. (2.18)

If additionally E[X ] ≤ 0, then there exists a > 0 depending only on K and R such that for all t > 0,

E[etX ] ≤ exp

(

at2

2

)

. (2.19)

Proof. By hypothesis P [|X | > x] ≤ e−Rx2

E[eRX2

] ≤ Ke−Rx2

. Hence for all t > 0,

E[et|X|] =

∫ +∞

0

P [et|X| > x]dx =

∫ +∞

−∞
P [|X | > u]d(etu)

= 1 + t

∫ +∞

0

P [|X | > u]etudu ≤ 1 + Kt

∫ +∞

0

e−Ru2

etudu

≤ 1 +
K
√

π

2
√

R
t exp

(

t2

4R

)

.

Let c > 1
4R . Then there exists t1 > 0 such that

∀t ≥ t1, E[et|X|] ≤ exp
(

ct2
)

. (2.20)

On the other hand,

E[eR|X|] ≤ E[eR; |X | ≤ 1] + E[eRX2

; |X | > 1] ≤ eR + K,
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so by Lemma 2.6, when E[X ] ≤ 0, we have

E[etX ] ≤ exp

(

2K1

R2
t2
)

∀t ∈
]

0,
R

2

]

, (2.21)

where K1 = eR + K. From (2.20) and (2.21) we deduce that there exists a > 0 depending only on K and
R, such that

∀t ≥ 0, E[etX ] ≤ exp

(

at2

2

)

.

Proof of Theorem 2.9. Write Ei−1[.] = E[.|Fi−1]. By Lemma 2.10 there exists a = a(R, K) > 0 such
that

Ei−1[e
tXi ] ≤ exp

(

at2

2

)

∀t > 0.

So by Lemmas 2.3 and 2.5, we get (2.16) and (2.17).
Conversely, suppose that (Xi) are iid and that (2.17) holds for some n ≥ 1 and c > 0 (notice that (2.16)
implies (2.17)). Let R ∈]0, 1

4c [. Then ∀x > 0,

(P [X1 > x])
n

= P [Xi > x for all 1 ≤ i ≤ n] ≤ P

[

Sn

n
> x

]

≤ e−
nx2

4c ,

so that P [X1 > x] ≤ e−
x2

4c , and

E[eRX+2

1 ] = 1 +

∫ +∞

0

P [X+
1 > x]2xReRx2

dx = 1 +

∫ +∞

0

P [X1 > x]2xReRx2

dx ≤ K,

where K = 1 +
∫ +∞
0

2xRe−( 1
4c−R)x2

dx = 1 + R
1
4c−R

.

3 Exponential bounds of P(Sn > nx) for large values of x

Notice that in the exponential inequality P (Sn ≥ nx) ≤ e−nc(x) of the preceding section, for large x, we
can take c(x) = cx or cx2 according to an exponential moment condition on X or on X2, respectively. In
this section we shall see that this property remains true for c(x) = cxQ with any Q ≥ 1.

Theorem 3.1 Let (Xi)1≤i≤n be any adapted sequence with respect to a filtration (Fi)1≤i≤n. Assume that
there exist some constants Q > 1, R > 0 and K > 0 such that for all i ∈ [[1, n]],

E[eR|Xi|Q |Fi−1] ≤ K a.s.. (3.1)

Let ρ > 1 and τ > 0 be such that

1

Q
+

1

ρ
= 1 and (ρτ)

1
ρ (QR)

1
Q = 1. (3.2)

Then for any τ1 > τ , there exists t1 > 0 depending only on K, Q, R and τ1, such that:

E[et|Sn|] ≤ exp (nτ1t
ρ) for all t ≥ t1, (3.3)

P

[ |Sn|
n

> x

]

≤ exp
(

−nR1x
Q
)

for all x ≥ x1 := ρτ1t
ρ−1
1 , (3.4)

where R1 > 0 is such that (ρτ1)
1
ρ (QR1)

1
Q = 1.

Conversely, if (Xi) are iid and if (3.4) holds for some n ≥ 1, R1 > 0, Q > 1 and x1 > 0, then for all
R ∈]0, R1[,

E[eR|X1|Q ] ≤ 2K, where K = eRxQ
1 +

R

R1 − R
e−(R1−R)xQ

1 . (3.5)
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When (Xi) are supermartingale differences, we can complete Theorem 3.1 with an information for small
values of x > 0 and t > 0, as shown in the following theorem. The conclusion follows from Theorem 2.1 for
small values of x, t > 0, and from Theorem 3.1 for large values of x, t > 0. The proof of (3.8) will be seen
in the proof of (3.5). Notice that for large values of x, t > 0, the conclusion of Theorem 3.2 is sharper than
that of Theorem 2.1.

Theorem 3.2 Under the hypothesis of Theorem 3.1, if moreover (Xi)1≤i≤n is a sequence of supermartin-
gale differences adapted to the filtration (Fi), then for any τ1 > τ , there exist t1 > 0, x1 > 0, and A, B > 0,
depending only on K, Q, R, and τ1, such that:

E[etSn ] ≤
{

exp (nτ1t
ρ) if t ≥ t1,

exp
(

nAt2
)

if 0 ≤ t ≤ t1,
(3.6)

and

P

[

Sn

n
> x

]

≤
{

exp
(

−nR1x
Q
)

if x ≥ x1,

exp
(

−nBx2
)

if 0 ≤ x ≤ x1.
(3.7)

Conversely, if (Xi) are iid and if the first inequality in (3.7) holds for some n ≥ 1, R1 > 0, Q > 1 and
x1 > 0, then for all R ∈]0, R1[,

E[eRX+Q
1 ] ≤ K, where X+

1 = max(X1, 0) and K = eRxQ
1 +

R

R1 − R
e−(R1−R)xQ

1 . (3.8)

Before proving the theorems, we first give, for a positive random variable X , relations among the growth
rate of the Laplace transform E[etX ] (as t → ∞), the decay rate of the tail probability P [X > x] (as

x → ∞), and the exponential moments of the form E[eRXQ

] (Q > 1).

Lemma 3.3 (Relation between E[etX ] and P [X > x])
Let X be a positive real random variable. Let Q, ρ, τ , and R ∈]0, +∞[ be such that 1 < Q < +∞ and

1

Q
+

1

ρ
= 1, (ρτ)

1
ρ (QR)

1
Q = 1.

Let K > 0 be a constant. Consider the following assertions:

(1) ∀t > 0, E[etX ] ≤ Keτtρ

;

(2) ∀x > 0, P [X > x] ≤ Ke−RxQ

;

(3) For a = K
(

2
R

)
1

Q−1 and all t > 0, E[etX ] ≤ 1 + K + atρeτtρ

.
Then we have the following implications: (1) ⇒ (2) ⇒ (3).

Lemma 3.3 is closely related to the following Legendre duality between the functions t 7→ τtρ and x 7→ RxQ.

Lemma 3.4 Let ρ > 1, τ > 0 and t0 ≥ 0. Then ∀x ≥ ρτtρ−1
0 ,

sup
t≥t0

(tx − τtρ) = RxQ, where
1

Q
+

1

ρ
= 1, (ρτ)

1
ρ (QR)

1
Q = 1.

Proof. The fonction h(t) = tx− τtρ attains its supremum on ]0, +∞[ for t⋆ = ( x
τρ)

1
ρ−1 , and the supremum

is h(t∗) = RxQ. As t⋆ ≥ t0 if and only if x ≥ ρτtρ−1
0 , we get the result.

Proof of Lemma 3.3. We first prove the implication (1) ⇒ (2). If E[etX ] ≤ Keτtρ

then for every x > 0
and t > 0,

P [X > x] = P [etX > etx] ≤ e−txE[etX ] ≤ Keτtρ−tx.

Therefore by Lemma 3.4, P [X > x] ≤ Ke−RxQ

.
We then prove the implication (2) ⇒ (3). If (2) holds, then for every t > 0,

E[etX ] = 1 + t

∫ +∞

0

P [X > x]etxdx ≤ 1 + tK

∫ +∞

0

e−RxQ+txdx.
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We choose x1 = (2t
R )

1
Q−1 so that −RxQ+tx ≤ −xt for x ≥ x1; by Lemma 3.4 (with t0 = 0), −RxQ+tx ≤ τtρ

for any x > 0. Therefore

∫ +∞

0

e−RxQ+txdx ≤
∫ x1

0

eτtρ

dx +

∫ +∞

x1

e−xtdx ≤ x1e
τtρ

+
1

t
,

hence for a = K( 2
R )

1
Q−1 and t > 0,

E[etX ] ≤ 1 + K + atρeτtρ

.

Lemma 3.5 Let X be a positive real random variable. Let Q ∈ [1, +∞[, and K, R ∈]0, +∞[. Consider the
following assertions:

(1) E[eRXQ

] ≤ K;

(2) ∀x > 0, P [X > x] ≤ Ke−RxQ

;

(3) For any R1 ∈]0, R[, E[eR1XQ

] ≤ R+R1(K−1)
R−R1

.

Then we have the following implications: (1) ⇒ (2) ⇒ (3).

Proof of Lemma 3.5. The implication (1) ⇒ (2) is easy: if E[eRXQ

] ≤ K, then P [X > x] = P [eRXQ

>

eRxQ

] ≤ Ke−RxQ

. Let us now prove the implication (2) ⇒ (3). If P [X > x] ≤ Ke−RxQ

, then for any
R1 ∈]0, R[,

E[eR1XQ

] =

∫ +∞

0

P [eR1XQ

> x]dx = 1 + R1Q

∫ +∞

0

P [X > u]eR1uQ

uQ−1du

≤ 1 + KR1Q

∫ +∞

0

e(R1−R)uQ

uQ−1du =
R + R1(K − 1)

R − R1
.

Remark 3.6 Let Q, ρ ∈]0, +∞[ be such that 1 < Q < +∞ and 1
Q + 1

ρ = 1. As a consequence of Lemma
3.3, we can easily see that writing

τ = inf{a > 0 : E[erX ] = O(exp(arρ))},
R = sup{a > 0 : P [X > x] = O(exp(−axQ))},

we have
(ρτ)

1
ρ (QR)

1
Q = 1.

This was proved in a different way by Liu in [28]. It unifies Theorems 6.1, 7.1, 7.2, 7.3, 8.1, 9.1 and 9.2 of
Ramachandran ([32]), and was first conjectured by Harris ([21]) in the context of branching processes.

Proof of Theorem 3.1. By Lemmas 3.5 and 3.3, we see that for a = K
(

2
R

)
1

Q−1 ,

E[et|Xi||Fi−1] ≤ 1 + K + atρeτtρ ∀t > 0.

Let τ1 > τ . Then there exists t1 > 0 sufficiently large such that ∀t ≥ t1, E[et|Xi||Fi−1] ≤ eτ1tρ

. Applying
Lemmas 2.3 and 3.4, we obtain that

E[et|Sn|] ≤ E[et(|X1|+···+|Xn|)] ≤ exp (nτ1t
ρ) if t ≥ t1,

P

[ |Sn|
n

> x

]

≤ P

[ |X1| + · · · + |Xn|
n

> x

]

≤ e−nR1xQ

if x ≥ x1 = ρτ1t
ρ−1
1 .

Conversely, suppose that (Xk) are iid, and that P
[

|Sn|
n > x

]

≤ exp
(

−nR1x
Q
)

for all x ≥ x1. Let R ∈
]0, R1[. Then for all x ≥ x1,

(P [X1 > x])
n

= P [Xi > x for all 1 ≤ i ≤ n] ≤ P

[

Sn

n
> x

]

≤ P

[ |Sn|
n

> x

]

≤ exp
(

−nR1x
Q
)

,

11



so that X+
1 = max(0, X1) satisfies P [X+

1 > x] = P [X1 > x] ≤ e−R1xQ

, and

E[eR(X+

1
)Q

] = 1 +

∫ +∞

0

P [X+
1 > x]RQxQ−1eRxQ

dx

≤ 1 +

∫ x1

0

RQxQ−1eRxQ

dx +

∫ +∞

x1

RQxQ−1e−(R1−R)xQ

dx = eRxQ
1 +

R

R1 − R
e−(R1−R)xQ

1 .

By considering (−Sn) instead of (Sn), we see that the same result holds for X−
1 = max(0,−X1):

E[eR(X−

1
)
Q

] ≤ K := eRxQ
1 +

R

R1 − R
e−(R1−R)xQ

1 .

Therefore
E[eR|X1|Q ] ≤ E[eR(X+

1
)Q

] + E[eR(X−

1
)Q

] ≤ 2K.

Proof of Theorem 3.2. By Theorem 3.1, there exists t1 > R
2 such that

E[etSn ] ≤ E[et|Sn|] ≤ exp (nτ1t
ρ) for all t ≥ t1,

and

P

[

Sn

n
> x

]

≤ P

[ |Sn|
n

> x

]

≤ exp
(

−nR1x
Q
)

for all x ≥ x1 := ρτ1t
ρ−1
1 .

On the other hand, notice that E[eR|Xi||Fi−1] ≤ K1 := eR + K, so that by Theorem 2.1,

E[etSn ] ≤ exp

(

2nK1t
2

R2

)

for all t ∈
]

0,
R

2

]

.

If t ∈
]

R
2 , t1

]

, then

E[etSn ] ≤ E[et1|Sn|] ≤ exp (nτ1t
ρ
1) ≤ en

4τ1t
ρ
1

R2 t2 .

Set A = max(2K1

R2 ,
4τ1tρ

1

R2 ). Then

E[etSn ] ≤ enAt2 ∀t ∈]0, t1].

Again by Theorem 2.1, we can choose B > 0 small enough such that

P

[

Sn

n
> x

]

≤ exp
(

−nBx2
)

if x ∈]0, x1].

4 Extension to the case E[e|Xi||Fi−1] ≤ Ki

The following theorems are immediate generalizations of Theorems 2.1, 2.9, 3.1 and 3.2. The proofs of
the first two theorems remain the same; the proof of the third needs a short argument for the concerned
constants to be independent of n. The first theorem is an extension of Bernstein’s inequality.

Theorem 4.1 Let (Xi)1≤i≤n be a finite sequence of supermartingale differences. If for some constants
Ki > 0 and all i ∈ [[1, n]], a.s.

E[e|Xi||Fi−1] ≤ Ki, (4.1)

then for each K ≥ K1+···+Kn

n ,

E[etSn ] ≤ exp

(

nKt2

1 − t

)

for all t ∈]0, 1[, (4.2)

and

P

[

Sn

n
> x

]

≤ exp

(

−n
(√

x + K −
√

K
)2
)

for all x > 0. (4.3)
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Consequently,

P

[

Sn

n
> x

]

≤



















exp

(

− nx2

K(1 +
√

2)2

)

if x ∈]0, K],

exp

(

− nx

(1 +
√

2)2

)

if x > K.

(4.4)

The second theorem is an extension of Hoeffding’s inequality.

Theorem 4.2 Let (Xi)1≤i≤n be a sequence of supermartingale differences adapted to (Fi). If there exist
some constants Ki > 0 and R > 0 such that for all i ∈ [[1, n]], a.s.

E[eRX2
i |Fi−1] ≤ Ki, (4.5)

then for each K ≥ K1+···+Kn

n , there exists a constant c > 0 depending only on R and K such that:

E[etSn ] ≤ enct2 for all t > 0, (4.6)

and

P

[

Sn

n
> x

]

≤ e−
nx2

4c for all x > 0. (4.7)

The third theorem shows a close relation between P [|Xi| > x] and P
[

|Sn|
n > x

]

for large values of x > 0.

Notice that this result is valid for any adapted sequence.

Theorem 4.3 Let (Xi)1≤i≤n be any adapted sequence with respect to a filtration (Fi)1≤i≤n. Assume that
there exist some constants Q > 1, R > 0 and Ki > 0 such that for all i ∈ [[1, n]],

E[eR|Xi|Q |Fi−1] ≤ Ki a.s.. (4.8)

Let ρ > 1 and τ > 0 be such that

1

Q
+

1

ρ
= 1 and (ρτ)

1
ρ (QR)

1
Q = 1. (4.9)

Let K ≥ K1+···+Kn

n . Then for any τ1 > τ , there exists t1 > 0 depending only on K, Q, R and τ1, such that:

E[et|Sn|] ≤ exp (nτ1t
ρ) for all t ≥ t1, (4.10)

and

P

[ |Sn|
n

> x

]

≤ exp
(

−nR1x
Q
)

for all x ≥ x1 := ρτ1t
ρ−1
1 , (4.11)

where R1 is such that (ρτ1)
1
ρ (QR1)

1
Q = 1.

Proof. By Lemmas 3.5 and 3.3, we see that for a =
(

2
R

)
1

Q−1 ,

E[et|Xi||Fi−1] ≤ 1 + Ki(1 + atρeτtρ

) ∀t > 0.

By Lemma 2.3,

E[et|Sn|] ≤ E[et(|X1|+···+|Xn|)] ≤
n
∏

i=1

(

1 + Ki(1 + atρeτtρ

)
)

.

It is easy to see that 1 + Ki(1 + atρeτtρ

) ≤ eKi(1 + atρeτtρ

), so we have

E[et|Sn|] ≤
(

eK(1 + atρeτtρ

)
)n

.

Let τ1 > τ . Then there exists t1 > 0 sufficiently large such that ∀t ≥ t1, eK(1 + atρeτtρ

) ≤ eτ1tρ

, which
gives (4.10). As

P

[ |Sn|
n

> x

]

= P [et|Sn| > etnx] ≤ e−ntxE[et|Sn|] ≤ exp (−n(tx − τ1t
ρ)) ,
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we deduce (4.11) from Lemma 3.4.

As in section 3, when (Xi) are supermartingale differences, using Theorem 4.1 we can complete Theorem
4.3 with an information for small values of x > 0 and t > 0, as shown in the following theorem. For large
values of x, t > 0, it gives inequalities sharper than those of Theorem 4.1.

Theorem 4.4 Under the same hypothesis as in Theorem 4.3, if moreover (Xi)1≤i≤n is a sequence of
supermartingale differences adapted to the filtration (Fi), then for any τ1 > τ , there exist t1 > 0, x1 > 0,
and A, B > 0, depending only on K, Q, R and τ1, such that:

E[etSn ] ≤
{

exp (nτ1t
ρ) if t ≥ t1,

exp
(

nAt2
)

if 0 ≤ t ≤ t1,
(4.12)

and

P

[

Sn

n
> x

]

≤
{

exp
(

−nR1x
Q
)

if x ≥ x1,

exp
(

−nBx2
)

if 0 ≤ x ≤ x1.
(4.13)

5 Rate of convergence with probability 1 and in Lp

Theorem 5.1 Let (Xi)1≤i≤n be a sequence of supermartingale differences. If for some constants Ki > 0
and for all i ∈ [[1, n]],

E[e|Xi||Fi−1] ≤ Ki a.s., (5.1)

then writing K = lim supn→+∞
K1+···+Kn

n and S+
n = max(0, Sn), we have:

lim sup
n→+∞

S+
n√

n lnn
≤ 2

√
K a.s., (5.2)

and for every p > 0,

lim sup
n→+∞

n
p
2 E

[(

S+
n

n

)p]

≤ p2p−1K
p
2 Γ
(p

2

)

. (5.3)

Proof. For the proof of (5.2), by Borel- Cantelli’s Lemma, it suffices to show that for every a > 2
√

K,

+∞
∑

n=0

P

[

S+
n√

n lnn
> a

]

< +∞.

Let us fix a > 2
√

K. Let ε > 0 be such that a > 2
√

K + ε and let n1 > 0 be such that for every n ≥ n1,
K1+···+Kn

n < K + ε. Then we deduce from Theorem 4.1 that for every n ≥ n1,

P

[

S+
n√

n lnn
> a

]

= P

[

Sn

n
>

√

lnn

n
a

]

≤ exp

(

−n
(

√

xn + K + ε −
√

K + ε
)2
)

,

with xn =
√

lnn
n a. When n tends to ∞, n

(√
xn + K + ε −

√
K + ε

)2 ∼ a2 lnn
4(K+ε) . As a2 > 4(K + ε), it

follows that
+∞
∑

n=0

P

[

S+
n√

n lnn
> a

]

< +∞.

This ends the proof of (5.2).
We now come to the proof of (5.3). Let n1 > 0 be as in the proof of (5.2). We deduce from Theorem 4.1
that for every n ≥ n1,

E

[(

S+
n

n

)p]

= p

∫ ∞

0

P

[

Sn

n
> x

]

xp−1dx ≤ p

∫ ∞

0

exp

(

−n
(√

x + K + ε −
√

K + ε
)2
)

xp−1dx.

Set y = n
(√

x + K + ε −
√

K + ε
)2

. Then
√

y
n =

√
x + K + ε −

√
K + ε, x =

√

y
n

(√

y
n + 2

√
K + ε

)

,

dx =

√
y
n +

√
K+ε√

n
√

y
dy, so that

E

[(

S+
n

n

)p]

≤ cn(p)

n
p
2

, (5.4)
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where

cn(p) = p

∫ ∞

0

e−yy
p
2
−1

(
√

y

n
+ 2

√
K + ε

)p−1 (√
y

n
+
√

K + ε

)

dy

satisfies

lim
n→∞

cn(p) = p

∫ ∞

0

e−yy
p
2
−1
(

2
√

K + ε
)p−1 (√

K + ε
)

dy = p2p−1(K + ε)
p
2 Γ
(p

2

)

.

In the case of a sequence of martingale differences, replacing S+
n by |Sn| in the proof above, we obtain

immediately:

Corollary 5.2 Let (Xi)1≤i≤n be a sequence of martingale differences. If for some constants Ki > 0 and
for all i ∈ [[1, n]],

E[e|Xi||Fi−1] ≤ Ki a.s., (5.5)

then for K = lim supn→+∞
K1+···+Kn

n ,

lim sup
n→+∞

|Sn|√
n lnn

≤ 2
√

K a.s., (5.6)

and for every p > 0,

lim sup
n→+∞

n
p
2 E

[( |Sn|
n

)p]

≤ p2pK
p
2 Γ
(p

2

)

. (5.7)

Remark 5.3 The exponential moment condition (5.5) can certainly be relaxed for a result of the form

E

[(

|Sn|
n

)p]

= O
(

n− p
2

)

. For example, as shown in [27], p.150, by Burkholder’s inequality, we can obtain

the following result: if p ≥ 2 and E[|Xi|p] ≤ K for some K > 0 and all i ∈ [[1, n]], then

E[|Sn|p] ≤ n
p
2 (18pq1/2)pK, (5.8)

where 1
p + 1

q = 1.

6 Free energy of directed polymers: concentration inequalities

We now consider the model of a directed polymer in a random environment, already described in the
introduction. For convenience, let us recall it briefly as follows. Let ω = (ωn)n∈N be the simple random
walk on the d-dimensional integer lattice Zd starting at 0, defined on a probability space (Ω,F , P ). Let
η = (η(n, x))(n,x)∈N×Zd be a sequence of real valued, non constant and i.i.d. random variables defined
on another probability space (E, E , Q). The path ω represents the directed polymer and η the random
environment. For any n > 0, define the random polymer measure µn on the path space (Ω,F) by

µn =
1

Zn(β)
exp(βHn(ω))P (dω), (6.1)

where β ∈ R is the inverse temperature,

Hn(ω) =

n
∑

j=1

η(j, ωj), and Zn(β) = P [exp(βHn(ω))]. (6.2)

Let λ(β) = ln Q[eβη(0,0)] be the logarithmic moment generating function of η(0, 0). We fix β > 0 (otherwise
we consider −η), and assume only λ(±β) < ∞, which is equivalent to Q[eβ|η(0,0)|] < ∞. We are interested
in the asymptotic behaviour of the normalized partition function

Wn(β) =
Zn(β)

Q[Zn(β)]
= P [exp(βHn − nλ(β))], (6.3)
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and the free energy 1
n lnWn(β). For simplicity, we shall write Wn for Wn(β), Zn for Zn(β), and η for η(0, 0).

We use the same letter η to denote the environment sequence (η(n, x))(n,x)∈N×Zd and the random variable
η(0, 0); there will be no confusion according to the context. In this section, we shall prove exponential
concentration inequalities for the free energies ln Wn

n , and convergence results of the centered energies
ln Wn

n − Q[ln Wn]
n : cf. Theorems 6.1, 6.5, 6.6, and their corollaries.

Theorem 6.1 Assume that Q[eβ|η|] < +∞, and set K = 2 exp (λ(−β)) + λ(β)). Then for all n ≥ 1,

Q[e±t(lnWn−Q[ln Wn])] ≤ exp

(

nKt2

1 − t

)

for all t ∈]0, 1[, (6.4)

and

Q

[

± 1

n
(lnWn − Q[lnWn]) > x

]

≤ exp

(

−n
(√

x + K −
√

K
)2
)

for all x > 0. (6.5)

Consequently, ∀n ≥ 1,

Q

[

± 1

n
(lnWn − Q[lnWn]) > x

]

≤



















exp

(

− nx2

K(1 +
√

2)2

)

if x ∈]0, K],

exp

(

− nx

(1 +
√

2)2

)

if x > K.

(6.6)

Corollary 6.2 Under the conditions of Theorem 6.1, ∀ε > 0, there exist 0 < x0 < x1 and K1 > 0
depending only on K and ε, such that:

Q

[

± 1

n
(ln Wn − Q[lnWn]) > x

]

≤



































exp

(

− nx2

4K(1 + ε)

)

if x ∈]0, x0[,

exp

(

− nx

K1

)

if x ∈ [x0, x1],

exp

(

− nx

1 + ε

)

if x ∈]x1, +∞[.

(6.7)

Remark 6.3 Using Lesigne and Volny’s martingale inequality (1.5), Comets, Shiga and Yoshida (2003,
[11]) proved that if Q[eβ|η|] < +∞ for all β > 0, then ∀x > 0, there exists n0 ∈ N∗ such that for any
n ≥ n0,

Q

[∣

∣

∣

∣

1

n
lnWn − 1

n
Q[lnWn]

∣

∣

∣

∣

> x

]

≤ exp

(

−n
1
3 x

2
3

4

)

. (6.8)

Our result is sharper as n1/3 is replaced by n. Another advantage is that our conclusion holds for all n, not
only for n large enough; thanks to this advantage, we can use our inequalities to study the convergence rate
for the a.s. and Lp convergence: cf. Theorem 6.5. The third advantage is that we assume Q[eβ|η|] < +∞
only for the fixed β, not for all β > 0. The first two advantages are due to the application of our
exponential martingale inequality (Theorem 2.1); the third one comes from a direct estimation of the
conditional exponential moment (Lemma 6.4) by use of convex inequalities, without using Lemma 3.1 of
[11].

For the proof, as in [11], we write lnWn − Q[lnWn] as a sum of (Ej)1≤j≤n martingale differences:

lnWn − Q[lnWn] =
n
∑

j=1

Vn,j , with Vn,j = Qj [lnWn] − Qj−1[lnWn],

where Qj denotes the conditional expectation with respect to Q given Ej , Ej = σ[η(i, x) : 1 ≤ i ≤ j, x ∈ Zd].

Lemma 6.4 We have
Qj−1 [exp(tVn,j)] ≤ exp (L(t)) for every t ∈ R, (6.9)

where

L(t) =

{

λ(tβ) + λ(−tβ) if |t| > 1,

λ(− |t|β) + |t|λ(β) if |t| ≤ 1.
(6.10)
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Consequently,
Qj−1 [exp(|Vn,j |)] ≤ K := 2 exp (λ(β) + λ(−β)) . (6.11)

Proof. We fix t ∈ R∗ and assume L(t) < ∞ (otherwise there is nothing to prove). Set

en,j = exp





∑

1≤k≤n,k 6=j

(βη(k, ωk) − λ(β))



 , Wn,j = P [en,j].

Since Qj−1[lnWn,j ] = Qj [lnWn,j ], we have

Vn,j = Qj

[

ln
Wn

Wn,j

]

− Qj−1

[

ln
Wn

Wn,j

]

. (6.12)

For j ∈ N and x ∈ Zd, define

ηx = η(j, x) = exp(βη(j, x) − λ(β)), αx =
P [en,j ; ωj = x]

Wn,j
.

(Throughout the paper, for a measure µ, a function f , and a set A, we use the notation µ[f ; A] =
∫

f1Adµ,
where 1A is the indicator function of A). Then

∑

x∈Zd

αx = 1 and
Wn

Wn,j
=
∑

x∈Zd

αxηx.

By (6.12),

Qj−1 [exp(tVn,j)] = exp

(

−tQj−1

[

ln
Wn

Wn,j

])

Qj−1

[

exp

(

tQj

[

ln
Wn

Wn,j

])]

.

Since the function x 7→ etx is convex, using Jensen’s inequality and the fact that Ej−1 ⊂ Ej , we get:

Qj−1 [exp(tVn,j)] ≤ Qj−1

[

(

Wn

Wn,j

)−t
]

Qj−1

[

(

Wn

Wn,j

)t
]

. (6.13)

If t < 0 or t ≥ 1 then the function x 7→ xt is convex, therefore by Jensen’s inequality we have

(

Wn

Wn,j

)t

=





∑

x∈Zd

αxηx





t

≤
∑

x∈Zd

αx (ηx)
t
.

We consider the σ-algebra En,j = σ[η(k, x); 1 ≤ k ≤ n, k 6= j, x ∈ Zd]. Then Ej−1 ⊂ En,j , the αx are
En,j-measurable, and the ηx are independent of En,j , so that

Qj−1[αx (ηx)
t
] = Qj−1[Q[αx (ηx)

t |En,j ]] = Qj−1[αxQ[(ηx)
t
]] = exp (λ(tβ) − tλ(β)) Qj−1[αx].

Hence for t < 0 or t ≥ 1,

Qj−1

[

(

Wn

Wn,j

)t
]

≤ exp (λ(tβ) − tλ(β)) . (6.14)

It is easily seen that the equality holds for t = 1: Qj−1

[

Wn

Wn,j

]

= 1. Again by Jensen’s inequality, we have,

for t ∈]0, 1],

Qj−1

[

(

Wn

Wn,j

)t
]

≤
(

Qj−1

[

Wn

Wn,j

])t

= 1. (6.15)

The inequality (6.9) is then just a combination of (6.13), (6.14), and (6.15). In particular,

Qj−1 [exp(±Vn,j)] ≤ exp (λ(β) + λ(−β)) , so that Qj−1 [exp(|Vn,j |)] ≤ K := 2 exp (λ(β) + λ(−β)) .
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Proof of Theorem 6.1. From Lemma 6.4 and Theorem 2.1, we deduce:

Q[et(ln Wn−Q[lnWn])] ≤ exp

(

nKt2

1 − t

)

for all t ∈]0, 1[, (6.16)

and

Q

[

1

n
(lnWn − Q[lnWn]) > x

]

≤ exp

(

−n
(√

x + K −
√

K
)2
)

for all x > 0. (6.17)

Applying Theorem 2.1 to the sequence (−Vn,j), we find that

Q[e−t(lnWn−Q[lnWn])] ≤ exp

(

nKt2

1 − t

)

for every t ∈]0, 1[, (6.18)

and

Q

[

− 1

n
(lnWn − Q[lnWn]) > x

]

≤ exp

(

−n
(√

x + K −
√

K
)2
)

for all x > 0. (6.19)

The inequalities (6.16) and (6.18) give (6.4), (6.17) and (6.19) give (6.5).

Proof of Corollary 6.2. The proof is the same as the proof of Corollary 2.2.

Theorem 6.5 Assume that Q[eβ|η|] < +∞, and set K = 2 exp (λ(−β)) + λ(β)). Then

1

n
lnWn − 1

n
Q[lnWn] → 0 a.s. and in Lp, (6.20)

with

lim sup
n→+∞

√

n

lnn

∣

∣

∣

∣

lnWn

n
− Q[lnWn]

n

∣

∣

∣

∣

≤ 2
√

K a.s., (6.21)

and for every p > 0,

lim sup
n→+∞

n
p
2 Q

[∣

∣

∣

∣

lnWn − Q[lnWn]

n

∣

∣

∣

∣

p]

≤ p2pK
p
2 Γ
(p

2

)

. (6.22)

Proof. Recall that with the notations of the proof of Theorem 6.1, we have

Qj−1 [exp(|Vn,j |)] ≤ K.

Then the inequalities (6.21) and (6.22) are consequences of the inequalities (5.6) and (5.7) of Corollary 5.2.

Theorem 6.6 Assume that K0 := Q[eR|η|Q ] < +∞ for some Q > 1 and R > 0. Let ρ > 1 and τ > 0 be
determined by

1

Q
+

1

ρ
= 1 and (ρτ)

1
ρ (QR)

1
Q = 1. (6.23)

Then for each τ1 > τ , there exist constants t0, A, B > 0, depending only on β, K0, Q, R, τ and τ1, such
that, for all n ≥ 1,

Q[e±t(lnWn−Q[ln Wn])] ≤















exp (2nτ1β
ρtρ) if t >

t0
β

,

exp(nAt2) if 0 < t ≤ t0
β

,
(6.24)

and

Q

[

± 1

n
(lnWn − Q[lnWn]) > x

]

≤
{

exp
(

−nR1x
Q
)

if x > 2ρβτ1t
ρ−1
0 ,

exp
(

−nBx2
)

if 0 < x ≤ 2ρβτ1t
ρ−1
0 ,

(6.25)

where R1 > 0 is such that β(2ρτ1)
1
ρ (QR1)

1
Q = 1.

If we are not interested in the values of constants, then we have
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Corollary 6.7 Under the conditions of Theorem 6.6, there exist constants c1, c2 > 0, depending only on
β, K0, Q and R, such that:

Q[e±t(lnWn−Q[lnWn])] ≤
{

exp (nc1t
ρ) if t > 1,

exp(nc1t
2) if 0 < t ≤ 1,

(6.26)

and

Q

[

± 1

n
(lnWn − Q[lnWn]) > x

]

≤
{

exp
(

−nc2x
Q
)

if x > 1,

exp
(

−nc2x
2
)

if 0 < x ≤ 1.
(6.27)

In particular, if K0 := Q[eR|η|2 ] < +∞ for some R > 0, then for some constants c1, c2 > 0 depending only
on β, K0 and R,

Q[e±t(lnWn−Q[ln Wn])] ≤ exp
(

nc1t
2
)

for all t ∈ R, (6.28)

and

Q

[

± 1

n
(lnWn − Q[lnWn]) > x

]

≤ exp
(

−nc2x
2
)

for all x > 0. (6.29)

Remark 6.8 If the environment is bounded or gaussian, the inequality (6.28) was proved in [13], Corollary
2.5, as a corollary of a general concentration result.

Proof of Theorem 6.6. Let τ1 > τ . By Lemmas 3.5 and 3.3, writing a = K0(
2
R )

1
Q−1 , we have

Q[et|η|] ≤ 1 + K0 + atρeτtρ ≤ eτ1tρ ∀t ≥ t0,

for some t0 = t0(K0, ρ, τ, τ1) > 1. Hence λ(±t) ≤ τ1t
ρ ∀t ≥ t0, so by Lemma 6.4,

Qj−1 [exp(±tVn,j)] ≤ exp (L(±t)) ≤ exp (2τ1β
ρtρ) for all t ≥ t0

β
. (6.30)

We apply Lemma 2.3 with I =] t0
β , +∞[, and with the aid of Lemma 3.4, we conclude that

Q[e±t(lnWn−Q[ln Wn])] ≤ exp (2nτ1β
ρtρ) if t >

t0
β

, (6.31)

and

Q

[

± 1

n
(lnWn − Q[lnWn]) > x

]

≤ exp
(

−nR1x
Q
)

if x > 2ρτ1βtρ−1
0 . (6.32)

Clearly, the condition Q[eR|η|Q ] < ∞ implies Q[eβ|η|] < ∞. Let K = 2 exp (λ(β) + λ(−β)). By Theorem
6.1, (6.4), and Corollary 6.2, (6.7), ∀ε > 0,

Q[e±t(lnWn−Q[lnWn])] ≤ exp

(

nKt2

1 − t

)

≤ exp

(

nKt2

1 − ε

)

if 0 < t ≤ ε, (6.33)

and

Q

[

± 1

n
(lnWn − Q[lnWn]) > x

]

≤ exp

(

− nx2

4K(1 + ε)

)

if 0 < x < δ(K, ε), (6.34)

for some δ(K, ε) small enough. In the following, we take ε = 1
2 and δ = δ(K, 1

2 ). If 1
2 ≤ t ≤ t0

β , then

Q[e±t(lnWn−Q[ln Wn])] ≤ Q

[

e
t0
β |ln Wn−Q[ln Wn]|

]

≤ 2 exp (2nτ1t
ρ
0) ≤ exp

(

n(4 ln 2 + 8τ1t
ρ
0)t

2
)

. (6.35)

Combining (6.31), (6.33) and (6.35) gives (6.24), with A = max(4K, 4 ln 2 + 8τ1t
ρ
0).

If δ ≤ x ≤ x0 := 2ρτ1βtρ−1
0 , then by (6.5),

Q

[

± 1

n
(lnWn − Q[lnWn]) > x

]

≤ exp
(

−n(
√

δ + K −
√

K)2
)

≤ exp

(

−n
(
√

δ + K −
√

K)2x2

x2
0

)

. (6.36)

Combining (6.32), (6.34) and (6.36) gives (6.25), with B = min
(

1
6K , (

√
δ+K−

√
K)2

x2
0

)

.
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7 Free energy of directed polymers: convergence rates

It is well known that the sequence Q[lnWn(β)] is superadditive, hence the limit

p−(β) = lim
n→∞

1

n
Q[ln(Wn(β))] = sup

n

1

n
Q[ln(Wn(β))] ∈] −∞, 0] (7.1)

exists2. As an immediate consequence of (7.1) and (6.20), we have:

Lemma 7.1 Assume that Q[eβ|η|] < +∞. Then

p−(β) = lim
n→∞

1

n
ln(Wn(β)) ∈ [βQ[η] − λ(β), 0] Q-a.s. and in Lp, ∀p ≥ 1. (7.2)

The inequality p−(β) ≤ 0 was already indicated in (7.1); it follows from the fact that

Q[ln(Wn(β))] ≤ ln Q[Wn(β)] = 0.

The inequality p−(β) ≥ βQ[η] − λ(β) also comes directly from the definition, as

Q[ln(Wn)] ≥ QP [βHn − nλ(β)] = PQ[βHn − nλ(β)] = n(βQ[η] − λ(β)).

The a.s. convergence was proved in [11], under the stronger condition that Q[eβ|η|] < +∞ for all β > 0;
actually their proof is valid under the condition that Q[e3β|η|] < +∞. We shall give an estimation of the
rate of convergence, for each of the convergences in probability, a.s., and in Lp (p ≥ 1): cf. Theorems 7.2
and 7.5.
We first consider the rate of convergence in probability. Recall that the condition Q[eβ|η|] < +∞ is
equivalent to λ(±β) < ∞.

Theorem 7.2 If K := 2 exp (λ(−β)) + λ(β)) < ∞, then ∀δ ∈]0, 1[, ∀x > 0, there exists n0 = n0(δ, x) > 0
such that ∀n ≥ n0,

Q

[∣

∣

∣

∣

1

n
lnWn − p−(β)

∣

∣

∣

∣

> x

]

≤ 2 exp

(

−n
(

√

(1 − δ)x + K −
√

K
)2
)

. (7.3)

Consequently,

Q

[∣

∣

∣

∣

1

n
lnWn − p−(β)

∣

∣

∣

∣

> x

]

≤



















2 exp

(

− n(1 − δ)2x2

K(1 +
√

2)2

)

if x(1 − δ) ≤ K,

2 exp

(

− n(1 − δ)x

(1 +
√

2)2

)

if x(1 − δ) > K.

(7.4)

In particular (take δ = 1
2), ∀x ∈]0, 2K], there exists n0 = n0(x) > 0 such that ∀n ≥ n0,

Q

[∣

∣

∣

∣

1

n
lnWn − p−(β)

∣

∣

∣

∣

> x

]

≤ 2 exp

(

− nx2

4K(1 +
√

2)2

)

. (7.5)

Proof. Let δ ∈]0, 1[, and x > 0. Let n0 = n0(δ, x) be large enough such that for any n ≥ n0,

0 ≤ p−(β) − 1

n
Q[ln(Wn(β))] < δx.

Then ∀n ≥ n0,

Q

[∣

∣

∣

∣

1

n
lnWn − p−(β)

∣

∣

∣

∣

> x

]

≤ Q

[∣

∣

∣

∣

1

n
lnWn − 1

n
Q[lnWn]

∣

∣

∣

∣

> (1 − δ)x

]

.

Therefore the conclusion follows from Theorem 6.1.

2In the literature, p(β) is often used to denote the limit of the un-normalized free energy: p(β) = lim
n→∞

1
n

Q[ln(Zn(β))]. We

use the symbol p−(β) to indicate that p−(β) ≤ 0. Of course p−(β) = p(β) − λ(β).
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We next consider the rate of convergence in mean. To this end, we first introduce some notations. We
note P x the law of the simple random walk on Zd starting at x, and Lm = {x ∈ Zd, P (ωm = x) > 0}. In
addition to the partition function Wn, we define the partition function starting from x:

Wn(x) = Wn(x; η) = P x



exp



β
n
∑

j=1

η(j, ωj) − nλ(β







 , (7.6)

and the point to point partition function

Wn(x, y) = Wn(x, y; η) = P x



exp



β

n
∑

j=1

η(j, ωj) − nλ(β)



 1ωn=y



 . (7.7)

Let τn be the time shift of ordre n on the environment:

(τnη)(k, x) = η(k + n, x) (x ∈ Zd, k ≥ 1).

Then we have
Wn+k =

∑

x∈Ln

Wn(0, x; η)Wk(x; τnη). (7.8)

Lemma 7.3 (Rate of convergence in mean) If K := 2 exp (λ(−β)) + λ(β)) < ∞, then for each n ∈ N∗,

0 ≤ p−(β) − 1

n
Q[ln(Wn(β))] ≤ 2

√
K

√

d ln(2n)

n
+

d ln(2n)

n
. (7.9)

Proof. We adapt the proof of Proposition 2.4 of [7]. Let ε ∈]0, 1[. Using (7.8) and the subadditivity of
the function u 7→ uε , we get

W ε
n+k ≤

∑

x∈Ln

W ε
n(0, x; η)W ε

k (x; τnη).

Integrating with respect to the environment we have

Q[W ε
n+k] ≤ |Ln|Q[W ε

n]Q[W ε
k ] ≤ (2n)dQ[W ε

n ]Q[W ε
k ].

Therefore hε(n) := ln Q[W ε
n] (≥ εQ[lnWn]) satisfies

hε(n + k) ≤ hε(n) + hε(k) + d ln(2n) ∀n, k ≥ 1.

Set h(ε) = lim supn→+∞
hε(n)

n (in fact by Hammersley’s (1962, [20]) theorem on sub-additive functions, the
limit exists, although we shall not use it). By the preceding recurrence relation, we have

hε(nm) ≤ mhε(n) + (m − 1)d ln(2n), n, m ≥ 1.

Dividing this inequality by nm and letting m → ∞, we see that

h(ε) ≤ hε(n) + d ln(2n)

n
, ∀n ≥ 1.

By Theorem 6.1,

hε(n) = ln Q[exp (ε(lnWn − Q[lnWn]))] + εQ[lnWn] ≤ nKε2

1 − ε
+ εQ[lnWn].

As p−(β) ≤ h(ε)
ε , it follows that

p−(β) ≤ Kε

1 − ε
+

Q[lnWn]

n
+

d ln(2n)

nε
∀ε ∈]0, 1[. (7.10)

Let g(ε) = Kε
1−ε + dn

ε , where dn = d ln(2n)
n , ε ∈]0, 1[. Then g′(ε) = K

(1−ε)2 − dn

ε2 = 0 if and only if ε =
√

dn√
K+

√
dn

.

For ε =
√

dn√
K+

√
dn

, g(ε) = 2
√

Kdn + dn; therefore taking ε =
√

dn√
K+

√
dn

in (7.10), we obtain

p−(β) ≤ 2
√

Kdn + dn +
Q[lnWn]

n
,
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that is,

p−(β) ≤ 2
√

K

√

d ln(2n)

n
+

d ln(2n)

n
+

Q[lnWn]

n
.

As an immediate consequence of the preceding lemma, we have:

Corollary 7.4 If K := 2 exp (λ(−β)) + λ(β)) < ∞, then

lim sup
n→+∞

√

n

lnn

∣

∣

∣

∣

Q[lnWn]

n
− p−(β)

∣

∣

∣

∣

≤ 2
√

Kd. (7.11)

We finally consider the rate of convergence, with probability 1 and in Lp. As usual, ‖.‖p denotes the Lp

norm.

Theorem 7.5 (Rate of convergence, a.s. and in Lp) If K := 2 exp (λ(−β)) + λ(β)) < ∞, then

lim sup
n→+∞

√

n

lnn

∣

∣

∣

∣

lnWn

n
− p−(β)

∣

∣

∣

∣

≤ 2
√

K(1 +
√

d) a.s., (7.12)

and

lim sup
n→+∞

√

n

lnn
‖ lnWn

n
− p−(β)‖p ≤ 2

√
Kd, ∀p ≥ 1. (7.13)

Proof. We write

lnWn

n
− p−(β) =

(

lnWn

n
− Q[lnWn]

n

)

+

(

Q[lnWn]

n
− p−(β)

)

.

Then combining (6.21) of Theorem 6.5 and (7.11) of Corollary 7.4, we get (7.12). Again by Theorem 6.5,
we know that for every p ≥ 1,

‖ lnWn − Q[lnWn]

n
‖p = O(n−1/2) = o

(
√

lnn

n

)

,

so that (7.13) is a consequence of Corollary 7.4.

Remark 7.6 Carmona and Hu have proved in [7] that if the environment is gaussian, then for any ε > 0,

∣

∣

∣

∣

lnWn

n
− p−(β)

∣

∣

∣

∣

≤ n−( 1
2
−ε) for n big enough.

Our estimation is sharper since n( 1
2
−ε) is replaced by

√

ln n
n .

8 Expression of the free energy by multiplicative cascades

In this section we shall prove that the free energy p−(β) can be expressed in terms of the free energies of
some generalized multiplicative cascades. The expression is interesting because we know more information
on the free energies of multiplicative cascades. The model of multiplicative cascades was first introduced
by Mandelbrot (1974, [30]); it has been well studied in the literature: see for example Kahane and Peyrière
(1976, [25]), Durrett and Liggett (1981,[17]), Guivarc’h (1990, [19]), Franchi (1993, [18] ); for a generalized
version and closely related topics, see Liu (2000, [29]).
In [13], Comets and Vargas introduced a generalized multiplicative cascade (cf. [29]) (W tree

m,n )n≥1 associated
to the random vector (Wm(0, x))x∈Lm , where we recall that

Wm(0, x) = P [exp(βHm(ω) − mλ(β)); ωm = x]. (8.1)
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The associated free energy is

ptree
m (β) = inf

θ∈]0,1]
vm(θ), with vm(θ) =

1

θ
ln

(

Q[
∑

x∈Lm

Wm(0, x)θ]

)

. (8.2)

Comets et Vargas proved that

p−(β) ≤ inf
m≥1

1

m
ptree

m (β) = lim
m→+∞

1

m
ptree

m (β), (8.3)

and that the equality holds if the environment is gaussian or bounded. Here we prove that the equality
holds for general environment.

Theorem 8.1 Assume that Q[eβ|η|] < +∞. Then

p−(β) = inf
m≥1

1

m
ptree

m (β). (8.4)

Proof. For the sake of completeness, we recall the argument of Comets-Vargas for the inequality (8.3).
Using the point to point partition functions defined by (7.7), we have

Wmn =
∑

x1,··· ,xn∈Zd

Wm(0, x1)Wm(x1, x2; τmη) · · ·Wm(xn−1, xn; τ(n−1)mη). (8.5)

Let θ ∈]0, 1[ and m ∈ N∗. By the subadditivity of the function u 7→ uθ and Jensen’s inequality, we obtain:

1

nm
Q[lnWnm] =

1

mθn
Q[lnW θ

nm]

≤ 1

mθn
Q



ln
∑

x1,··· ,xn∈Zd

W θ
m(0, x1)W

θ
m(x1, x2; τmη) · · ·W θ

m(xn−1, xn; τ(n−1)mη)





≤ 1

mθn
ln Q





∑

x1,··· ,xn∈Zd

W θ
m(0, x1)W

θ
m(x1, x2; τmη) · · ·W θ

m(xn−1, xn; τ(n−1)mη)



 .

By induction on n it is easy to see that

Q





∑

x1,··· ,xn∈Zd

W θ
m(0, x1)W

θ
m(x1, x2; τmη) · · ·W θ

m(xn−1, xn; τ(n−1)mη)



 =

(

Q

[

∑

x∈Lm

W θ
m(0, x)

])n

,

therefore
1

nm
Q[lnWnm] ≤ 1

mθ
ln

(

Q[
∑

x∈Lm

W θ
m(0, x)]

)

.

Letting n → ∞ gives

p−(β) ≤ 1

mθ
ln

(

Q[
∑

x∈Lm

W θ
m(0, x)]

)

;

then taking the infimum over all θ ∈]0, 1] gives

p−(β) ≤ 1

m
ptree

m (β).

Now we prove the reverse inequality. As Wm(0, x) ≤ Wm for every x, we have, for θ ∈]0, 1[,

vm(θ) ≤ 1

θ
ln
(

Q[|Lm|W θ
m]
)

,

where |Lm| is the cardinality of Lm. Writing

Q[W θ
m] = eθQ[lnWm]Q[exp (θ(lnWm − Q[lnWm]))],
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we get

vm(θ) ≤ 1

θ
ln |Lm| + Q[lnWm] +

1

θ
ln (Q[exp (θ(ln Wm − Q[lnWm]))]) .

Recall that by Theorem 6.1, for every θ ∈]0, 1[,

Q[exp(θ(ln Wm − Q[lnWm]))] ≤ e
mKθ2

1−θ ,

with K = 2 exp (λ(−β)) + λ(β)). Therefore for any m ≥ 1,

inf
m≥1

1

m
ptree

m (β) ≤ 1

m
ptree

m (β) ≤ 1

m
vm(θ) ≤ 1

mθ
ln |Lm| + 1

m
Q[lnWm] +

Kθ

1 − θ
.

Letting m → ∞ and using the fact that |Lm| ≤ (2m)d, we obtain that

inf
m≥1

1

m
ptree

m (β) ≤ p−(β) +
Kθ

1 − θ
.

This gives the desired result as θ ∈]0, 1[ is arbitrary.
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